Constructing a Regional Ionospheric TEC Model in China with Empirical Orthogonal Function and Dense GNSS Observation
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Results of EOF Decomposition of CODE TEC
3.2. Results of Ionospheric TEC Model over China
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Yang, Y.; Le, H.; Chen, Y.; Zhang, R.; Zhang, H.; Sun, W.; Li, G. Unexpected Regional Zonal Structures in Low Latitude Ionosphere Call for a High Longitudinal Resolution of the Global Ionospheric Maps. Remote Sens. 2022, 14, 2315. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Xiong, B.; Wan, W.; Zhao, B.; Yu, Y.; Wei, Y.; Ren, Z.; Liu, J. Response of the American equatorial and low-latitude ionosphere to the X1. 5 solar flare on 13 September 2005. J. Geophys. Res. Space Phys. 2014, 119, 10336–10347. [Google Scholar] [CrossRef]
- Huo, X.L.; Yuan, Y.B.; Ou, J.K.; Zhang, K.F.; Bailey, G.J. Monitoring the global-scale winter anomaly of total electron contents using GPS data. Earth Planets Space 2009, 61, 1019–1024. [Google Scholar] [CrossRef]
- Xiong, B.; Wan, W.; Ning, B.; Ding, F.; Hu, L.; Yu, Y. A statistic study of ionospheric solar flare activity indicator. Space Weather 2014, 12, 29–40. [Google Scholar] [CrossRef]
- Jin, S.; Wang, Q.; Dardanelli, G. A Review on Multi-GNSS for Earth Observation and Emerging Applications. Remote Sens. 2022, 14, 3930. [Google Scholar] [CrossRef]
- De Franceschi, G.; De Santis, A.; Pau, S. Ionospheric mapping by regional spherical harmonic analysis: New developments. Adv. Space Res. 1994, 14, 61–64. [Google Scholar] [CrossRef]
- Lanyi, G.E.; Roth, T. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci. 1988, 23, 483–492. [Google Scholar] [CrossRef]
- Ping, J.; Kono, Y.; Matsumoto, K.; Otsuka, Y.; Saito, A.; Shum, C.; Heki, K.; Kawano, N. Regional ionosphere map over Japanese Islands. Earth Planets Space 2002, 54, e13–e16. [Google Scholar] [CrossRef]
- Yuan, Y.; Ou, J. A generalized trigonometric series function model for determining ionospheric delay. Prog. Nat. Sci. 2004, 14, 1010–1014. [Google Scholar] [CrossRef]
- Opperman, B.D.L.; Cilliers, P.J.; McKinnell, L.A.; Haggard, R. Development of a regional GPS-based ionospheric TEC model for South Africa. Adv. Space Res. 2007, 39, 808–815. [Google Scholar] [CrossRef]
- Aa, E.; Huang, W.G.; Yu, S.M.; Liu, S.Q.; Shi, L.Q.; Gong, J.C.; Chen, Y.H.; Shen, H. A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation. J. Geophys. Res. Space Phys. 2015, 120, 5049–5061. [Google Scholar] [CrossRef]
- Li, Z.S.; Wang, N.B.; Li, M.; Zhou, K.; Yuan, Y.B.; Hong, Y. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS services. Chin. J. Geophys. 2017, 60, 3718–3729. [Google Scholar]
- Wen, D.; Tang, Y.; Xie, K. A Novel Method of Ionospheric Inversion Based on Horizontal Constraint and Empirical Orthogonal Function. Remote Sens. 2023, 15, 3124. [Google Scholar] [CrossRef]
- Bust, G.S.; Garner, T.W.; Gaussiran, T.L. Ionospheric Data Assimilation Three-Dimensional (IDA3D): A global, multisensor, electron density specification algorithm. J. Geophys. Res. Space Phys. 2004, 109, A11312. [Google Scholar] [CrossRef]
