A Real-Time Permittivity Estimation Method for Stepped-Frequency Ground-Penetrating Radar by Full-Waveform Inversion
Abstract
:1. Introduction
- 1.
- The direct wave and correction time zero can be removed by obtaining the parameter characteristics of the system, which has little impact on the echo signal of the target.
- 2.
- The distance between the radar and the reflective surface of the medium is obtained from the time domain signal of the radar, which avoids the error caused by human measurement.
- 3.
- The total reflected echo signal at this distance can be obtained by inversion using the system parameters and radar range, without the need to carry out repeated metal plate calibration experiments at the experimental site, which improves the efficiency of work.
- 4.
- Our proposed method can realize large-scale real-time permittivity measurement on a continuous measurement line.
2. Theory and Methodology
2.1. Introduction to Radar Systems
2.1.1. Radar System Modeling
2.1.2. Radar System Model Solving and Validation
2.2. Introduction to the Method
2.2.1. Measured Data Processing
2.2.2. Total Reflection Echoes Inversion
2.2.3. Permittivity Estimation
3. Experiment
3.1. Wall Permittivity Estimation Experiment
3.2. Verification Experiment
3.2.1. Wall Penetration Experiments
3.2.2. Dielectric Probe Verification Experiment
3.3. Application Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Kruk, J.v.; Bikowski, J.; Kumbhar, P.; Vereecken, H.; Meles, G.A. Full-waveform inversion of GPR data in frequency-domain. In Proceedings of the 2012 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China, 4–8 June 2012; pp. 324–328. [Google Scholar] [CrossRef]
- Kopeikin, V.V.; Morozov, P.A.; Edemskiy, F.D.; Edemskiy, D.E.; Pavlovskii, B.R.; Sungurov, Y.A. Experience of GPR application in oil-and-gas industry. In Proceedings of the 2012 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China, 4–8 June 2012; pp. 811–815. [Google Scholar] [CrossRef]
- Zhou, L.; Su, Y. GPR Imaging With RM Algorithm in Layered Mediums. IEEE Geosci. Remote Sens. Lett. 2011, 8, 934–938. [Google Scholar] [CrossRef]
- Ni, Z.-K.; Shi, C.; Pan, J.; Zheng, Z.; Ye, S.; Fang, G. Declutter-GAN: GPR B-Scan Data Clutter Removal Using Conditional Generative Adversarial Nets. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4023105. [Google Scholar] [CrossRef]
- Kovalenko, V.; Yarovoy, A.G.; Ligthart, L.P. A Novel Clutter Suppression Algorithm for Landmine Detection with GPR. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3740–3751. [Google Scholar] [CrossRef]
- Feng, X.; Sato, M.; Liu, C. Subsurface Imaging Using a Handheld GPR MD System. IEEE Geosci. Remote Sens. Lett. 2012, 9, 659–662. [Google Scholar] [CrossRef]
- Benedetto, A.; Tosti, F.; Ciampoli, L.B.; Pajewski, L.; Pirrone, D.; Umiliaco, A.; Brancadoro, M.G. A simulation-based approach for railway applications using GPR. In Proceedings of the 2016 16th International Conference on Ground Penetrating Radar (GPR), Hong Kong, China, 13–16 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Bilik, Y.; Haridim, M.; Bilik, D. Reflectivity and Resolution Improvement of Underground Rectilinear Objects Detection Using GPR. IEEE Geosci. Remote Sens. Lett. 2020, 17, 799–803. [Google Scholar] [CrossRef]
- Sato, M. GPR for disaster mitigation and beyond. In Proceedings of the 2012 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China, 4–8 June 2012; pp. 17–20. [Google Scholar] [CrossRef]
- Fernández, M.G.; López, Y.Á.; Arboleya, A.A.; Valdés, B.G.; Vaqueiro, Y.R.; Andrés, F.L.H.; García, A.P. Synthetic Aperture Radar Imaging System for Landmine Detection Using a Ground Penetrating Radar on Board a Un-manned Aerial Vehicle. IEEE Access 2018, 6, 45100–45112. [Google Scholar] [CrossRef]
