Multi-Temporal and Multiscale Satellite Remote Sensing Imagery Analysis for Detecting Pasture Area Changes after Grazing Cessation Due to the Fukushima Daiichi Nuclear Disaster
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Multiscale Optical Satellite Images for Classification
2.2.2. Optical Imagery Preprocessing
2.2.3. Land Cover Classification
2.2.4. Topographic Map
2.3. Data Analysis
2.3.1. Temporal Change Trend Analysis of the Pasture Area
2.3.2. Spatial Changes in the Pasture
3. Results
3.1. Accuracy Verification for Classification
3.2. Temporal Changes in Pasture Area
3.2.1. Temporal Changes in Rokkaku Pasture (Grazing Cease)
Temporal Variation before the 2011 Earthquake
Temporal Variation after the 2011 Earthquake
3.2.2. Temporal Changes in Daishaku Pasture (Grazing Continuation)
3.3. Spatial Changes in Pasture Area by High-Resolution Imagery
3.4. Topographical Correlations with Vegetation Change
3.4.1. Elevation
3.4.2. Slope
3.4.3. Aspect
4. Discussion
4.1. Comparison of Pasture Area Change between High- and Medium-Resolution Satellite Imagery
4.2. Vegetation Change Process and Its Influences
4.2.1. Vegetation Changes and Human Intervention
4.2.2. Role of Topography in Vegetation Changes
4.2.3. Influence of Wind, Seed Dispersal, and Forest Canopy on Vegetation Changes
4.2.4. Comparative Analysis of Woody Encroachment
4.3. Limitations of This Study and Directions for Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- White, R.P.; Murray, S.; Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- Gibson, D.J. Grasses and Grassland Ecology; Oxford University Press: Oxford, UK, 2009; ISBN 9780191546099. [Google Scholar]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting Global Grassland Degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, Q.; Chu, H.; Shi, J.; Li, S.; Wang, Y.; Yang, X. Grassland Community Composition Response to Grazing Intensity under Different Grazing Regimes. Rangel. Ecol. Manag. 2018, 71, 196–204. [Google Scholar] [CrossRef]
- Milchunas, D.G.; Lauenroth, W.K. Quantitative Effects of Grazing on Vegetation and Soils over a Global Range of Environments. Ecol. Monogr. 1993, 63, 327–366. [Google Scholar] [CrossRef]
- McSherry, M.E.; Ritchie, M.E. Effects of Grazing on Grassland Soil Carbon: A Global Review. Global Change Biol. 2013, 19, 1347–1357. [Google Scholar] [CrossRef]
- Ogura, J. Changes of grassland area in Japan. Bull Kyoto Seika Univ. 2006, 30, 159–172. (In Japanese) [Google Scholar]
- The National Biodiversity Strategy and Action Plan (NBSAP) 2012–2020 Japan. Available online: https://www.env.go.jp/press/files/en/528.pdf (accessed on 17 May 2023).