- Xu, W.Y.; Kamide, Y. Decomposition of daily geomagnetic variations by using method of natural orthogonal co mponent. J. Geophys. Res. Space Phys. 2004, 109, A05218. [Google Scholar] [CrossRef]
- Zhao, B.; Wan, W.X.; Liu, L.B.; Chen, Y.D.; Le, H.J. Statistical characteristics of the total ion density in the topside ionosphere during the period 1996-2004 using empirical orthogonal function (EOF). Ann. Geophys. 2005, 23, 3615–3631. [Google Scholar] [CrossRef]
- Liu, C.X.; Zhang, M.L.; Wan, W.X.; Liu, L.B.; Ning, B.Q. Modeling M (3000) F2 based on empirical orthogonal function analysis method. Radio Sci. 2008, 43, RS1003. [Google Scholar] [CrossRef]
- Zhang, M.L.; Liu, C.X.; Wan, W.X.; Liu, L.B.; Ning, B.Q. Evaluation of global modeling of M (3000) F2 and hmF2 based on alternative empirical orthogonal function expansions. Adv. Space Res. 2010, 46, 1024–1031. [Google Scholar] [CrossRef]
- Uwamahoro, J.C.; Habarulema, J.B. Modelling total electron content during geomagnetic storm conditions using empirical orthogonal functions and neural networks. J. Geophys. Res. Space Phys. 2015, 120, 11000–11012. [Google Scholar] [CrossRef]
- Talaat, E.R.; Zhu, X. Spatial and temporal variation of total electron content as revealed by principal component analysis. Ann. Geophys. 2016, 34, 1109–1117. [Google Scholar] [CrossRef]
- Dabbakuti, J.R.K.K.; Ratnam, D.V. Characterization of ionospheric variability in TEC using EOF and wavelets over low-latitude GNSS stations. Adv. Space Res. 2016, 57, 2427–2443. [Google Scholar] [CrossRef]
- Dabbakuti, J.R.K.K.; Ratnam, D.V. Modeling and analysis of GPS-TEC low latitude climatology during the 24th solar cycle using empirical orthogonal functions. Adv. Space Res. 2017, 60, 1751–1764. [Google Scholar] [CrossRef]
- She, C.L.; Wan, W.X.; Yue, X.N.; Xiong, B.; Yu, Y.; Ding, F.; Zhao, B.Q. Global ionospheric electron density estimation based on multisource TEC data assimilation. GPS Solut. 2017, 21, 1125–1137. [Google Scholar] [CrossRef]
- Andima, G.; Amabayo, E.B.; Jurua, E.; Cilliers, P.J. Modeling of GPS total electron content over the African low-latitude region using empirical orthogonal functions. Ann. Geophys. 2019, 37, 65–76. [Google Scholar] [CrossRef]
- Chen, P.; Liu, H.; Ma, Y. Empirical orthogonal function analysis and modeling of global ionospheric spherical harmonic coefficients. GPS Solut. 2020, 24, 1–17. [Google Scholar] [CrossRef]
- Owolabi, C.; Ruan, H.B.; Yamazaki, Y.; Li, J.F.; Zhong, J.H.; Eyelade, A.V.; Priyadarshi, S.; Yoshikawa, A. Empirical modeling of ionospheric current using empirical orthogonal function analysis and artificial neural network. Space Weather 2021, 19, e2021SW002831. [Google Scholar] [CrossRef]
- Zhang, S.R.; Chen, Z.W.; Coster, A.J.; Erickson, P.J.; Foster, J.C. Ionospheric symmetry caused by geomagnetic declination over North America. Geophys. Res. Lett. 2013, 40, 5350–5354. [Google Scholar] [CrossRef]
