SiameseNet Based Fine-Grained Semantic Change Detection for High Resolution Remote Sensing Images
Abstract
:1. Introduction
2. Related Work
2.1. Change Detection of Remote Sensing Images
2.2. Semantic Segmentation
3. Dataset
3.1. Fast and Precise Matching Algorithm for Large-Scale Remote Sensing Dual-Temporal Images
3.2. Data Making with Semantic and Matching Labels
4. Methodology
4.1. Framework
4.2. LightNet
4.2.1. Lightweight Serial-Parallel Dilated Residual Module (LDRM)
4.2.2. Multiscale Spatial Information Enhancement Module (MSEM)
4.2.3. Multiscale Channel Information Enhancement Module (MCEM)
4.3. Loss Function for LightNet
4.4. Semantic Comparison Algorithm
5. Experiment and Analysis
5.1. Experimental Setup
5.2. Evaluation Metrics
5.3. Evaluation Metrics
5.3.1. Performance Analysis of LightNet
5.3.2. Ablation Study on LightNet
5.3.3. Performance Analysis of Change Detection Method
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, H.; Jinliang, H.; Lihui, W.; Yanxia, H.; Pengpeng, H. Remote sensing image change detection based on change vector analysis of PCA component. Remote Sens. Nat. Resour. 2016, 28, 22–27. [Google Scholar]
- Brunner, D.; Lemoine, G.; Bruzzone, L. Earthquake damage assessment of buildings using VHR optical and SAR imagery. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2403–2420. [Google Scholar] [CrossRef]
- Luo, H.; Liu, C.; Wu, C.; Guo, X. Urban change detection based on Dempster–Shafer theory for multitemporal very high-resolution imagery. Remote Sens. 2018, 10, 980. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review ArticleDigital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Daudt, R.C.; Le Saux, B.; Boulch, A.; Gousseau, Y. Multitask learning for large-scale semantic change detection. Comput. Vis. Image Underst. 2019, 187, 102783. [Google Scholar] [CrossRef]
- He, Y.; Zhang, H.; Ning, X.; Zhang, R.; Chang, D.; Hao, M. Spatial-temporal semantic perception network for remote sensing image semantic change detection. Remote Sens. 2023, 15, 4095. [Google Scholar] [CrossRef]
- Muchoney, D.M.; Haack, B.N. Change detection for monitoring forest defoliation. Photogramm. Eng. Remote Sens. 1994, 60, 1243–1252. [Google Scholar]
- Mondini, A.C.; Guzzetti, F.; Reichenbach, P.; Rossi, M.; Cardinali, M.; Ardizzone, F. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sens. Environ. 2011, 115, 1743–1757. [Google Scholar] [CrossRef]
- Schoppmann, M.W.; Tyler, W.A. Chernobyl revisited: Monitoring change with change vector analysis. Geocarto Int. 1996, 11, 13–27. [Google Scholar] [CrossRef]
- Du, P.; Wang, X.; Chen, D.; Liu, S.; Lin, C.; Meng, Y. An improved change detection approach using tri-temporal logic-verified change vector analysis. ISPRS J. Photogramm. Remote Sens. 2020, 161, 278–293. [Google Scholar] [CrossRef]
- Baronti, S.; Carla, R.; Sigismondi, S.; Alparone, L. Principal component analysis for change detection on polarimetric multitemporal SAR data. In Proceedings of the 1994 IEEE International Geoscience and Remote Sensing Symposium (IGARSS’94), Pasadena, CA, USA, 8–12 August 1992; pp. 2152–2154. [Google Scholar]
- Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, W. A feature difference convolutional neural network-based change detection method. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7232–7246. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A. Fully convolutional siamese networks for change detection. In Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067. [Google Scholar]
- Chen, H.; Shi, Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Ke, Q.; Zhang, P. MCCRNet: A multi-level change contextual refinement network for remote sensing image change detection. ISPRS Int. J. Geo Inf. 2021, 10, 591. [Google Scholar] [CrossRef]
- Peng, X.; Zhong, R.; Li, Z.; Li, Q. Optical remote sensing image change detection based on attention mechanism and image difference. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7296–7307. [Google Scholar] [CrossRef]
- Pang, S.; Li, X.; Chen, J.; Zuo, Z.; Hu, X. Prior Semantic Information Guided Change Detection Method for Bi-temporal High-Resolution Remote Sensing Images. Remote Sens. 2023, 15, 1655. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, M.; Jiang, X.; Xie, G.; Zhang, Z.; Tang, P. Dual-task semantic change detection for remote sensing images using the generative change field module. Remote Sens. 2021, 13, 3336. [Google Scholar] [CrossRef]
