The Relationship between Land Surface Temperature and Air Temperature in the Douro Demarcated Region, Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MODIS Land Surface Temperature
2.3. PTHRES Air Temperature
2.4. Analysis and Comparison of the MODIS Land Surface Temperature and PTHRES Air Temperature in the Douro Demarcated Region
3. Results
3.1. MODIS Land Surface Temperature and PTHRES Air Temperature Mean Differences
3.2. MODIS Land Surface Temperature and PTHRES Air Temperature versus Elevation
3.3. MODIS Land Surface Temperature and PTHRES Air Temperature in the Vilariça Valley
3.3.1. Winter Season
3.3.2. Summer Season
4. Discussion
4.1. Maritime Influence on Temperature
4.2. Lapse Rate
4.3. Thermal Inversion in the Vilariça Valley
4.4. Land Surface Temperature and Air Temperature
4.5. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mihailescu, E.; Bruno Soares, M. The Influence of Climate on Agricultural Decisions for Three European Crops: A Systematic Review. Front. Sustain. Food Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; De Melo-Abreu, J.P.; Snyder, R.L. Apple Orchard Frost Protection with Wind Machine Operation. Agric. Meteorol. 2006, 141, 71–81. [Google Scholar] [CrossRef]
- Rasera, J.B.; da Silva, R.F.; Piedade, S.; Mourão Filho, F.d.A.A.; Delbem, A.C.B.; Saraiva, A.M.; Sentelhas, P.C.; Marques, P.A.A. Do Gridded Weather Datasets Provide High-Quality Data for Agroclimatic Research in Citrus Production in Brazil? AgriEngineering 2023, 5, 924–940. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Hasegawa, T.; Wakatsuki, H.; Ju, H.; Vyas, S.; Nelson, G.C.; Farrell, A.; Deryng, D.; Meza, F.; Makowski, D. A Global Dataset for the Projected Impacts of Climate Change on Four Major Crops. Sci. Data 2022, 9, 58. [Google Scholar] [CrossRef]
- Araghi, A.; Martinez, C.J.; Olesen, J.E.; Hoogenboom, G. Assessment of Nine Gridded Temperature Data for Modeling of Wheat Production Systems. Comput. Electron. Agric. 2022, 199, 107189. [Google Scholar] [CrossRef]
- Freitas, T.R.; Santos, J.A.; Silva, A.P.; Fonseca, A.; Fraga, H. Evaluation of Historical and Future Thermal Conditions for Almond Trees in North-Eastern Portugal. Clim. Chang. 2023, 176, 89. [Google Scholar] [CrossRef]
- Blanco-Ward, D.; Monteiro, A.; Lopes, M.; Borrego, C.; Silveira, C.; Viceto, C.; Rocha, A.; Ribeiro, A.; Andrade, J.; Feliciano, M.; et al. Climate Change Impact on a Wine-producing Region Using a Dynamical Downscaling Approach: Climate Parameters, Bioclimatic Indices and Extreme Indices. Int. J. Climatol. 2019, 39, 5741–5760. [Google Scholar] [CrossRef]
- Hofstra, N.; New, M.; McSweeney, C. The Influence of Interpolation and Station Network Density on the Distributions and Trends of Climate Variables in Gridded Daily Data. Clim. Dyn. 2010, 35, 841–858. [Google Scholar] [CrossRef]
- Njoku, E.A.; Akpan, P.E.; Effiong, A.E.; Babatunde, I.O. The Effects of Station Density in Geostatistical Prediction of Air Temperatures in Sweden: A Comparison of Two Interpolation Techniques. Resour. Environ. Sustain. 2023, 11, 100092. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Rattalino Edreira, J.I.; Conley, S.P.; Grassini, P. From Grid to Field: Assessing Quality of Gridded Weather Data for Agricultural Applications. Eur. J. Agron. 2017, 82, 163–172. [Google Scholar] [CrossRef]
- Serrano-Notivoli, R.; Beguería, S.; de Luis, M. STEAD: A High-Resolution Daily Gridded Temperature Dataset for Spain. Earth Syst. Sci. Data 2019, 11, 1171–1188. [Google Scholar] [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- Herrera, S.; Cardoso, R.M.; Soares, P.M.; Espírito-Santo, F.; Viterbo, P.; Gutiérrez, J.M. Iberia01: A New Gridded Dataset of Daily Precipitation and Temperatures over Iberia. Earth Syst. Sci. Data 2019, 11, 1947–1956. [Google Scholar] [CrossRef]
