Cyprus Surface Water Area Variation Based on the 1984–2021 Time Series Built from Remote Sensing Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Products
2.3. Timeseries Analysis and Trend Detection
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name | Year | River | Height (m) | Capacity (m3) |
---|---|---|---|---|
Kouklia | 1900 | - | 6 | 4,545,000 |
Lythrodonta (Lower) | 1945 | Koutsos (Gialias) | 11 | 32,000 |
Kalo Chorio (Klirou) | 1947 | Akaki (Serrachis) | 9 | 82,000 |
Akrounta | 1947 | Germasogeia | 7 | 23,000 |
Galini | 1947 | Kampos | 11 | 23,000 |
Petra | 1948 | Atsas | 9 | 32,000 |
Petra | 1951 | Atsas | 9 | 23,000 |
Lythrodonta (Upper) | 1952 | Koutsos (Gialias) | 10 | 32,000 |
Kafizis | 1953 | Xeros (Morfou) | 23 | 113,000 |
Agios Loukas | 1955 | - | 3 | 455,000 |
Gypsou | 1955 | - | 3 | 100,000 |
Pera Pedi | 1956 | 22 | 55,000 | |
Kantou | 1956 | Tabakhana (Kouris) | 15 | 34,000 |
Pyrgos | 1957 | Katouris | 22 | 285,000 |
Trimiklini | 1958 | Kouris | 33 | 340,000 |
Morfou | 1962 | Serrachis | 13 | 1,879,000 |
Kioneli | 1962 | Almyros (Pediaios) | 15 | 1,045,000 |
Athalassa | 1962 | Kalogyros(Pediaios) | 18 | 791,000 |
Lefka | 1962 | Setrachos(Marathasa) | 35 | 368,000 |
Prodromos Reservoir | 1962 | Off - stream | 10 | 122,000 |
Ag.Georgios—(Recharge) | 1962 | - | 6 | 90,000 |
Sotira—(Recharge) | 1962 | - | 8 | 45,000 |
Panagia/Ammochostou | 1962 | - | 7 | 45,000 |
KanliKiogiou | 1963 | Ghinar (Pediaios) | 19 | 1,113,000 |
Ammochostou—(Recharge) | 1963 | - | 8 | 165,000 |
Paralimni—(Recharge) | 1963 | - | 5 | 115,000 |
Agia Napa—(Recharge) | 1963 | - | 8 | 55,000 |
Ammochostou—(Antiflood) | 1963 | - | 5 | 50,000 |
Ag. Loukas Lake—(Recharge) | 1964 | - | 3 | 4,545,000 |
Kiti | 1964 | Tremithos | 22 | 1,614,000 |
Agios Nikolaos—(Recharge) | 1964 | - | 2 | 1,365,000 |
Paralimni Lake—(Recharge) | 1964 | - | 1 | 1,365,000 |
Argaka | 1964 | Makounta | 41 | 990,000 |
Ovgos | 1964 | Ovgos | 16 | 845,000 |
Mia Milia | 1964 | Simeas | 22 | 355,000 |
Liopetri | 1964 | Potamos | 18 | 340,000 |
Frenaros—(Recharge) | 1964 | - | 5 | 115,000 |
Agros | 1964 | Limnatis | 26 | 99,000 |
Deryineia—(Recharge) | 1964 | - | 6 | 23,000 |
Polemidia | 1965 | Garyllis | 45 | 3,400,000 |
Agia Marina | 1965 | Xeros | 33 | 298,000 |
Mavrokolympos | 1966 | Mavrokolympos | 45 | 2,180,000 |
Pomos | 1966 | Livadi | 38 | 860,000 |
Kalopanagiotis | 1966 | Setrachos (Marathasa) | 40 | 363,000 |
Makrasyka—(Recharge) | 1966 | - | 8 | 195,000 |
Xylofagou—(Recharge) | 1966 | - | 7 | 86,000 |
Kontea—(Recharge) | 1966 | - | 5 | 82,000 |
Avgorou—(Recharge) | 1966 | - | 3 | 68,000 |
Frenaros—(Recharge) | 1966 | - | 7 | 45,000 |
Sotira—(Recharge) | 1966 | - | 5 | 32,000 |
Achna Mesania—(Recharge) | 1967 | - | 4 | 90,000 |
Lysi—(Recharge) | 1967 | - | 7 | 77,000 |
Agios Georgios—(Recharge) | 1967 | - | 3 | 68,000 |
Germasogeia | 1968 | Germasogeia | 49 | 13,500,000 |
Sygkrasis | 1968 | Merikeros | 7 | 1,115,000 |
Ormideia—(Recharge) | 1968 | - | 5 | 100,000 |
