A Novel Adaptive Edge Aggregation and Multiscale Feature Interaction Detector for Object Detection in Remote Sensing Images
Abstract
:1. Introduction
- We propose a novel end-to-end one-stage framework for RSOD called AEAMFI-Det, whose most significant feature is multiscale feature adaptive fusion. Because of the framework’s characteristic of feature adaptive fusion, AEAMFI-Det can achieve high detection accuracy and robustness.
- A new 2CA-FPN is proposed to achieve multiscale perceptual aggregation with level-by-level feature fusion to mitigate the scale misalignment between extracted features and real objects effectively. The context-aggregated FEM in 2CA-FPN was designed to mine contextual information as auxiliary information to enhance feature representation by relating the information among the multiscale features in a cross-attention manner.
- We propose an AEA module with an edge enhancement mechanism to direct attention to focus adaptively on multidirectional edge features. The AEA module can learn spatial multiscale nonlocal dependencies and reduce the misalignment between the network’s focus and real objects.
2. Related Work
2.1. Contextual Transformer (CoT) Block
2.2. Pyramid Squeeze Attention (PSA) Module
3. Proposed Method
3.1. Framework Overview
3.2. AEA Module
3.3. 2CA-FPN Module
3.3.1. 2CA-FPN
3.3.2. FEM Module
4. Experiments and Analysis
4.1. Dataset and Evaluation Metrics
4.2. Implementation Details
4.3. Ablation Evaluation
- (1)
- Baseline: We used the CSPDarknet53 backbone network, classical FPN, and universal OD head as the baseline network.
- (2)
- Baseline + AEA: baseline network with the addition of AEA.
- (3)
- Baseline + 2CA-FPN with FEM: We replaced the original FPN with 2CA-FPN with FEM on top of baseline.
- (4)
- AEAMFI-Det: The proposed multiscale featured adaptive fusion network, assembling AEA, 2CA-FPN with FEM and PSA on baseline network.
4.4. Comparison Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEAMFI-Det | Adaptive edge aggregation and multiscale feature interaction detector |
AEA | Adaptive edge aggregation |
FEM | Feature enhancement module |
2CA-FPN | Context-aware cross-attention feature pyramid network |
PSA | Pyramid squeeze attention |
OD | Object detection |
RS | Remote sensing |
RSOD | Remote sensing object detection |
CNNs | Convolutional neural networks |
DL | Deep learning |
HOG | Histogram of orientation gradient |
SIFT | Scale-invariant feature transform |
Adaboost | Adaptive boosting |
YOLO | You only look once |
SSD | Single shot multiBox detector |
NPMMR-Det | Nonlocal-aware pyramid and multiscale multitask refinement detector |
SME-NET | Feature split–merge–enhancement network |
DIOR | Object detectIon in optical remote sensing images |
FPN | Feature pyramid networks |
CoT | Contextual Transformer |
DCN v3 | Deformable convolution v3 |
FPS | Frame per second |
AP | Average precision |
Map | Mean average precision |
References
- Liu, K.; Huang, J.; Xu, M.; Perc, M.; Li, X. Density Saliency for Clustered Building Detection and Population Capacity Estimation. Neurocomputing 2021, 458, 127–140. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J. A Survey on Object Detection in Optical Remote Sensing Images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11–28. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Y.; Yuan, Y.; Feng, Y. Gated and Axis-Concentrated Localization Network for Remote Sensing Object Detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 179–192. [Google Scholar] [CrossRef]