- Dash, P.; Göttsche, F.-M.; Olesen, F.-S.; Fischer, H. Land Surface Temperature and Emissivity Estimation from Passive Sensor Data: Theory and Practice-Current Trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [Google Scholar] [CrossRef]
- Yan, Y.; Mao, K.; Shi, J.; Piao, S.; Shen, X.; Dozier, J.; Liu, Y.; Ren, H.; Bao, Q. Driving Forces of Land Surface Temperature Anomalous Changes in North America in 2002–2018. Sci. Rep. 2020, 10, 6931. [Google Scholar] [CrossRef]
- Liu, Z.; Ballantyne, A.P.; Cooper, L.A. Biophysical Feedback of Global Forest Fires on Surface Temperature. Nat. Commun. 2019, 10, 214. [Google Scholar] [CrossRef]
- Magarreiro, C.; Gouveia, C.; Barroso, C.; Trigo, I. Modelling of Wine Production Using Land Surface Temperature and FAPAR—The Case of the Douro Wine Region. Remote Sens. 2019, 11, 604. [Google Scholar] [CrossRef]
- Trigo, A.; Silva, P. Sustainable Development Directions for Wine Tourism in Douro Wine Region, Portugal. Sustainability 2022, 14, 3949. [Google Scholar] [CrossRef]
- Fraga, H.; Guimarães, N.; Freitas, T.R.; Malheiro, A.C.; Santos, J.A. Future Scenarios for Olive Tree and Grapevine Potential Yields in the World Heritage Côa Region, Portugal. Agronomy 2022, 12, 350. [Google Scholar] [CrossRef]
- UNESCO Alto Douro Wine Region. Available online: https://whc.unesco.org/en/list/1046/ (accessed on 30 May 2023).
- Lourenço-Gomes, L.; Pinto, L.M.C.; Rebelo, J. Wine and Cultural Heritage. The Experience of the Alto Douro Wine Region. Wine Econ. Policy 2015, 4, 78–87. [Google Scholar] [CrossRef]
- Gonçalves, D.A. Caracterização Agro-Ecológica Do Vale Da Vilariça; Instituto Superior Politécnico de Bragança: Bragança, Portugal, 1942. [Google Scholar]
- Gonçalves, F.; Carlos, C.; Crespo, L.; Zina, V.; Oliveira, A.; Salvação, J.; Pereira, J.A.; Torres, L. Soil Arthropods in the Douro Demarcated Region Vineyards: General Characteristics and Ecosystem Services Provided. Sustainability 2021, 13, 7837. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A.; Malheiro, A.C.; Moutinho-Pereira, J.; Trindade, H.; Dinis, L.-T.; Freitas, T.R.; Stolarski, O.; Rodrigues, D.; Guimarães, N.; et al. CoaClimateRisk—O Impacto Das Alterações Climáticas e Medidas de Adaptação Para as Principais Culturas Agrícolas na Região do Vale Do Côa; Zenodo, Ed.; Zenodo: Genève, Switzerland, 2023. [Google Scholar]
- Copernicus Land Monitoring Service Corine Land Cover. Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-corine (accessed on 30 May 2023).
- Copernicus Land Monitoring Service © European Union, Copernicus Land Monitoring Service 2023, European Environment Agency (EEA). European Digital Elevation Model; Copernicus DEM, 2023. [Google Scholar]
- Blanco-Ward, D.; Ribeiro, A.; Barreales, D.; Castro, J.; Verdial, J.; Feliciano, M.; Viceto, C.; Rocha, A.; Carlos, C.; Silveira, C.; et al. Climate Change Potential Effects on Grapevine Bioclimatic Indices: A Case Study for the Portuguese Demarcated Douro Region (Portugal). BIO Web Conf. 2019, 12, 01013. [Google Scholar] [CrossRef]
- Mitchell, H.; Feldman, G.; Kuring, N. Aqua Satellite and MODIS Swath. Available online: https://svs.gsfc.nasa.gov/3348/ (accessed on 17 October 2023).
- Tan, J.; Che, T.; Wang, J.; Liang, J.; Zhang, Y.; Ren, Z. Reconstruction of the Daily MODIS Land Surface Temperature Product Using the Two-Step Improved Similar Pixels Method. Remote Sens. 2021, 13, 1671. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MODIS/Aqua Land Surface Temperature/Emissivity 5-Min L2 Swath 1 km V061 [Data Set]. Available online: https://lpdaac.usgs.gov/products/myd11_l2v061/ (accessed on 10 August 2023).
- Wan, Z.; Dozier, J. A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- GDAL/OGR Contributors. GDAL/OGR Geospatial Data Abstraction Software Library. 2020. Available online: https://gdal.org/ (accessed on 19 October 2023).