Akanthou—(Recharge) | 1968 | - | 6 | 45,000 |
Agios Epiktitos—(Recharge) | 1968 | - | 6 | 34,000 |
Vrysoulles—(Recharge) | 1969 | - | 7 | 140,000 |
Morfou—(Recharge) | 1969 | - | 5 | 130,000 |
Xylotymvou—(Recharge) | 1969 | - | 7 | 50,000 |
Protopapades—(Recharge) | 1970 | - | 6 | 90,000 |
Lefkara | 1973 | Syrgatis (Pentaschoinos) | 71 | 13,850,000 |
Masari—(Recharge) | 1973 | Serrachis | 15 | 2,273,000 |
Palaichori—Kampi | 1973 | Akaki (Serrachis) | 33 | 620,000 |
Kyperounta No 1 * | 1974 | Off-stream | 7 | 50,000 |
Arakapas | 1975 | Germasogeia | 23 | 129,000 |
Lympia (new) | 1977 | Tremithos | 12 | 220,000 |
Pelendri * | 1980 | Off-stream | 18 | 123,000 |
Eptagoneia No 1 * | 1980 | Off-stream | 16 | 92,000 |
Chandria * | 1980 | Off-stream | 35 | 70,000 |
Melini * | 1980 | Off-stream | 22 | 59,000 |
Agioi Vavatsinias No 1 * | 1980 | Off-stream | 17 | 55,000 |
Akapnou—Eptagoneia * | 1981 | Off-stream | 9 | 132,000 |
Kato Mylos * | 1981 | Off-stream | 23 | 104,000 |
Eptagoneia No 3 * | 1981 | Off-stream | 12 | 65,000 |
Agioi Vavatsinias | 1981 | Vasilikos | 19 | 53,000 |
Asprokremmos | 1982 | Xeros Potamos | 53 | 52,375,000 |
Xyliatos | 1982 | Lagoudera (Elia) | 42 | 1,430,000 |
Arakapas No 1 * | 1982 | Off-stream | 12 | 192,000 |
Eptagoneia No 2 * | 1982 | Off-stream | 8 | 127,000 |
Kyperounta No 2 * | 1983 | Off-stream | 27 | 273,000 |
Lagoudera * | 1983 | Off-stream | 36 | 71,000 |
Ora * | 1983 | Off-stream | 18 | 62,000 |
Agridia * | 1983 | Off-stream | 18 | 59,000 |
Choirokoitia * | 1984 | Off-stream | 16 | 205,000 |
Dierona * | 1984 | Off-stream | 24 | 159,000 |
Arakapas No 2 * | 1984 | Off-stream | 12 | 120,000 |
Farmakas No 2 * | 1984 | Off-stream | 24 | 61,000 |
Agioi Vavatsinias No 2 * | 1984 | Off-stream | 25 | 43,000 |
Farmakas No 1 * | 1984 | Off-stream | 18 | 21,000 |
Kalavasos | 1985 | Vasilikos | 60 | 17,100,000 |
Dipotamos | 1985 | Pentaschoinos | 60 | 15,500,000 |
Esso Galata * | 1985 | Off-stream | 27 | 35,000 |
Evretou | 1986 | Stavros tis Psokas | 70 | 24,000,000 |
Achna | 1987 | Off-stream | 16 | 6,800,000 |
Aradippou | 1987 | Parthenitis | 14 | 90,000 |
Kouris | 1988 | Kouris | 110 | 115,000,000 |
Vyzakia | 1994 | Off-stream | 37 | 1,690,000 |
Melini No 2 * | 1996 | Off-stream | 36 | 97,000 |
Odou No 2 * | 1996 | Off-stream | 34 | 53,000 |
Odou No 1 * | 1996 | Off-stream | 33 | 32,000 |
Arminou | 1998 | Diarizos | 45 | 4,300,000 |
Tsakistra | 2000 | Limnitis | 23 | 100,000 |
Tamassos | 2002 | Pediaios | 34 | 2,800,000 |
Kannaviou | 2005 | Ezousa | 75 | 18,000,000 |
Klirou-Malounta-Akaki | 2007 | Akaki (Serrachis) | 38 | 2,000,000 |
Solea | 2010 | Off-stream | 56 | 4,500,000 |
References