- Zhang, W.; Jiao, L.; Li, Y.; Huang, Z.; Wang, H. Laplacian Feature Pyramid Network for Object Detection in VHR Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5604114. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Song, R.; Xie, W.; Li, Y.; Du, Q. Structure-Guided Feature Transform Hybrid Residual Network for Remote Sensing Object Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5610713. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Zhu, P.; Chen, P.; Tang, X.; Li, C.; Jiao, L. Foreground Refinement Network for Rotated Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5610013. [Google Scholar] [CrossRef]
- Fu, L.; Li, Z.; Ye, Q.; Yin, H.; Liu, Q.; Chen, X.; Fan, X.; Yang, W.; Yang, G. Learning Robust Discriminant Subspace Based on Joint L2, p- and L2, s-Norm Distance Metrics. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Huang, P.; Zhang, Z.; Zheng, Y.; Fu, L.; Yang, W. Multi-view Learning with Robust Double-sided Twin SVM with Applications to Image Recognition. IEEE Trans. Cybern. 2022, 52, 12745–12758. [Google Scholar] [CrossRef]
- Ye, Q.; Li, Z.; Fu, L.; Zhang, Z.; Yang, W.; Yang, G. Nonpeaked Discriminant Analysis for Data representation. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3818–3832. [Google Scholar] [CrossRef]
- Yu, Y.; Fu, L.; Cheng, Y.; Ye, Q. Multi-view distance metric learning via independent and shared feature subspace with applications to face and forest fire recognition, and remote sensing classification. Knowl. Based Syst. 2022, 243, 108350. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, D.; Ye, Q. Recurrent Thrifty Attention Network for Remote Sensing Scene Recognition. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8257–8268. [Google Scholar] [CrossRef]
- Ma, L.; Zheng, Y.; Zhang, Z.; Yao, Y.; Fan, X.; Ye, Q. Motion Stimulation for Compositional Action Recognition. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 2061–2074. [Google Scholar] [CrossRef]
- Li, X.; Chen, M.; Nie, F.; Wang, Q. Locality Adaptive Discriminant Analysis. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; International Joint Conferences on Artificial Intelligence Organization: Melbourne, Australia, 2017; pp. 2201–2207. [Google Scholar]
- Zhu, C.; Zhou, H.; Wang, R.; Guo, J. A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3446–3456. [Google Scholar] [CrossRef]
- Han, J.; Zhang, D.; Cheng, G.; Guo, L.; Ren, J. Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-Level Feature Learning. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3325–3337. [Google Scholar] [CrossRef]
- Han, J.; Zhou, P.; Zhang, D.; Cheng, G.; Guo, L.; Liu, Z.; Bu, S.; Wu, J. Efficient, Simultaneous Detection of Multi-Class Geospatial Targets Based on Visual Saliency Modeling and Discriminative Learning of Sparse Coding. ISPRS J. Photogramm. Remote Sens. 2014, 89, 37–48. [Google Scholar] [CrossRef]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object Detection with Discriminatively Trained Part-Based Models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive Logistic Regression: A Statistical View of Boosting (With Discussion and a Rejoinder by the Authors). Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Han, Y.; Liao, J.; Lu, T.; Pu, T.; Peng, Z. KCPNet: Knowledge-Driven Context Perception Networks for Ship Detection in Infrared Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5000219. [Google Scholar] [CrossRef]
- Zhang, C.; Lam, K.-M.; Wang, Q. CoF-Net: A Progressive Coarse-to-Fine Framework for Object Detection in Remote-Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5600617. [Google Scholar] [CrossRef]
- Li, Z.; Li, E.; Xu, T.; Samat, A.; Liu, W. Feature Alignment FPN for Oriented Object Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6001705. [Google Scholar] [CrossRef]