- Fonseca, A.R.; Santos, J.A. High-Resolution Temperature Datasets in Portugal from a Geostatistical Approach: Variability and Extremes. J. Appl. Meteorol. Clim. 2018, 57, 627–644. [Google Scholar] [CrossRef]
- Snow, R. Continental Climate and Continentality. In Encyclopedia of World Climatology; Oliver, J.E., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 303–305. ISBN 978-1-4020-3266-0. [Google Scholar]
- Scheitlin, K. The Maritime Influence on Diurnal Temperature Range in the Chesapeake Bay Area. Earth Interact. 2013, 17, 1–14. [Google Scholar] [CrossRef]
- Scheitlin, K.N.; Dixon, P.G. Diurnal Temperature Range Variability Due to Land Cover and Airmass Types in the Southeast. J. Appl. Meteorol. Clim. 2010, 49, 879–888. [Google Scholar] [CrossRef]
- Hereher, M.E.; El Kenawy, A. Extrapolation of Daily Air Temperatures of Egypt from MODIS LST Data. Geocarto Int. 2022, 37, 214–230. [Google Scholar] [CrossRef]
- Neteler, M. Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data. Remote Sens. 2010, 2, 333–351. [Google Scholar] [CrossRef]
- van Niekerk, A.; Sandu, I.; Vosper, S.B. The Circulation Response to Resolved Versus Parametrized Orographic Drag Over Complex Mountain Terrains. J. Adv. Model. Earth Syst. 2018, 10, 2527–2547. [Google Scholar] [CrossRef]
- Houze, R.A. Orographic Effects on Precipitating Clouds. Rev. Geophys. 2012, 50, RG1001. [Google Scholar] [CrossRef]
- Duckson, D.W. Continentality. In Climatology; Kluwer Academic Publishers: Dordrecht, The Netherlands; pp. 365–367.
- Stone, P.H.; Carlson, J.H. Atmospheric Lapse Rate Regimes and Their Parameterization. J. Atmos. Sci. 1979, 36, 415–423. [Google Scholar] [CrossRef]
- Stern, M.A.; Flint, L.E.; Flint, A.L.; Boynton, R.M.; Stewart, J.A.E.; Wright, J.W.; Thorne, J.H. Selecting the Optimal Fine-Scale Historical Climate Data for Assessing Current and Future Hydrological Conditions. J. Hydrometeorol. 2022, 23, 293–308. [Google Scholar] [CrossRef]
- Bonfils, C.; Santer, B.D.; Pierce, D.W.; Hidalgo, H.G.; Bala, G.; Das, T.; Barnett, T.P.; Cayan, D.R.; Doutriaux, C.; Wood, A.W.; et al. Detection and Attribution of Temperature Changes in the Mountainous Western United States. J. Clim. 2008, 21, 6404–6424. [Google Scholar] [CrossRef]
- Bales, R.C.; Molotch, N.P.; Painter, T.H.; Dettinger, M.D.; Rice, R.; Dozier, J. Mountain Hydrology of the Western United States. Water Resour. Res. 2006, 42, 13. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Lettenmaier, D.P. Production of Temporally Consistent Gridded Precipitation and Temperature Fields for the Continental United States*. J. Hydrometeorol. 2005, 6, 330–336. [Google Scholar] [CrossRef]
- Largeron, Y.; Staquet, C. Persistent Inversion Dynamics and Wintertime PM10 Air Pollution in Alpine Valleys. Atmos. Env. 2016, 135, 92–108. [Google Scholar] [CrossRef]
- Joly, D.; Richard, Y. Frequency, Intensity, and Duration of Thermal Inversions in the Jura Mountains of France. Theor. Appl. Clim. 2019, 138, 639–655. [Google Scholar] [CrossRef]
- Sabatier, T.; Paci, A.; Canut, G.; Largeron, Y.; Dabas, A.; Donier, J.-M.; Douffet, T. Wintertime Local Wind Dynamics from Scanning Doppler Lidar and Air Quality in the Arve River Valley. Atmosphere 2018, 9, 118. [Google Scholar] [CrossRef]
- Price, J.D.; Vosper, S.; Brown, A.; Ross, A.; Clark, P.; Davies, F.; Horlacher, V.; Claxton, B.; McGregor, J.R.; Hoare, J.S.; et al. COLPEX: Field and Numerical Studies over a Region of Small Hills. Bull. Am. Meteorol. Soc. 2011, 92, 1636–1650. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Bian, X.; Zhong, S. Wintertime Evolution of the Temperature Inversion in the Colorado Plateau Basin. J. Appl. Meteorol. 1999, 38, 1103–1117. [Google Scholar] [CrossRef]