- Emile, R.; Clammer, J.R.; Jayaswal, P.; Sharma, P. Addressing Water Scarcity in Developing Country Contexts: A Socio-Cultural Approach. Humanit. Soc. Sci. Commun. 2022, 9, 144. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water Scarcity Assessments in the Past, Present, and Future. Earth’s Futur. 2017, 5, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Busico, G.; Ntona, M.M.; Carvalho, S.C.P.; Patrikaki, O.; Voudouris, K.; Kazakis, N. Simulating Future Groundwater Recharge in Coastal and Inland Catchments. Water Resour. Manag. 2021, 35, 3617–3632. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global Agricultural Economic Water Scarcity. Sci. Adv. 2020, 6, aaz6031. [Google Scholar] [CrossRef] [PubMed]
- Leal Filho, W.; Totin, E.; Franke, J.A.; Andrew, S.M.; Abubakar, I.R.; Azadi, H.; Nunn, P.D.; Ouweneel, B.; Williams, P.A.; Simpson, N.P. Understanding Responses to Climate-Related Water Scarcity in Africa. Sci. Total Environ. 2022, 806, 150420. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four Billion People Facing Severe Water Scarcity. Sci. Adv. 2016, 2, 1500323. [Google Scholar] [CrossRef]
- Mondal, S.K.; Mishra, A.; Leung, R.; Cook, B. Global Droughts Connected by Linkages between Drought Hubs. Nat. Commun. 2023, 14, 144. [Google Scholar] [CrossRef]
- Kreibich, H.; Van Loon, A.F.; Schröter, K.; Ward, P.J.; Mazzoleni, M.; Sairam, N.; Abeshu, G.W.; Agafonova, S.; AghaKouchak, A.; Aksoy, H.; et al. The Challenge of Unprecedented Floods and Droughts in Risk Management. Nature 2022, 608, 80–86. [Google Scholar] [CrossRef]
- Neira, M.; Erguler, K.; Ahmady-Birgani, H.; AL-Hmoud, N.D.; Fears, R.; Gogos, C.; Hobbhahn, N.; Koliou, M.; Kostrikis, L.G.; Lelieveld, J.; et al. Climate Change and Human Health in the Eastern Mediterranean and Middle East: Literature Review, Research Priorities and Policy Suggestions. Environ. Res. 2023, 216, 114537. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Bayissa, Y.; Tadesse, T.; Demisse, G. Building A High-Resolution Vegetation Outlook Model to Monitor Agricultural Drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens. 2019, 11, 371. [Google Scholar] [CrossRef]
- Poděbradská, M.; Wylie, B.K.; Bathke, D.J.; Bayissa, Y.A.; Dahal, D.; Derner, J.D.; Fay, P.A.; Hayes, M.J.; Schacht, W.H.; Volesky, J.D.; et al. Monitoring Climate Impacts on Annual Forage Production across U.S. Semi-Arid Grasslands. Remote Sens. 2021, 14, 4. [Google Scholar] [CrossRef]
- Sordo-Ward, A.; Granados, I.; Iglesias, A.; Garrote, L. Blue Water in Europe: Estimates of Current and Future Availability and Analysis of Uncertainty. Water 2019, 11, 420. [Google Scholar] [CrossRef]
- Park, E.J. Strategy of Water Distribution for Sustainable Community: Who Owns Water in Divided Cyprus? Sustainability 2020, 12, 8978. [Google Scholar] [CrossRef]
- Elkiran, G.; Ergil, M. The Assessment of a Water Budget of North Cyprus. Build. Environ. 2006, 41, 1671–1677. [Google Scholar] [CrossRef]
- Papadaskalopoulou, C.; Giannakopoulos, C.; Lemesios, G.; Zachariou-Dodou, M.; Loizidou, M. Challenges for Water Resources and Their Management in Light of Climate Change: The Case of Cyprus. Desalin. Water Treat. 2015, 53, 3224–3233. [Google Scholar] [CrossRef]