- Ushimaru, A.; Uchida, K.; Suka, T. Grasslands of the World. In Grasslands of the World: Diversity, Management and Conservation; Squires, V.R., Dengler, J., Hua, L., Feng, H., Eds.; Routledge: Abingdon, UK, 2018; pp. 197–218. ISBN 9781315156125. [Google Scholar]
- Numata, M.; Itow, A.M.; Itow, D. Natural and Semi-Natural Vegetation in Japan. Blumea Biodivers. Evol. Biogeogr. Plants 1972, 20, 435–496. [Google Scholar]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite Remote Sensing of Grasslands: From Observation to Management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef]
- Leeuw, J.D.; Georgiadou, Y.; Kerle, N.; Gier, A.D.; Inoue, Y.; Ferwerda, J.; Smies, M.; Narantuya, D. The Function of Remote Sensing in Support of Environmental Policy. Remote Sens. 2010, 2, 1731–1750. [Google Scholar] [CrossRef]
- Asam, S.; Klein, D.; Dech, S. Estimation of Grassland Use Intensities Based on High Spatial Resolution LAI Time Series. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, 40, 285–291. [Google Scholar] [CrossRef]
- Stumpf, F.; Schneider, M.K.; Keller, A.; Mayr, A.; Rentschler, T.; Meuli, R.G.; Schaepman, M.; Liebisch, F. Spatial Monitoring of Grassland Management Using Multi-Temporal Satellite Imagery. Ecol. Indic. 2020, 113, 106201. [Google Scholar] [CrossRef]
- Halabuk, A.; Mojses, M.; Halabuk, M.; David, S. Towards Detection of Cutting in Hay Meadows by Using of NDVI and EVI Time Series. Remote Sens. 2015, 7, 6107–6132. [Google Scholar] [CrossRef]
- Edirisinghe, A.; Hill, M.J.; Donald, G.E.; Hyder, M. Quantitative Mapping of Pasture Biomass Using Satellite Imagery. Int. J. Remote Sens. 2011, 32, 2699–2724. [Google Scholar] [CrossRef]
- Lange, M.; Feilhauer, H.; Kühn, I.; Doktor, D. Mapping Land-Use Intensity of Grasslands in Germany with Machine Learning and Sentinel-2 Time Series. Remote Sens. Environ. 2022, 277, 112888. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Despain, D.G.; Clark, R.N.; Livo, K.E. Mapping Vegetation in Yellowstone National Park Using Spectral Feature Analysis of AVIRIS Data. Remote Sens. Environ. 2003, 84, 437–456. [Google Scholar] [CrossRef]
- Filippa, G.; Cremonese, E.; Galvagno, M.; Bayle, A.; Choler, P.; Bassignana, M.; Piccot, A.; Poggio, L.; Oddi, L.; Gascoin, S.; et al. On the Distribution and Productivity of Mountain Grasslands in the Gran Paradiso National Park, NW Italy: A Remote Sensing Approach. Int. J. Appl. Earth Obs. 2022, 108, 102718. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Geissler, G.; Zhang, G.; Cejda, N.; Alikhani, B.; Doughty, R.B. Mapping the Dynamics of Eastern Redcedar Encroachment into Grasslands during 1984–2010 through PALSAR and Time Series Landsat Images. Remote Sens. Environ. 2017, 190, 233–246. [Google Scholar] [CrossRef]
- Liu, X.; Feng, S.; Liu, H.; Ji, J. Patterns and Determinants of Woody Encroachment in the Eastern Eurasian Steppe. Land Degrad. Dev. 2021, 32, 3536–3549. [Google Scholar] [CrossRef]
- Belward, A.S.; Skøien, J.O. Who Launched What, When and Why; Trends in Global Land-Cover Observation Capacity from Civilian Earth Observation Satellites. ISPRS J. Photogramm. Remote Sens. 2015, 103, 115–128. [Google Scholar] [CrossRef]
- Agriculture, Forestry and Fisheries Research Council (AFFRC). Distribution Map of Radioactive Material Concentration in Agricultural Soil. Available online: https://www.affrc.maff.go.jp/docs/press/pdf/110830-06.pdf (accessed on 21 April 2023). (In Japanese)
- Ministry of Agriculture, Forestry and Fisheries (MAFF). Information on Measures for Reduction of Radionuclide Contamination of Agricultural Produce after the Accident at Fukushima Daiichi Nuclear Power Plant in Japan. Available online: https://www.maff.go.jp/e/policies/food_safety/emer/attach/pdf/202209_summary.pdf (accessed on 26 April 2023).