- Lin, Q.; Zhao, J.; Fu, G.; Yuan, Z. CRPN-SFNet: A High-Performance Object Detector on Large-Scale Remote Sensing Images. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 416–429. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, K.; Wang, J.; Wang, Y.; Wang, Q.; Li, Q. CDD-Net: A Context-Driven Detection Network for Multiclass Object Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8004905. [Google Scholar] [CrossRef]
- Zhang, H.; Leng, W.; Han, X.; Sun, W. MOON: A Subspace-Based Multi-Branch Network for Object Detection in Remotely Sensed Images. Remote Sens 2023, 15, 4201. [Google Scholar] [CrossRef]
- Huang, Z.; Li, W.; Xia, X.-G.; Wang, H.; Jie, F.; Tao, R. LO-Det: Lightweight Oriented Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 223373–223384. [Google Scholar] [CrossRef]
- Jian, J.; Liu, L.; Zhang, Y.; Xu, K.; Yang, J. Optical Remote Sensing Ship Recognition and Classification Based on Improved YOLOv5. Remote Sens 2023, 15, 4319. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, Z.; Guo, H.; Liu, X.; Ding, L.; Zhu, K.; Wang, J. Adaptive Adjacent Layer Feature Fusion for Object Detection in Remote Sensing Images. Remote Sens 2023, 15, 4224. [Google Scholar] [CrossRef]
- Ming, Q.; Miao, L.; Zhou, Z.; Dong, Y. CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5605814. [Google Scholar] [CrossRef]
- Xia, G.-S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3974–3983. [Google Scholar]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object Detection in Optical Remote Sensing Images: A Survey and a New Benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-Class Geospatial Object Detection and Geographic Image Classification Based on Collection of Part Detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Y.; Feng, Y.; Lu, X. Hierarchical and Robust Convolutional Neural Network for Very High-Resolution Remote Sensing Object Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5535–5548. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, L.; Weng, L.; Yang, Y. A High Resolution Optical Satellite Image Dataset for Ship Recognition and Some New Baselines. In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods, Porto, Portugal, 24–26 February 2017; SCITEPRESS—Science and Technology Publications: Porto, Portugal, 2017; pp. 324–331. [Google Scholar]
- Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8232–8241. [Google Scholar]
- Liu, Y.; Li, Q.; Yuan, Y.; Du, Q.; Wang, Q. ABNet: Adaptive Balanced Network for Multiscale Object Detection in Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5614914. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Lu, H.; He, Y. Center-Boundary Dual Attention for Oriented Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Tian, S.; Kang, L.; Xing, X.; Tian, J.; Fan, C.; Zhang, Y. A Relation-Augmented Embedded Graph Attention Network for Remote Sensing Object Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5603914. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, D.; Zhang, Z.; Lin, S.; Dai, J. An Empirical Study of Spatial Attention Mechanisms in Deep Networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 6688–6697. [Google Scholar]
- Qin, Z.; Zhang, P.; Wu, F.; Li, X. FcaNet: Frequency Channel Attention Networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 783–792. [Google Scholar]
- Huang, Z.; Li, W.; Xia, X.-G.; Wu, X.; Cai, Z.; Tao, R. A Novel Nonlocal-Aware Pyramid and Multiscale Multitask Refinement Detector for Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5601920. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 2117–2125. [Google Scholar]