- Loucaides, A.; Koutsakos, E. Fluctuations in Potable Water Quality in Cyprus during the Past Two Decades—The Role of Seawater Desalination. Desalin. Water Treat. 2015, 55, 2270–2277. [Google Scholar] [CrossRef]
- Marangou, V.S.; Savvides, K. First Desalination Plant in Cyprus—Product Water Aggresivity and Corrosion Control. Desalination 2001, 138, 251–258. [Google Scholar] [CrossRef]
- Birol, E.; Koundouri, P.; Kountouris, Y. Farmers’ Demand for Recycled Water in Cyprus: A Contingent Valuation Approach. In Wastewater Reuse—Risk Assessment, Decision-Making and Environmental Security; Springer: Dordrecht, The Netherlands, 2007; pp. 267–278. [Google Scholar]
- Kathijotes, N.; Panayiotou, C. Wastewater Reuse for Irrigation and Seawater Intrusion: Evaluation of Salinity Effects on Soils in Cyprus. J. Water Reuse Desalin. 2013, 3, 392–401. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christophi, C.; Heracleous, T.; Markou, M. Irrigation Groundwater Quality Characteristics: A Case Study of Cyprus. Atmosphere 2020, 11, 302. [Google Scholar] [CrossRef]
- Sofroniou, A.; Bishop, S. Water Scarcity in Cyprus: A Review and Call for Integrated Policy. Water 2014, 6, 2898–2928. [Google Scholar] [CrossRef]
- Ma, S.; Kassinos, S.C.; Fatta Kassinos, D.; Akylas, E. Effects of Selective Water Withdrawal Schemes on Thermal Stratification in Kouris Dam in Cyprus. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2008, 13, 51–61. [Google Scholar] [CrossRef]
- Zogaris, S.; Chatzinikolaou, Y.; Koutsikos, N.; Economou, A.N.; Oikonomou, E.; Michaelides, G.; Hadjisterikotis, E.; Beaumont, W.R.C.; Ferreira, M.T. Freshwater Fish Assemblages in Cyprus with Emphasis on the Effects of Dams. Acta Ichthyol. Piscat. 2012, 42, 165–175. [Google Scholar] [CrossRef]
- Hadjimitsis, D.G.; Hadjimitsis, M.G.; Clayton, C.; Clarke, B.A. Determination of Turbidity in Kouris Dam in Cyprus Utilizing Landsat TM Remotely Sensed Data. Water Resour. Manag. 2006, 20, 449–465. [Google Scholar] [CrossRef]
- Papoutsa, C.G.D. Remote Sensing for Water Quality Surveillance in Inland Waters: The Case Study of Asprokremmos Dam in Cyprus. In Remote Sensing of Environment—Integrated Approaches; InTech: Houston, TX, USA, 2013. [Google Scholar]
- Tzoraki, O.; Dörflinger, G.; Demetriou, C. Nutrient and Heavy Metal Storage and Mobility within Sediments in Kouris Reservoir, Cyprus. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2017, 22, 74–84. [Google Scholar] [CrossRef]
- Markogianni, V.; Tzirkalli, E.; Gücel, S.; Dimitriou, E.; Zogaris, S. Remote Sensing Application for Identifying Wetland Sites on Cyprus: Problems and Prospects. In Proceedings of the Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014), Paphos, Cyprus, 7–10 April 2014; Hadjimitsis, D.G., Themistocleous, K., Michaelides, S., Papadavid, G., Eds.; SPIE: Washington, DC, USA, 2014; Volume 9229, p. 92291U. [Google Scholar]
- LDK; ECOS. River Basin Management Plan of Cyprus for the Implementation of the Directive 2000/60/ΕC.; Ministry of Agriculture, Rural Development and Environment: Nicosia, Cyprus, 2016.