- Garcia-Fernandez, M.; Alvarez-Lopez, Y.; Gonzalez-Valdes, B.; Rodriguez-Vaqueiro, Y.; Arboleya-Arboleya, A.; Heras, F.L. Recent advances in high-resolution Ground Penetrating Radar on board an Unmanned Aerial Vehicle. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Fernández, M.G.; Narciandi, G.Á.; Arboleya, A.; Antuña, C.V.; Andrés, F.L.-H.; López, Y.Á. Development of an Airborne-Based GPR System for Landmine and IED Detection: Antenna Analysis and Intercomparison. IEEE Access 2021, 9, 127382–127396. [Google Scholar] [CrossRef]
- Tronca, G.; Tsalicoalou, I.; Lehner, S.; Catanzariti, G. Comparison of pulsed and stepped frequency continuous wave (SFCW) GPR systems. In Proceedings of the 2018 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 18–21 June 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Hamran, S.E.; Gjessing, D.T.; Hjelmstad, J.; Aarholt, E. Ground penetrating synthetic pulse radar: Dynamic range and modes of operation. J. Appl. Geophys. 1995, 33, 7–14. [Google Scholar] [CrossRef]
- Schantz, H.G. Dispersion and UWB antennas. In Proceedings of the 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies, Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812), Kyoto, Japan, 18–21 May 2004; pp. 161–165. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, S.; Yi, L.; Lin, Y.; Liu, H.; Fang, G. A Hybrid Method Applied to Improve the Efficiency of Full-Waveform Inversion for Pavement Characteriza-tion. Sensors 2018, 18, 2916. [Google Scholar] [CrossRef] [PubMed]
- Lambot, S.; Slob, E.C.; Bosch, I.v.; Stockbroeckx, B.; Vanclooster, M. Modeling of ground-penetrating Radar for accurate characterization of subsurface electric properties. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2555–2568. [Google Scholar] [CrossRef]
- Zhang, J.W.; Ye, S.B.; Guo, R.J.; Liu, X.F.; Fang, G.Y. A Novel Forward Model of Ground Penetrating Radar In The Far Field. In Proceedings of the 2018 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 18–21 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, S.; Lin, Y.; Liu, X.; Fang, G. A Modified Model for Quasi-Monostatic Ground Penetrating Radar. IEEE Geosci. Remote Sens. Lett. 2020, 17, 406–410. [Google Scholar] [CrossRef]
- Lambot, S.; Slob, E.C.; Bosch, I.v.; Stockbroeckx, B.; Scheers, B.; Vanclooster, M. GPR design and modeling for identifying the shallow subsurface dielectric properties. In Proceedings of the 2nd International Workshop on Advanced Ground Penetrating Radar, Delft, The Netherlands, 14–16 May 2003; pp. 130–135. [Google Scholar] [CrossRef]
- Rohman, B.P.A.; Nishimoto, M. Concrete Dielectric Constant Estimation Based on Analytic Signal Peak Ratio of GPR Response for Non-Destructive Inspec-tion. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6376–6379. [Google Scholar] [CrossRef]
- Fereidoony, F.; Chamaani, S.; Sebt, M.A.; Mirtaheri, S.A. Efficient method for estimation of the thicknesses and complex dielectric constant of wall. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 3085–3088. [Google Scholar] [CrossRef]
- Loulizi, A. Development of Ground Penetrating Radar Signal Modeling and Implementation for Transportation Infrastructure. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2001. [Google Scholar]
- Klotzsche, A.; Jonard, F.; Looms, M.C.; van der Kruk, J.; Huisman, J.A. Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress. Vadose Zone J. 2018, 17, 180052. [Google Scholar] [CrossRef]
- Busch, S.; van der Kruk, J.; Vereecken, H. Improved Characterization of Fine-Texture Soils Using On-Ground GPR Full-Waveform Inversion. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3947–3958. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Feng, T.; Gao, Y.; Li, E.; Zhou, J. A Method for Determining Vector Reflection Coefficient Based on Scalar Amplitude. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 497–501. [Google Scholar] [CrossRef]