- Yao, X.; Zhao, B.Q.; Liu, L.B.; Wan, W.X. Comparison of ionospheric total electron content over North America and East Asia with EOF analysis. Chin. J. Space Sci. 2015, 35, 556–565. [Google Scholar] [CrossRef]
- Chen, Z.W.; Zhang, S.R.; Coster, A.J.; Fang, G.Y. EOF analysis and modeling of GPS TEC climatology over North America. J. Geophys. Res. Space Phys. 2015, 120, 3118–3129. [Google Scholar] [CrossRef]
- A, E.; Zhang, D.H.; Xiao, Z.; Hao, Y.Q.; Ridley, A.J.; Moldwin, M. Modeling ionospheric foF2 by using empirical orthogonal function analysis. Ann. Geophys. 2011, 29, 1501–1515. [Google Scholar]
- Yu, Y.; Wan, W.X.; Xiong, B.; Ren, Z.P.; Zhao, B.Q.; Zhang, Y.; Ning, B.Q.; Liu, L.B. Modeling Chinese ionospheric layer parameters based on EOF analysis. Space Weather 2015, 13, 339–355. [Google Scholar] [CrossRef]
- Mao, T.; Wan, W.X.; Liu, L.B. An EOF-based empirical model of TEC over Wuhan. Chin. J. Geophys. 2005, 48, 751–758. [Google Scholar] [CrossRef]
- Mao, T.; Wan, W.X.; Yue, X.N.; Sun, L.F.; Zhao, B.Q.; Guo, J.P. An empirical orthogonal function model of total electron content over China. Radio Sci. 2008, 43, RS2009. [Google Scholar] [CrossRef]
- Wan, W.X.; Ding, F.; Ren, Z.P.; Zhang, M.L.; Liu, L.B.; Ning, B.Q. Modeling the global ionospheric total electron content with empirical orthogonal function analysis. Sci. China Technol. Sci. 2012, 55, 1161–1168. [Google Scholar] [CrossRef]
- Li, S.H.; Zhou, H.X.; Xu, J.J.; Wang, Z.Q.; Li, L.H.; Zheng, Y.L. Modeling and analysis of ionosphere TEC over China and adjacent areas based on EOF method. Adv. Space Res. 2019, 64, 400–414. [Google Scholar] [CrossRef]
- Xiong, B.; Li, X.L.; Wan, W.X.; She, C.L.; Hu, L.H.; Ding, F.; Zhao, B.Q. A method for estimating GNSS instrumental biases and its application based on a receiver of multisystem. Chin. J. Geophys. 2019, 62, 1199–1209. [Google Scholar]
- Xiong, B.; Wan, W.X.; Yu, Y.; Hu, L.H. Investigation of ionospheric TEC over China based on GNSS data. Adv. Space Res. 2016, 58, 867–877. [Google Scholar] [CrossRef]
- Li, Q.; Ning, B.Q.; Zhao, B.Q.; Ding, F.; Zhang, R.; Shi, H.B.; Yue, H.J.; Li, G.Z.; Li, J.Y.; Han, Y.F. Applications of the CMONOC based GNSS data in monitoring and investigation of ionospheric space weather. Chin. J. Geophys. 2012, 55, 2193–2202. [Google Scholar]
- Xiong, B.; Wan, W.X.; Ning, B.Q.; Hu, L.H.; Ding, F.; Zhao, B.Q.; Li, J.Y. Investigation of mid- and low-latitude ionosphere based on BDS, GLONASS and GPS observations. Chin. J. Geophys. 2014, 57, 3586–3599. [Google Scholar]
- Rishbeth, H. How the thermospheric circulation affects the ionospheric F2-layer. J. Atmos. Sol. -Terr. Phys. 1998, 60, 1385–1402. [Google Scholar]
- Rishbeth, H.; Muller-Wodarg, I.C.F.; Zou, L.; Fuller-Rowell, T.J.; Millward, G.H.; Moffett, R.J.; Idenden, D.W.; Aylward, A.D. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann. Geophys. 2000, 18, 945–956. [Google Scholar]
- Yu, T.; Wan, W.X.; Liu, L.B. A theoretical model for ionospheric electric fields at mid-and low-latitudes. Sci. China Ser. G 2003, 46, 23–32. [Google Scholar]