- Soulard, C.E.; Waller, E.K.; Walker, J.J.; Petrakis, R.E.; Smith, B.W. DSWEmod—The Production of High-Frequency Surface Water Map Composites from Daily MODIS Images. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 248–268. [Google Scholar] [CrossRef]
- Hamunyela, E.; Hipondoka, M.; Persendt, F.; Sevelia Nghiyalwa, H.; Thomas, C.; Matengu, K. Spatio-Temporal Characterization of Surface Water Dynamics with Landsat in Endorheic Cuvelai-Etosha Basin (1990–2021). ISPRS J. Photogramm. Remote Sens. 2022, 191, 68–84. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson: Bloomington, MN, USA, 2006; ISBN 9780131889507. [Google Scholar]
- Gelli, Y.K.; Costa, D.d.A.; Nicolau, A.P.; da Silva, J.G. Vegetational Succession Assessment in a Fragment of the Brazilian Atlantic Forest. Environ. Monit. Assess. 2023, 195, 179. [Google Scholar] [CrossRef]
- Sogno, P.; Klein, I.; Kuenzer, C. Remote Sensing of Surface Water Dynamics in the Context of Global Change—A Review. Remote Sens. 2022, 14, 2475. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, H.; Hu, S.; You, S.; Yang, X. Long-Term and Bimonthly Estimation of Lake Water Extent Using Google Earth Engine and Landsat Data. Remote Sens. 2022, 14, 2893. [Google Scholar] [CrossRef]
- Donchyts, G.; Winsemius, H.; Baart, F.; Dahm, R.; Schellekens, J.; Gorelick, N.; Iceland, C.; Schmeier, S. High-Resolution Surface Water Dynamics in Earth’s Small and Medium-Sized Reservoirs. Sci. Rep. 2022, 12, 13776. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Zhou, L.; Gao, H. Evaporative Water Loss of 1.42 Million Global Lakes. Nat. Commun. 2022, 13, 3686. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, G.; Allen, G.H.; Gao, H. Diminishing Storage Returns of Reservoir Construction. Nat. Commun. 2023, 14, 3203. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- Whitfield, P.H. Identification and Characterization of Transient Water Quality Events by Fourier Analysis. Environ. Int. 1995, 21, 571–575. [Google Scholar] [CrossRef]
- Rajwa-Kuligiewicz, A.; Bialik, R.J.; Rowiński, P.M. Dissolved Oxygen and Water Temperature Dynamics in Lowland Rivers over Various Timescales. J. Hydrol. Hydromech. 2015, 63, 353–363. [Google Scholar] [CrossRef]
- Harris, J.; Loftis, J.C.; Montgomery, R.H. Statistical Methods for Characterizing Ground-Water Quality. Ground Water 1987, 25, 185–193. [Google Scholar] [CrossRef]
- Hipel, K.W.; McLeod, A.I. Time Series Modelling of Water Resources and Environmental Systems. Time Ser. Model. Water Resour. Environ. Syst. 1994, 167, 399–400. [Google Scholar] [CrossRef]
- Hammer, Ø. PAST 4.12. Reference Manual; University of Oslo: Oslo, Norway, 2022. [Google Scholar]
- ECOS; ENM; LEVER. Preliminary Third River Basin Management Plan (2021–2027); Ministry of Agriculture, Rural Development and Environment: Nicosia, Cyprus, 2021.
- Cyprus Water Development Departament (WDD). Catalogue of Reservoirs. Available online: http://www.moa.gov.cy/moa/wdd/wdd.nsf/page16_en/page16_en?opendocument (accessed on 22 April 2023).
- Cyprus Water Development Departament (WDD). Reservoir Storage. Available online: http://www.moa.gov.cy/moa/wdd/Wdd.nsf/page18_en/page18_en?opendocument (accessed on 22 April 2023).
- Cyprus Water Development Departament (WDD). Statistical Informaton about the Annual Rainfall in the Free Areas of Cyprus (Hydrological Year Starting on 1st October). Available online: http://www.cyprus.gov.cy/moa/wdd/wdd.nsf/All/8BDD66D1233F6E2BC2258394002A43AB?OpenDocument (accessed on 22 April 2023).
- López-Parages, J.; Rodríguez-Fonseca, B. Multidecadal Modulation of El Niño Influence on the Euro-Mediterranean Rainfall. Geophys. Res. Lett. 2012, 39, 1–7. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Water Scarcity Challenges to Business. Nat. Clim. Chang. 2014, 4, 318–320. [Google Scholar] [CrossRef]
- CYSTAT Statistival Service of Cyprus. Available online: https://www.cystat.gov.cy/ (accessed on 22 April 2023).
