A Modified Iteration-Free SPGA Based on Removing the Linear Phase
Abstract
:1. Introduction
2. Theory
3. Method
3.1. Point Selection
3.2. Phase Error Extraction
3.3. Real Location Estimation of Point Target
3.4. Phase Error Estimation
3.5. Phase Error Correction
4. Experimental Results and Analysis
4.1. Simulation Experiments
4.2. Real Data Experiments
5. Discussion
5.1. Comparison of the Computational Cost
5.2. Summary of Experimental Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAR | Synthetic Aperture Radar |
INS | Inertial Navigation System |
GNSS | Global Navigation Satellite System |
MoCo | Motion Compensation |
2D | Two-Dimensional |
LFM | Linear frequency modulation |
CFAR | Constant False Alarm Rate Detector |
AIRCAS | Aerospace Information Research Institute, Chinese Academy of Sciences |
POS | Position and Orientation System |
ISLR | Integral Sidelobe Ratio |
PSLR | Peak Sidelobe Ratio |
References
- Deng, Y.; Yu, W.; Zhang, H.; Wang, W.; Liu, D.; Wang, Y. Forthcoming spaceborne SAR development. J. Radars 2020, 9, 1–33. [Google Scholar]
- Zhang, L.; Qiao, Z.; Xin, M.; Yang, L.; Bao, Z. A robust motion compensation approach for UAV SAR imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3202–3218. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Zhou, Y.; Wang, P.; Qiu, J. A Novel Motion Compensation Scheme for Airborne Very High Resolution SAR. Remote Sens. 2021, 13, 2729. [Google Scholar] [CrossRef]
- Ren, Y.; Tang, S.; Dong, Q.; Sun, G.; Guo, P.; Jiang, C.; Han, J.; Zhang, L. An Improved Spatially Variant MOCO Approach Based on an MDA for High-Resolution UAV SAR Imaging with Large Measurement Errors. Remote Sens. 2022, 14, 2670. [Google Scholar] [CrossRef]
- Ren, Z.; Zhu, D. A GPU-Based Two-Step Approach for High Resolution SAR Imaging. In Proceedings of the 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 22–24 October 2021; pp. 376–380. [Google Scholar]
- Yi, T.; He, Z.; He, F.; Dong, Z.; Wu, M.; Song, Y. A Compensation Method for Airborne SAR with Varying Accelerated Motion Error. IEEE Trans. Geosci. Remote Sens. 2018, 10, 1124. [Google Scholar] [CrossRef]
- Chen, J.; Xing, M.; Yu, H.; Liang, B.; Peng, J.; Sun, C. Motion Compensation/Autofocus in Airborne Synthetic Aperture Radar: A Review. IEEE Geosci. Remote Sens. Mag. 2022, 10, 185–206. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, L.; Li, J.; Lu, J.; Li, Y. Time-Domain Azimuth-Variant MOCO Algorithm for Airborne SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Wang, W.; An, D.; Luo, Y.; Zhou, Z.; Huang, X. A Modified Map-Drift Algorithm for SAR Autofocusing. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 815–817. [Google Scholar]
- Li, B.; Xie, Y.; Liu, X.; Deng, Y. A new reconfigurable methodology to implement the shift-and-correlate (SAC) algorithm for real-time SAR autofocusing. In Proceedings of the IET International Radar Conference, Hangzhou, China, 14–16 October 2015; pp. 1–6. [Google Scholar]
- Gao, M.; Qiu, X.; Cheng, Y.; Lv, J.; Ding, C. A Robust Track Error Estimation Method for Airborne SAR Based on Accuracy Analysis Model. Remote Sens. 2022, 14, 5769. [Google Scholar] [CrossRef]
- Klare, J.; Weiss, M.; Peters, O.; Brenner, A.; Ender, J. Two-dimensional autofocus technique for high-resolution spotlight synthetic aperture radar. IET Signal Process. 2016, 10, 699–707. [Google Scholar]
- Gao, Y.; Yu, W.; Wang, R. Autofocus algorithm for SAR imagery based on sharpness optimisation. Electron. Lett. 2014, 50, 830–832. [Google Scholar] [CrossRef]
- Schulz, T.J. Optimal sharpness function for SAR autofocus. IEEE Signal Process. Lett. 2007, 14, 27–30. [Google Scholar] [CrossRef]