- Ma, W.; Li, N.; Zhu, H.; Jiao, L.; Tang, X.; Guo, Y.; Hou, B. Feature Split–Merge–Enhancement Network for Remote Sensing Object Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5616217. [Google Scholar] [CrossRef]
- Huang, W.; Li, G.; Jin, B.; Chen, Q.; Yin, J.; Huang, L. Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6505005. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, K.; Wang, J.; Wang, Y.; Wang, Q.; Li, X. GCWNet: A Global Context-Weaving Network for Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5619912. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Zhou, C.; Cao, X.; Gao, Y.; Wang, B. SRAF-Net: A Scene-Relevant Anchor-Free Object Detection Network in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5405914. [Google Scholar] [CrossRef]
- Yu, L.; Hu, H.; Zhong, Z.; Wu, H.; Deng, Q. GLF-Net: A Target Detection Method Based on Global and Local Multiscale Feature Fusion of Remote Sensing Aircraft Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4021505. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, H.; Zhao, J.; Zhu, H.; Yao, R.; Du, W.-L. Few-Shot Object Detection via Context-Aware Aggregation for Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6509605. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, S.; Zhang, W. CAD-Net: A Context-Aware Detection Network for Objects in Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10015–10024. [Google Scholar] [CrossRef]
- Zhang, H.; Zu, K.; Lu, J.; Zou, Y.; Meng, D. EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network. In Proceedings of the Asian Conference on Computer Vision, Macau, China, 4–8 December 2022; pp. 541–557. [Google Scholar]
- Li, Y.; Yao, T.; Pan, Y.; Mei, T. Contextual Transformer Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 1489–1500. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Liao, H.-Y.M.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A New Backbone That Can Enhance Learning Capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Wang, W.; Dai, J.; Chen, Z.; Huang, Z.; Li, Z.; Zhu, X.; Hu, X.; Lu, T.; Lu, L.; Li, H.; et al. InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 14408–14419. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Ji, G.-P.; Zhu, L.; Zhuge, M.; Fu, K. Fast Camouflaged Object Detection via Edge-Based Reversible Re-Calibration Network. Pattern Recognit. 2022, 123, 108414. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-Local Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Patt. Anal. Mach. Learn. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
Methods | AL | GTF | ST | BB | BC | TC | SP | VH | HB | BD | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | 99.06 | 95.08 | 90.12 | 98.41 | 67.92 | 96.46 | 85.56 | 80.08 | 71.11 | 70.52 | 85.43 |
+AEA | 99.69 | 96.61 | 99.63 | 98.43 | 87.73 | 97.81 | 89.94 | 90.38 | 77.24 | 74.64 | 91.21 |
+2CA-FPN with FEM | 99.91 | 97.32 | 95.45 | 98.82 | 80.51 | 97.72 | 93.96 | 88.95 | 93.53 | 81.63 | 92.78 |
AEAMFI-Det | 99.95 | 97.38 | 99.36 | 99.16 | 97.23 | 98.85 | 95.93 | 92.55 | 92.88 | 80.28 | 95.36 |
Methods | AL | GTF | ST | BB | BC | TC | SP | VH | HB | BD | mAP | FPS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Faster R-CNN | 98.65 | 95.49 | 90.63 | 89.55 | 66.33 | 87.33 | 79.91 | 69.17 | 80.67 | 67.05 | 82.48 | 45.44 |
Faster R-CNN with FPN | 96.05 | 97.10 | 88.92 | 93.57 | 85.65 | 90.21 | 84.20 | 75.96 | 84.30 | 71.38 | 86.73 | 31.25 |
Mask R-CNN | 85.28 | 97.69 | 88.10 | 90.05 | 75.20 | 90.13 | 82.31 | 73.68 | 89.65 | 67.65 | 83.97 | — |
SSD | 84.61 | 99.45 | 85.31 | 88.41 | 71.23 | 89.33 | 71.52 | 62.67 | 86.41 | 64.95 | 80.39 | 133.13 |
YOLOv4 | 98.74 | 91.80 | 95.64 | 93.95 | 80.22 | 86.56 | 94.38 | 91.83 | 83.40 | 76.21 | 89.27 | 68.80 |