- Giannopoulos, A.; Diamanti, N. A numerical investigation into the accuracy of determining dielectric properties and thicknesses of pavement layers using reflection amplitude GPR data. In Proceedings of the Tenth International Conference on Grounds Penetrating Radar, GPR 2004, Delft, The Netherlands, 21–24 June 2004; pp. 655–658. [Google Scholar]
- Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009, 74, WCC1–WCC26. [Google Scholar] [CrossRef]
- Watson, F.; Lionheart, W. SVD analysis of GPR full-wave inversion. In Proceedings of the 15th International Conference on Ground Penetrating Radar, Brussels, Belgium, 30 June–4 July 2014; pp. 484–490. [Google Scholar]
- Klotzsche, A.; Vereecken, H.; van der Kruk, J. GPR full-waveform inversion of a variably saturated soil-aquifer system. J. Appl. Geophys. 2019, 170, 103823. [Google Scholar] [CrossRef]
- da Silva, S.L.E.F.; Karsou, A.; de Souza, A.; Capuzzo, F.; Costa, F.; Moreira, R.; Cetale, M. A graph-space optimal transport objective function based on q-statistics to mitigate cycle-skipping issues in FWI. Geophys. J. Int. 2022, 231, 1363–1385. [Google Scholar] [CrossRef]
- Karanth, A.; Onkar, N.; Smitha, N.S.N.; Sridhara; Singh, V. Through-wall imaging system using horn antennas. In Proceedings of the 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 January 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Mosig, J. The Weighted Averages Algorithm Revisited. IEEE Trans. Antennas Propag. 2012, 60, 2011–2018. [Google Scholar] [CrossRef]
- Maosheng, C.; Jie, Y.; Haitao, L.; Xiaoyong, F.; Jing, Z. A simulation of the quasi-standing wave and generalized half-wave loss of electromagnetic wave in non-ideal media. Mater. Des. 2003, 24, 31–35. [Google Scholar] [CrossRef]
- Shibata, K.; Kobayashi, M. Numerical Calculation Error of Variational Method with Dielectric Measurement Using a Coaxial-probe. In Proceedings of the 2018 IEEE International RF and Microwave Conference (RFM), Penang, Malaysia, 17–19 December 2018; pp. 223–226. [Google Scholar] [CrossRef]
- Shibata, K.; Kobayashi, M. Property Measurement Errors Based on Application of an Estimation Equation Using the Coaxial Probe Method. In Proceedings of the 2019 IEEE MTT-S International Microwave and RF Conference (IMARC), Mumbai, India, 13–15 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Karim, M.N.A.; Malek, M.F.A.; Jamlos, M.F. Permittivity measurement of different types of soil for ground penetrating radar applications. In Proceedings of the 2014 2nd International Conference on Electronic Design (ICED), Penang, Malaysia, 19–21 August 2014; pp. 479–482. [Google Scholar] [CrossRef]
Number of Experiments | Mean Dielectric Constant |
---|---|
1 | 2.8262 |
2 | 2.9186 |
3 | 2.7523 |
4 | 2.8194 |
5 | 2.6524 |
Mean | 2.7938 |
Sample Serial Number | Measured Permittivity | Permittivity Verification | Relative Error |
---|---|---|---|
1 | 4.48 | 4.14 | 8.21% |
2 | 4.05 | 4.06 | 0.25% |
3 | 4.18 | 4.02 | 3.98% |
4 | 4.08 | 4.21 | 3.09% |
5 | 4.37 | 4.04 | 8.17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ye, S.; Kong, Q.; Song, C.; Liu, X.; Fang, G. A Real-Time Permittivity Estimation Method for Stepped-Frequency Ground-Penetrating Radar by Full-Waveform Inversion. Remote Sens. 2023, 15, 5188. https://doi.org/10.3390/rs15215188
Li X, Ye S, Kong Q, Song C, Liu X, Fang G. A Real-Time Permittivity Estimation Method for Stepped-Frequency Ground-Penetrating Radar by Full-Waveform Inversion. Remote Sensing. 2023; 15(21):5188. https://doi.org/10.3390/rs15215188
Chicago/Turabian StyleLi, Xu, Shengbo Ye, Qingyang Kong, Chenyang Song, Xiaojun Liu, and Guangyou Fang. 2023. "A Real-Time Permittivity Estimation Method for Stepped-Frequency Ground-Penetrating Radar by Full-Waveform Inversion" Remote Sensing 15, no. 21: 5188. https://doi.org/10.3390/rs15215188
APA StyleLi, X., Ye, S., Kong, Q., Song, C., Liu, X., & Fang, G. (2023). A Real-Time Permittivity Estimation Method for Stepped-Frequency Ground-Penetrating Radar by Full-Waveform Inversion. Remote Sensing, 15(21), 5188. https://doi.org/10.3390/rs15215188