- Morrison, R.L.; Do, M.N.; Munson, D.C. SAR image autofocus by sharpness optimization: A theoretical study. IEEE Trans. Image Process. 2007, 16, 2309–2321. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xing, M.; Zhang, L.; Sheng, J.; Bao, Z. Entropybased motion error correction for high-resolution spotlight SAR imagery. IET Radar Sonar Navig. 2012, 6, 627–637. [Google Scholar] [CrossRef]
- Zeng, T.; Wang, R.; Li, F. SAR image autofocus utilizing minimum-entropy criterion. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1552–1556. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Li, X. Fast entropy minimization based autofocusing technique for ISAR imaging. IEEE Trans. Signal Process. 2019, 63, 3425–3434. [Google Scholar] [CrossRef]
- Eichel, P.H.; Ghiglia, D.C.; Jakowatz, C.V. Speckle processing method for synthetic-aperture-radar phase correction. Opt. Lett. 1989, 14, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Shao, H.; Chen, H.; Wang, W. A modefied PGA motion compensation method for circular trace scanning SAR. In Proceedings of the 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016; pp. 1–4. [Google Scholar]
- Zhang, R.; Wang, H.; Hu, C.; Chen, X. An Optimization Algorithm of Moving Targets Refocusing Via Parameter Estimation Dependence of Maximum Sharpness Principle After BP Integral. In Proceedings of the Data Processing of Airborne FMCW SAR Sliding Spotlight, 2021 2nd China International SAR Symposium (CISS), Shanghai, China, 3–5 November 2021; Volume 14, pp. 1–4. [Google Scholar]
- Meng, D.; Ding, C. A New Approach to Autofocus Considering Strip Map SAR. J. Electron. Inf. Technol. 2005, 27, 1349–1352. [Google Scholar]
- Zhang, X.; Wu, Y.; Ding, C. A Easy Implementation Real Time Autofocus Algorithm for High Resolution Airborne SAR. J. Electron. Inf. Technol. 2006, 28, 923–926. [Google Scholar]
- Chen, J.; Liang, B.; Yang, D. Two-Step Accuracy Improvement of Motion Compensation for Airborne SAR With Ultrahigh Resolution and Wide Swath. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7148–7160. [Google Scholar] [CrossRef]
- Xiang, D.; Tang, T.; Zhao, L.; Su, Y. Superpixel Generating Algorithm Based on Pixel Intensity and Location Similarity for SAR Image Classification. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1414–1418. [Google Scholar] [CrossRef]
- Ye, Y.; Shen, L.; Hao, M.; Wang, J.; Xu, Z. Robust Optical-to-SAR Image Matching Based on Shape Properties. IEEE Geosci. Remote Sens. Lett. 2017, 14, 564–568. [Google Scholar] [CrossRef]
- Zheng, X.; Sun, W.; Li, Q.; Guo, Y. INS/Scen matching intergrated navigation based on evidence reasoning. J. Chin. Inert. Technol. 2014, 3, 176–182. [Google Scholar]
- Wang, J.; Huang, Z.; Yin, J.; Yin, K.; Wang, Z. A Navigation Method of The SAR Platform Combining The INS with The Scene-Matching Points. In Proceedings of the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 17–19 June 2022; pp. 640–645. [Google Scholar]
- Smith, M.E.; Varshney, P.K. Intelligent CFAR processor based on data variability. IEEE Trans. Aerosp. Electron. Syst. 2000, 3, 837–847. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Suo, J.; Zhang, J.; Yao, T. Research on a New Comprehensive CFAR (Comp-CFAR) Processing Method. IEEE Access 2019, 7, 19401–19413. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, W.; Feng, J.; Zheng, S.; Yang, L. A SAR Back Projection Autofocusing Algorithm Based on Legendre Approximation. J. Radars 2014, 3, 176–182. [Google Scholar] [CrossRef]
The Key Step of Our Approach |
---|
Input: Image with azimuthal phase error , main imaging parameters, redundancy selection point range W. |
Output: The focused image . |
Description of operator:. |
➀ : Reference chirp signal generated with as the center point. |
➁ : Take the phase of the signal. |