- Ciesla, W.M. Forests and Forest Protection in Cyprus. For. Chron. 2004, 80, 107–113. [Google Scholar] [CrossRef]
- Andronis, V.; Karathanassi, V.; Tsalapati, V.; Kolokoussis, P.; Miltiadou, M.; Danezis, C. Time Series Analysis of Landsat Data for Investigating the Relationship between Land Surface Temperature and Forest Changes in Paphos Forest, Cyprus. Remote Sens. 2022, 14, 1010. [Google Scholar] [CrossRef]
- Philippou, J. Quality Considerations from Integrating Desalinated Water into Existing Water Infrastructure. Desalin. Water Treat. 2015, 55, 3519–3526. [Google Scholar] [CrossRef]
- Klohn, W. Reassessment of the Island’s Water Resources and Demand. Ministry of Agriculture, Natural Resources and Environment of the Republic of Cyprus, Water Development Department, Food and Agriculture Organisation of the United Nations Land and Water Development Division. 2002. Available online: https://www.moa.gov.cy/moa/WDD/wdd.nsf/All/C56ECCB0AAAC75B8C225820F00301D11/$file/2_2.pdf?OpenElement (accessed on 22 April 2023).
- Cleridou, N.; Benas, N.; Matsoukas, C.; Croke, B.; Vardavas, I. Water Resources of Cyprus under Changing Climatic Conditions: Modelling Approach, Validation and Limitations. Environ. Model. Softw. 2014, 60, 202–218. [Google Scholar] [CrossRef]
- Papadopoulou, M.P.; Charchousi, D.; Spanoudaki, K.; Karali, A.; Varotsos, K.V.; Giannakopoulos, C.; Markou, M.; Loizidou, M. Agricultural Water Vulnerability under Climate Change in Cyprus. Atmosphere 2020, 11, 648. [Google Scholar] [CrossRef]
- Tzoraki, O.; Dörflinger, G.; Kathijotes, N.; Kontou, A. Nutrient-Based Ecological Consideration of a Temporary River Catchment Affected by a Reservoir Operation to Facilitate Efficient Management. Water Sci. Technol. 2014, 69, 847–854. [Google Scholar] [CrossRef]
- Costa, D.D.A.; Silva Junior, L.C.S.d.; Azevedo, J.P.S.d.; Santos, M.A.d.; Assumpção, R.d.S.F.V. From Monitoring and Modeling to Management: How to Improve Water Quality in Brazilian Rivers? A Case Study: Piabanha River Watershed. Water 2021, 13, 176. [Google Scholar] [CrossRef]
- Qing, Y.; Wang, S.; Ancell, B.C.; Yang, Z.-L. Accelerating Flash Droughts Induced by the Joint Influence of Soil Moisture Depletion and Atmospheric Aridity. Nat. Commun. 2022, 13, 1139. [Google Scholar] [CrossRef]
- Cyprus Water Development Departament (WDD). Water Balance. Available online: http://www.moa.gov.cy/moa/wdd/Wdd.nsf/page10_en/page10_en?opendocument (accessed on 22 April 2023).