- Harada, I.; Hara, K.; Park, J.; Asanuma, I.; Tomita, M.; Hasegawa, D.; Short, K.; Fujihara, M. Monitoring of Rapid Land Cover Changes in Eastern Japan Using Terra/MODIS Data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, 40, 403–408. [Google Scholar] [CrossRef]
- Ishihara, M.; Tadono, T. Land Cover Changes Induced by the Great East Japan Earthquake in 2011. Sci. Rep. 2017, 7, 45769. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, H.; Tomita, M.; Sharma, R.C.; Hara, K. Land-Cover Maps Using Multiple Classifier System for Post-Disaster Landscape Monitoring. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 139–142. [Google Scholar] [CrossRef]
- Historical Weather Data by Japan Meteorological Agency. Available online: https://www.data.jma.go.jp/obd/stats/etrn/index.php?prec_no=34&block_no=0243&year=&month=&day=&view= (accessed on 30 May 2023). (In Japanese)
- Yonezawa, C.; Ogura, S.; Inoue, S.; Sasaki, S.; Namiwa, F.; Saito, G. Area and gradient estimation on grassland in Field Science Center. Bull. Integr. Field Sci. Center 2013, 28, 21–23. (In Japanese) [Google Scholar]
- Goody, R.M.; Yung, Y.L. Atmospheric Radiation: Theoretical Basis; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Wulder, M.A.; Ortlepp, S.M.; White, J.C.; Maxwell, S. Evaluation of Landsat-7 SLC-off Image Products for Forest Change Detection. Can. J. Remote Sens. 2008, 34, 93–99. [Google Scholar] [CrossRef]
- Bradley, B.A. Remote Detection of Invasive Plants: A Review of Spectral, Textural and Phenological Approaches. Biol. Invasions 2014, 16, 1411–1425. [Google Scholar] [CrossRef]
- Katoh, M. Classifying Tree Species in a Northern Mixed Forest Using High-Resolution IKONOS Data. J. For. Res. 2004, 9, 7–14. [Google Scholar] [CrossRef]
- Pu, R.; Liu, D. Segmented Canonical Discriminant Analysis of in Situ Hyperspectral Data for Identifying 13 Urban Tree Species. Int. J. Remote Sens. 2011, 32, 2207–2226. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; C. Griffin: London, UK, 1948. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple Comparisons Using Rank Sums. Technometrics 1964, 6, 241. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Krauss, J.; Bommarco, R.; Guardiola, M.; Heikkinen, R.K.; Helm, A.; Kuussaari, M.; Lindborg, R.; Öckinger, E.; Pärtel, M.; Pino, J.; et al. Habitat Fragmentation Causes Immediate and Time-delayed Biodiversity Loss at Different Trophic Levels. Ecol. Lett. 2010, 13, 597–605. [Google Scholar] [CrossRef]
- Harada, I.; Hara, K.; Tomita, M.; Short, K.; Park, J. Monitoring Landscape Changes in Japan Using Classification of Modis Data Combined with a Landscape Transformation Sere (LTS) Model. J. Landsc. Ecol. 2015, 7, 23–38. [Google Scholar] [CrossRef]
- Oliveras, I.; Malhi, Y. Many Shades of Green: The Dynamic Tropical Forest–Savannah Transition Zones. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150308. [Google Scholar] [CrossRef] [PubMed]
- Farzam, M.; Ejtehadi, H. Effects of Drought and Slope Aspect on Canopy Facilitation in a Mountainous Rangeland. J. Plant Ecol. 2016, 9, rtw070. [Google Scholar] [CrossRef]
- Jin, Y.; Russo, S.E.; Yu, M. Effects of Light and Topography on Regeneration and Coexistence of Evergreen and Deciduous Tree Species in a Chinese Subtropical Forest. J. Ecol. 2018, 106, 1634–1645. [Google Scholar] [CrossRef]