- Yu, T.; Wan, W.X.; Liu, L.B.; Li, X.Y.; Luan, X.L.; Tang, W. A simulation study on the semiannual variation of the ionospheric F2 layer zonal electric fields at the magnetic equator. J. Geophys. Res. Space Phys. 2006, 111, A09310. [Google Scholar]
- Ma, R.; Xu, J.; Liao, H. The features and a possible mechanism of semiannual variation in the peak electron density of the low latitude F2 layer. J. Atmos. Sol. -Terr. Phys. 2003, 65, 47–57. [Google Scholar]
- Liu, L.B.; He, M.S.; Yue, X.A.; Ning, B.Q.; Wan, W.X. Ionosphere around equinoxes during low solar activity. J. Geophys. Res. Space Phys. 2010, 115, A09307. [Google Scholar]
- Chen, Y.D.; Liu, L.B.; Wan, W.X.; Yue, X.A.; Su, S.Y. Solar activity dependence of the topside ionosphere at low latitudes. J. Geophys. Res. Space Phys. 2009, 114, A08306. [Google Scholar]
- Liu, Y.; Chen, Y.D.; Liu, L.B. Local time dependence of ionospheric equinoctial asymmetry. Chin. J. Geophys. 2016, 59, 3941–3954. [Google Scholar]
Rank | Contribution Rate (%) | Cumulative Contribution Rate (%) |
---|---|---|
1 | 90.3813 | 90.3813 |
2 | 3.4580 | 93.8393 |
3 | 1.1965 | 95.0358 |
4 | 0.7834 | 95.8192 |
5 | 0.5544 | 96.3736 |
6 | 0.4669 | 96.8405 |
7 | 0.3672 | 97.2077 |
8 | 0.2428 | 97.4505 |
9 | 0.2095 | 97.6600 |
10 | 0.2023 | 97.8623 |
11 | 0.1473 | 98.0096 |
12 | 0.1205 | 98.1301 |
13 | 0.1027 | 98.2328 |
14 | 0.0911 | 98.3239 |
15 | 0.0824 | 98.4063 |
16 | 0.0746 | 98.4809 |
Station Name | Geographic Longitude | Geographic Latitude | The Error of a Station Not Involved in Modeling | The Error of a Station Participating in Modeling | ||
---|---|---|---|---|---|---|
RMSE (TECU) | NRMSE (%) | RMSE (TECU) | NRMSE (%) | |||
jsnt | 120.89° | 31.95° | 1.46 | 12.08 | 1.48 | 11.95 |
ynxp | 101.91° | 24.10° | 1.05 | 15.00 | 0.94 | 13.59 |
xzgz | 84.07° | 32.29° | 1.12 | 15.75 | 1.12 | 15.71 |
nmej | 101.06° | 41.96° | 0.98 | 11.97 | 0.98 | 11.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, B.; Li, Y.; Yu, C.; Li, X.; Li, J.; Zhao, B.; Ding, F.; Hu, L.; Wang, Y.; Du, L. Constructing a Regional Ionospheric TEC Model in China with Empirical Orthogonal Function and Dense GNSS Observation. Remote Sens. 2023, 15, 5207. https://doi.org/10.3390/rs15215207
Xiong B, Li Y, Yu C, Li X, Li J, Zhao B, Ding F, Hu L, Wang Y, Du L. Constructing a Regional Ionospheric TEC Model in China with Empirical Orthogonal Function and Dense GNSS Observation. Remote Sensing. 2023; 15(21):5207. https://doi.org/10.3390/rs15215207
Chicago/Turabian StyleXiong, Bo, Yuxiao Li, Changhao Yu, Xiaolin Li, Jianyong Li, Biqiang Zhao, Feng Ding, Lianhuan Hu, Yuxin Wang, and Lingxiao Du. 2023. "Constructing a Regional Ionospheric TEC Model in China with Empirical Orthogonal Function and Dense GNSS Observation" Remote Sensing 15, no. 21: 5207. https://doi.org/10.3390/rs15215207
APA StyleXiong, B., Li, Y., Yu, C., Li, X., Li, J., Zhao, B., Ding, F., Hu, L., Wang, Y., & Du, L. (2023). Constructing a Regional Ionospheric TEC Model in China with Empirical Orthogonal Function and Dense GNSS Observation. Remote Sensing, 15(21), 5207. https://doi.org/10.3390/rs15215207