- Kazakis, N.; Pavlou, A.; Vargemezis, G.; Voudouris, K.S.; Soulios, G.; Pliakas, F.; Tsokas, G. Seawater Intrusion Mapping Using Electrical Resistivity Tomography and Hydrochemical Data. An Application in the Coastal Area of Eastern Thermaikos Gulf, Greece. Sci. Total Environ. 2016, 543, 373–387. [Google Scholar] [CrossRef]
- Mondal, R.; Benham, G.; Mondal, S.; Christodoulides, P.; Neokleous, N.; Kaouri, K. Modelling and Optimisation of Water Management in Sloping Coastal Aquifers with Seepage, Extraction and Recharge. J. Hydrol. 2019, 571, 471–484. [Google Scholar] [CrossRef]
- Kassem, Y.; Gökçekuş, H.; Rizza, T. Groundwater Quality Assessment Based on Water Quality Index in Northern Cyprus. Eng. Technol. Appl. Sci. Res. 2022, 12, 8435–8443. [Google Scholar] [CrossRef]
- Demir, C.; Fanta, D.; Akıntuğ, B.; Ünlü, K. Modeling Coastal Güzelyurt (Morphou) Aquifer in Northern Cyprus for Mitigation of Groundwater Depletion through Managed Aquifer Recharge. Sustain. Water Resour. Manag. 2022, 8, 96. [Google Scholar] [CrossRef]
- Kapetas, L.; Kazakis, N.; Voudouris, K.; McNicholl, D. Water Allocation and Governance in Multi-Stakeholder Environments: Insight from Axios Delta, Greece. Sci. Total Environ. 2019, 695, 133831. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.S.; Siqueira, J.G.; Oliveira VP, S.; Costa, D.A. Analysis of municipal public policies for payment for water environmental services through the Public Policy Assessment Index: The state of Rio de Janeiro (Brazil) as a study model. Agua Territ./Water Landsc. 2023, 23, e6976. [Google Scholar] [CrossRef]
- Nachmani, A. Scant Resources: The Problem of Water in Cyprus. Mediterr. Polit. 2000, 5, 76–94. [Google Scholar] [CrossRef]
- Rijsberman, F.R. Water Scarcity: Fact or Fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef]
- Mason, M. Hydraulic Patronage: A Political Ecology of the Turkey-Northern Cyprus Water Pipeline. Polit. Geogr. 2020, 76, 102086. [Google Scholar] [CrossRef]
- Mannina, G.; Gulhan, H.; Ni, B.-J. Water Reuse from Wastewater Treatment: The Transition towards Circular Economy in the Water Sector. Bioresour. Technol. 2022, 363, 127951. [Google Scholar] [CrossRef]
- Kassem, Y.; Gökçekuş, H.; Iravanian, A.; Gökçekuş, R. Predictive Suitability of Renewable Energy for Desalination Plants: The Case of Güzelyurt Region in Northern Cyprus. Model. Earth Syst. Environ. 2022, 8, 3657–3677. [Google Scholar] [CrossRef]
Name | Year | River | Height (m) | Capacity (m3) | Lat | Long |
---|---|---|---|---|---|---|
Kouris | 1988 | Kouris | 110 | 115,000,000 | 34.85 | 33.36 |
Asprokremmos | 1982 | Xeros Potamos | 53 | 52,375,000 | 34.73 | 32.56 |
Evretou | 1986 | Stavros tis Psokas | 70 | 24,000,000 | 34.96 | 32.47 |
Kannaviou | 2005 | Ezousa | 75 | 18,000,000 | 34.93 | 32.59 |
Kalavasos | 1985 | Vasilikos | 60 | 17,100,000 | 34.81 | 33.26 |
Dipotamos | 1985 | Pentaschoinos | 60 | 15,500,000 | 34.89 | 33.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, D.d.A.; Bayissa, Y.; Lugon Junior, J.; Yamasaki, E.N.; Kyriakides, I.; Silva Neto, A.J. Cyprus Surface Water Area Variation Based on the 1984–2021 Time Series Built from Remote Sensing Products. Remote Sens. 2023, 15, 5288. https://doi.org/10.3390/rs15225288
Costa DdA, Bayissa Y, Lugon Junior J, Yamasaki EN, Kyriakides I, Silva Neto AJ. Cyprus Surface Water Area Variation Based on the 1984–2021 Time Series Built from Remote Sensing Products. Remote Sensing. 2023; 15(22):5288. https://doi.org/10.3390/rs15225288
Chicago/Turabian StyleCosta, David de Andrade, Yared Bayissa, Jader Lugon Junior, Edna N. Yamasaki, Ioannis Kyriakides, and Antônio J. Silva Neto. 2023. "Cyprus Surface Water Area Variation Based on the 1984–2021 Time Series Built from Remote Sensing Products" Remote Sensing 15, no. 22: 5288. https://doi.org/10.3390/rs15225288
APA StyleCosta, D. d. A., Bayissa, Y., Lugon Junior, J., Yamasaki, E. N., Kyriakides, I., & Silva Neto, A. J. (2023). Cyprus Surface Water Area Variation Based on the 1984–2021 Time Series Built from Remote Sensing Products. Remote Sensing, 15(22), 5288. https://doi.org/10.3390/rs15225288