➂ : Finding the slope of the line. |
➃ : Azimuth inverse compression. |
➄ : Azimuth compression. |
Calculate global optimal solution: |
Step 1: Select N points and arrange them according to the azimuth index from large to small and |
name them in turn. Their coordinates are . |
Step 2: Take the azimuth echo data of and add Windowing. |
Step 3: Estimate the true position of the point target. |
Loop the following |
. |
Step 4: Find the maximum value of and record its index |
. |
Step 5: The phase error at each point will be calculated twice and averaged |
. |
Step 6: Correct the phase error iteratively. |
Loop the following |
. |
Step 7: Loop Step 2 to Step 6 . |
Concatenate all and integrate them to obtain . |
Step 8: Phase error compensation and pulse compression |
. |
Parameter | Symbol | Value |
---|---|---|
Pulse repetition frequency | 312.5 Hz | |
Azimuth bandwidth | 285.73 Hz | |
Speed of flight | V | 30.44 m/s |
Pulse width | 2 us | |
Beam width | 5 deg | |
Range direction bandwidth | 400 MHz | |
Rate of sampling | 600 MHz | |
Center frequency | 14.6 GHz | |
Redundant range of selection points | W | 40 |
Indicators | Method | P1 | P2 | P3 | P4 | P5 | P6 | P7 | Avg |
---|---|---|---|---|---|---|---|---|---|
Shift Pixels | A | +0 | +8 | +0 | −4 | +4 | +8 | +0 | 2.29 |
B | +1.15 | +7.25 | +0.59 | −4.65 | +1.44 | +5.25 | +1.96 | 1.86 | |
C | +6.37 | +13.21 | +6.00 | +6.00 | +10.28 | +10.03 | +7.04 | 8.42 | |
D | −0.02 | −0.19 | −0.16 | +0.03 | −0.28 | −0.16 | −0.34 | −0.16 | |
PLSR (dB) | A | −1.75 | −13.26 | −5.25 | −4.00 | −4.73 | −3.62 | −2.34 | −4.99 |
B | −0.46 | −2.18 | −5.98 | −3.51 | −0.93 | −0.74 | −0.40 | −2.03 | |
C | −3.13 | −13.10 | −2.09 | −0.60 | −8.15 | −11.34 | −11.34 | −7.11 | |
D | −13.10 | −13.24 | −11.86 | −11.68 | −12.76 | −12.74 | −11.06 | −12.34 | |
ILSR (dB) | A | −0.18 | −10.48 | −0.37 | −2.40 | +0.23 | −2.41 | −0.61 | −2.32 |
B | −0.71 | +4.75 | −3.57 | +7.82 | −7.42 | −4.13 | −2.84 | −0.87 | |
C | −0.72 | +0.07 | −10.09 | +7.72 | −6.92 | −8.46 | −9.56 | −3.99 | |
D | −10.30 | −10.07 | −9.82 | −9.73 | −9.98 | −9.97 | −9.22 | −9.87 |
Parameter | Symbol | Value |
---|---|---|
Pulse repetition frequency | 1000 Hz | |
Azimuth bandwidth | 346.12 Hz | |
Speed of flight | V | 58.81 m/s |
Pulse width | 20 us | |
Beam width | 8.0 deg | |
Range direction bandwidth | 100 MHz | |
Rate of sampling | 400 MHz | |
Center frequency | 5.4 GHz | |
Redundant range of selection points | W | 40 |
Parameter | Figure 11a | Figure 11b | Figure 11c | Figure 11d |
---|---|---|---|---|
Image entropy | 5.88 | 5.84 | 5.50 | 5.46 |
Time consumption (s) | ∖ | 13.08 | 82.16 | 15.82 |
Process | Computational Cost | SPGA | Our Aproach | Simulation Value |
---|---|---|---|---|
1 | ✓ | ✓ | 2.68 × 108 | |
2 | ✓ | ✓ | 2.02 × 108 | |
3 | ∖ | ✓ | 1.15 × 106 | |
4 | ✓ | ✓ | 2.87 × 104 | |
5 | ∖ | ✓ | 1.00 × 105 | |
6 | ✓ | ✓ | 2.87 × 104 | |
7 | ✓ | ✓ | 1.68 × 107 | |
8 | ✓ | ✓ | 2.01 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Luan, Y.; Chen, L.; Zhang, X. A Modified Iteration-Free SPGA Based on Removing the Linear Phase. Remote Sens. 2023, 15, 5535. https://doi.org/10.3390/rs15235535
Xie Y, Luan Y, Chen L, Zhang X. A Modified Iteration-Free SPGA Based on Removing the Linear Phase. Remote Sensing. 2023; 15(23):5535. https://doi.org/10.3390/rs15235535
Chicago/Turabian StyleXie, Yi, Yuchen Luan, Longyong Chen, and Xin Zhang. 2023. "A Modified Iteration-Free SPGA Based on Removing the Linear Phase" Remote Sensing 15, no. 23: 5535. https://doi.org/10.3390/rs15235535
APA StyleXie, Y., Luan, Y., Chen, L., & Zhang, X. (2023). A Modified Iteration-Free SPGA Based on Removing the Linear Phase. Remote Sensing, 15(23), 5535. https://doi.org/10.3390/rs15235535