- AL-Anbari, R.H.; Jasim, O.Z.; Mohammed, Z.T. Estimation High Resolution Air Temperature Based on Landsat8 Images and Climate Datasets. IOP Conf. Ser. Mater. Sci. Eng. 2019, 518, 022033. [Google Scholar] [CrossRef]
- Jang, J.-D.; Viau, A.A.; Anctil, F. Neural Network Estimation of Air Temperatures from AVHRR Data. Int. J. Remote Sens. 2004, 25, 4541–4554. [Google Scholar] [CrossRef]
- Cristóbal, J.; Ninyerola, M.; Pons, X. Modeling Air Temperature through a Combination of Remote Sensing and GIS Data. J. Geophys. Res. 2008, 113, D13106. [Google Scholar] [CrossRef]
- Liu, Y.; Ortega-Farías, S.; Tian, F.; Wang, S.; Li, S. Estimation of Surface and Near-Surface Air Temperatures in Arid Northwest China Using Landsat Satellite Images. Front. Environ. Sci. 2021, 9, 791336. [Google Scholar] [CrossRef]
- Benali, A.; Carvalho, A.C.; Nunes, J.P.; Carvalhais, N.; Santos, A. Estimating Air Surface Temperature in Portugal Using MODIS LST Data. Remote Sens. Environ. 2012, 124, 108–121. [Google Scholar] [CrossRef]
MODIS Land Surface Temperature (°C) | ||||||
---|---|---|---|---|---|---|
Daytime | Nighttime | |||||
Minimum | Mean | Maximum | Minimum | Mean | Maximum | |
Winter | 6.94 | 14.15 | 18.41 | −2.00 | 0.92 | 3.66 |
Summer | 29.78 | 43.55 | 50.48 | 13.07 | 16.72 | 20.23 |
PTHRES Air Temperature (°C) | ||||||
---|---|---|---|---|---|---|
Daytime | Nighttime | |||||
Minimum | Mean | Maximum | Minimum | Mean | Maximum | |
Winter | 10.47 | 13.12 | 15.42 | −0.68 | 1.30 | 2.59 |
Summer | 29.31 | 33.06 | 35.70 | 12.37 | 16.96 | 18.95 |
Daytime | ||||
---|---|---|---|---|
LST A | LST B | 2mT A | 2mT B | |
LST A | 1.00 | 0.99 | 0.99 | 0.99 |
LST B | 1.00 | 0.99 | 0.99 | |
2mT A | 1.00 | 1.00 | ||
2mT B | 1.00 | |||
Nighttime | ||||
LST A | LST B | 2mT A | 2mT B | |
LST A | 1.00 | 0.66 | 0.82 | 0.84 |
LST B | 1.00 | 0.79 | 0.78 | |
2mT A | 1.00 | 0.99 | ||
2mT B | 1.00 |
Daytime | ||||
---|---|---|---|---|
LST A | LST B | 2mT A | 2mT B | |
LST A | 1.00 | 0.96 | 0.73 | 0.74 |
LST B | 1.00 | 0.67 | 0.69 | |
2mT A | 1.00 | 0.99 | ||
2mT B | 1.00 | |||
Nighttime | ||||
LST A | LST B | 2mT A | 2mT B | |
LST A | 1.00 | 0.94 | 0.90 | 0.93 |
LST B | 1.00 | 0.96 | 0.97 | |
2mT A | 1.00 | 0.99 | ||
2mT B | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adão, F.; Fraga, H.; Fonseca, A.; Malheiro, A.C.; Santos, J.A. The Relationship between Land Surface Temperature and Air Temperature in the Douro Demarcated Region, Portugal. Remote Sens. 2023, 15, 5373. https://doi.org/10.3390/rs15225373
Adão F, Fraga H, Fonseca A, Malheiro AC, Santos JA. The Relationship between Land Surface Temperature and Air Temperature in the Douro Demarcated Region, Portugal. Remote Sensing. 2023; 15(22):5373. https://doi.org/10.3390/rs15225373
Chicago/Turabian StyleAdão, Filipe, Helder Fraga, André Fonseca, Aureliano C. Malheiro, and João A. Santos. 2023. "The Relationship between Land Surface Temperature and Air Temperature in the Douro Demarcated Region, Portugal" Remote Sensing 15, no. 22: 5373. https://doi.org/10.3390/rs15225373
APA StyleAdão, F., Fraga, H., Fonseca, A., Malheiro, A. C., & Santos, J. A. (2023). The Relationship between Land Surface Temperature and Air Temperature in the Douro Demarcated Region, Portugal. Remote Sensing, 15(22), 5373. https://doi.org/10.3390/rs15225373