- Holland, P.G.; Steyn, D.G. Vegetational Responses to Latitudinal Variations in Slope Angle and Aspect. J. Biogeogr. 1975, 2, 179. [Google Scholar] [CrossRef]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global Land Change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
Data | High-Resolution | Free Source | |||||
---|---|---|---|---|---|---|---|
WorldView-2 | QuickBird | SPOT-6/7 | Sentinel-2 | Landsat-5 | Landsat-7 | Landsat-8 | |
Spatial Resolution (Multispectral) | 1.8 m | 2.4 m | 6 m | 10 m | 30 m | 30 m | 30 m |
Spectral Range in nm (no. of bands) | 400–1040 (8) | 450–900 (4) | 455–890 (4) | 455–885 (4) | 460–900 (4) | 460–900 (4) | 433–885 (4) |
Observation Dates | 20 May 2017 | 19 July 2012 | 26 September 2014 | 7 July 2017 | 13 June 2007 | 22 May 2008 | 31 May 2014 |
26 May 2018 | 1 October 2015 | 2 June 2018 | 2 June 2009 | 2 June 2012 | 2 May 2015 | ||
20 November 2021 | 25 May 2019 | 23 May 2019 | 8 August 2010 | 5 June 2013 | 20 May 2016 | ||
4 May 2022 | 2 May 2020 | 8 June 2011 | 23 May 2017 | ||||
11 June 2021 | 26 May 2018 | ||||||
2 May 2022 | 14 June 2019 | ||||||
31 May 2020 | |||||||
18 May 2021 | |||||||
5 May 2022 |
High-Resolution | Sentinel-2 | Landsat-5/7/8 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Date | OA | Kappa | Date | OA | Kappa | Date | OA | Kappa | Date | OA | Kappa |
19 July 2012 | 0.95 | 0.92 | 7 July 2017 | 0.94 | 0.90 | 13 June 2007 | 0.91 | 0.86 | 2 May 2015 | 0.92 | 0.86 |
26 September 2014 | 0.91 | 0.87 | 2 June 2018 | 0.92 | 0.85 | 22 May 2008 | 0.88 | 0.80 | 20 May 2016 | 0.95 | 0.91 |
1 October 2015 | 0.88 | 0.81 | 23 May 2019 | 0.95 | 0.90 | 2 June 2009 | 0.87 | 0.80 | 23 May 2017 | 0.87 | 0.77 |
20 May 2017 | 0.94 | 0.90 | 2 May 2020 | 0.93 | 0.87 | 8 August 2010 | 0.86 | 0.75 | 26 May 2018 | 0.93 | 0.87 |
26 May 2018 | 0.95 | 0.92 | 11 June 2021 | 0.94 | 0.89 | 8 June 2011 | 0.90 | 0.83 | 14 June 2019 | 0.94 | 0.89 |
25 May 2019 | 0.95 | 0.90 | 2 May 2022 | 0.90 | 0.82 | 2 June 2012 | 0.85 | 0.76 | 31 May 2020 | 0.95 | 0.89 |
20 November 2021 | 0.93 | 0.87 | 5 June 2013 | 0.84 | 0.73 | 18 May 2021 | 0.92 | 0.84 | |||
4 May 2022 | 0.93 | 0.88 | 31 May 2014 | 0.91 | 0.85 | 5 May 2022 | 0.95 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muxiye, M.; Yonezawa, C. Multi-Temporal and Multiscale Satellite Remote Sensing Imagery Analysis for Detecting Pasture Area Changes after Grazing Cessation Due to the Fukushima Daiichi Nuclear Disaster. Remote Sens. 2023, 15, 5416. https://doi.org/10.3390/rs15225416
Muxiye M, Yonezawa C. Multi-Temporal and Multiscale Satellite Remote Sensing Imagery Analysis for Detecting Pasture Area Changes after Grazing Cessation Due to the Fukushima Daiichi Nuclear Disaster. Remote Sensing. 2023; 15(22):5416. https://doi.org/10.3390/rs15225416
Chicago/Turabian StyleMuxiye, Muxiye, and Chinatsu Yonezawa. 2023. "Multi-Temporal and Multiscale Satellite Remote Sensing Imagery Analysis for Detecting Pasture Area Changes after Grazing Cessation Due to the Fukushima Daiichi Nuclear Disaster" Remote Sensing 15, no. 22: 5416. https://doi.org/10.3390/rs15225416
APA StyleMuxiye, M., & Yonezawa, C. (2023). Multi-Temporal and Multiscale Satellite Remote Sensing Imagery Analysis for Detecting Pasture Area Changes after Grazing Cessation Due to the Fukushima Daiichi Nuclear Disaster. Remote Sensing, 15(22), 5416. https://doi.org/10.3390/rs15225416