YOLOv5 | 99.62 | 99.29 | 98.01 | 95.22 | 81.11 | 89.86 | 95.55 | 91.40 | 90.53 | 79.76 | 92.04 | 67.37 |
YOLOX | 99.82 | 97.03 | 99.74 | 98.03 | 91.96 | 98.08 | 94.69 | 91.19 | 91.40 | 76.85 | 93.88 | 63.55 |
NPMMR-Det | 99.35 | 98.64 | 95.90 | 92.14 | 93.51 | 95.63 | 93.16 | 87.21 | 89.50 | 76.08 | 92.11 | 67.50 |
SME-NET | 99.69 | 100.00 | 91.93 | 97.15 | 97.15 | 90.31 | 94.65 | 85.28 | 92.82 | 81.06 | 93.00 | 56.64 |
Proposed | 99.95 | 97.38 | 99.36 | 99.16 | 97.23 | 98.85 | 95.93 | 92.55 | 92.88 | 80.28 | 95.36 | 48.74 |
Methods | AL | AT | BF | BC | BD | CH | DM | ESA | ETS | GC | GTF | HB | OP | SP | SD | ST | TC | TS | VH | WD | mAP | FPS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Faster R-CNN | 53.60 | 53.25 | 78.83 | 66.28 | 50.11 | 70.90 | 62.33 | 69.02 | 55.20 | 68.15 | 56.91 | 50.27 | 28.31 | 27.76 | 72.05 | 39.81 | 75.23 | 38.66 | 23.62 | 45.40 | 54.28 | 43.21 |
Faster R-CNN with FPN | 54.32 | 70.62 | 66.50 | 80.10 | 55.00 | 71.52 | 57.96 | 66.54 | 62.10 | 72.81 | 76.12 | 41.85 | 42.56 | 72.30 | 56.88 | 52.63 | 79.92 | 55.20 | 44.58 | 80.60 | 63.01 | 28.59 |
Mask R-CNN | 53.84 | 72.65 | 63.20 | 78.43 | 50.20 | 66.28 | 55.92 | 66.15 | 55.30 | 70.69 | 69.21 | 44.31 | 30.65 | 68.03 | 55.35 | 50.66 | 81.14 | 56.23 | 45.60 | 78.30 | 60.61 | — |
SSD | 59.53 | 72.72 | 72.41 | 75.70 | 48.13 | 65.85 | 56.64 | 63.32 | 53.02 | 65.37 | 68.62 | 49.40 | 28.23 | 59.22 | 61.26 | 46.63 | 76.34 | 55.10 | 27.46 | 64.71 | 58.48 | 122.52 |
YOLOv4 | 80.30 | 86.63 | 75.52 | 82.15 | 60.40 | 70.10 | 66.31 | 75.92 | 65.82 | 84.20 | 78.03 | 60.21 | 47.74 | 89.15 | 58.05 | 72.85 | 90.98 | 63.37 | 58.43 | 81.28 | 72.37 | 65.36 |
YOLOv5 | 86.96 | 85.21 | 82.12 | 88.32 | 68.73 | 70.23 | 71.86 | 80.88 | 70.51 | 80.60 | 81.65 | 62.34 | 48.92 | 86.50 | 70.95 | 72.56 | 92.10 | 67.58 | 56.30 | 82.26 | 75.33 | 63.48 |
YOLOX | 88.83 | 85.43 | 80.40 | 91.21 | 70.20 | 70.05 | 72.59 | 83.21 | 68.54 | 81.96 | 84.60 | 63.21 | 51.30 | 88.95 | 68.43 | 73.85 | 88.20 | 69.40 | 61.29 | 81.87 | 76.18 | 62.25 |
NPMMR-Det | 88.61 | 86.49 | 83.21 | 90.94 | 65.02 | 71.43 | 74.86 | 82.55 | 71.49 | 83.20 | 83.54 | 60.32 | 50.66 | 87.58 | 72.16 | 72.00 | 90.94 | 70.23 | 55.68 | 83.52 | 76.22 | 66.43 |
SME-NET | 87.63 | 88.21 | 82.31 | 92.14 | 71.64 | 72.11 | 73.41 | 83.70 | 70.51 | 84.30 | 84.49 | 61.65 | 48.52 | 90.50 | 73.10 | 72.12 | 93.41 | 69.85 | 58.62 | 81.52 | 76.99 | 55.57 |
Proposed | 89.52 | 87.13 | 82.62 | 92.60 | 64.52 | 71.54 | 73.58 | 85.21 | 71.75 | 85.21 | 85.61 | 65.90 | 52.65 | 91.05 | 74.30 | 74.91 | 92.71 | 73.15 | 60.21 | 82.22 | 77.82 | 45.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Zhao, Y.; Sun, L.; Gao, L.; Chen, Y. A Novel Adaptive Edge Aggregation and Multiscale Feature Interaction Detector for Object Detection in Remote Sensing Images. Remote Sens. 2023, 15, 5200. https://doi.org/10.3390/rs15215200
Huang W, Zhao Y, Sun L, Gao L, Chen Y. A Novel Adaptive Edge Aggregation and Multiscale Feature Interaction Detector for Object Detection in Remote Sensing Images. Remote Sensing. 2023; 15(21):5200. https://doi.org/10.3390/rs15215200
Chicago/Turabian StyleHuang, Wei, Yuhao Zhao, Le Sun, Lu Gao, and Yuwen Chen. 2023. "A Novel Adaptive Edge Aggregation and Multiscale Feature Interaction Detector for Object Detection in Remote Sensing Images" Remote Sensing 15, no. 21: 5200. https://doi.org/10.3390/rs15215200
APA StyleHuang, W., Zhao, Y., Sun, L., Gao, L., & Chen, Y. (2023). A Novel Adaptive Edge Aggregation and Multiscale Feature Interaction Detector for Object Detection in Remote Sensing Images. Remote Sensing, 15(21), 5200. https://doi.org/10.3390/rs15215200