- Xia, H.; Tian, Y.; Zhang, L.; Li, S. A deep siamese postclassification fusion network for semantic change detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5622716. [Google Scholar] [CrossRef]
- Ding, L.; Guo, H.; Liu, S.; Mou, L.; Zhang, J.; Bruzzone, L. Bi-Temporal semantic reasoning for the semantic change detection in HR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5620014. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhong, Y.; Tian, S.; Ma, A.; Zhang, L. ChangeMask: Deep multi-task encoder-transformer-decoder architecture for semantic change detection. ISPRS J. Photogramm. Remote Sens. 2022, 183, 228–239. [Google Scholar] [CrossRef]
- Yang, K.; Xia, G.S.; Liu, Z.; Du, B.; Yang, W.; Pelillo, M.; Zhang, L. Asymmetric siamese networks for semantic change detection in aerial images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5609818. [Google Scholar] [CrossRef]
- Peng, D.; Bruzzone, L.; Zhang, Y.; Guan, H.; He, P. SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102465. [Google Scholar] [CrossRef]
- Fang, S.; Li, K.; Shao, J.; Li, Z. SNUNet-CD: A densely connected Siamese network for change detection of VHR images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 8007805. [Google Scholar] [CrossRef]
- Chen, H.; Qi, Z.; Shi, Z. Remote sensing image change detection with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5607514. [Google Scholar] [CrossRef]
- Marmanis, D.; Schindler, K.; Wegner, J.D.; Galliani, S.; Datcu, M.; Stilla, U. Classification with an edge: Improving semantic image segmentation with boundary detection. ISPRS J. Photogramm. Remote Sens. 2018, 135, 158–172. [Google Scholar] [CrossRef]
- Ying-ming, H.; Feng, Z. Fast algorithm for two-dimensional otsu adaptive threshold algorithm. J. Image Graph. 2005, 10, 484–488. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1520–1528. [Google Scholar]
- Badrinarayanan, V.; Handa, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv 2015, arXiv:1505.07293. [Google Scholar]
- Zhang, L.; Fan, Y.; Yan, R.; Shao, Y.; Wang, G.; Wu, J. Fine-grained tidal flat waterbody extraction method (FYOLOv3) for High-Resolution remote sensing images. Remote Sens. 2021, 13, 2594. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Li, R.; Zheng, S.; Zhang, C.; Duan, C.; Su, J.; Wang, L.; Atkinson, P.M. Multiattention network for semantic segmentation of fine-resolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [Google Scholar] [CrossRef]
- Ding, L.; Tang, H.; Bruzzone, L. LANet: Local attention embedding to improve the semantic segmentation of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 426–435. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, Y.; Wang, G.; Chen, J.; Wang, H. A Multi-scale contextual information enhancement network for crack segmentation. Appl. Sci. 2022, 12, 11135. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE international Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Zhang, L.; Wu, J.; Fan, Y.; Gao, H.; Shao, Y. An efficient building extraction method from high spatial resolution remote sensing images based on improved mask R-CNN. Sensors 2020, 20, 1465. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5693–5703. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Lippitt, C.D.; Zhang, S. The impact of small unmanned airborne platforms on passive optical remote sensing: A conceptual perspective. Int. J. Remote Sens. 2018, 39, 4852–4868. [Google Scholar] [CrossRef]
- Zhang, S.; Lippitt, C.D.; Bogus, S.M.; Loerch, A.C.; Sturm, J.O. The accuracy of aerial triangulation products automatically generated from hyper-spatial resolution digital aerial photography. Remote Sens. Lett. 2016, 7, 160–169. [Google Scholar] [CrossRef]
Algorithm | Number of Matching Point Pairs | MSE |
---|---|---|
SIFT | 75 | 2.395 |
SIFT+ | 34 | 0.842 |
Method | Building | Plant | Bare Soil | Water | Average | |||||
---|---|---|---|---|---|---|---|---|---|---|
IoU | PA | IoU | PA | IoU | PA | IoU | PA | mIoU | MPA | |
U-Net [34] | 67.2 | 80.5 | 80.4 | 87.9 | 46.2 | 65.3 | 85.6 | 90.3 | 69.9 | 81.0 |
PSPNet | 73.7 | 85.5 | 80.6 | 89.1 | 43.8 | 62.3 | 88.7 | 92.7 | 71.7 | 82.4 |
DeepLabv3+ [40] | 76.0 | 86.2 | 81.2 | 89.3 | 58.7 | 71.5 | 90.3 | 93.2 | 76.6 | 85.1 |
HRNet [41] | 78.2 | 88.5 | 82.4 | 90.4 | 60.2 | 74.3 | 91.2 | 95.3 | 78.0 | 87.1 |
LightNet | 78.7 | 90.7 | 85.3 | 92.5 | 61.4 | 75.6 | 93.0 | 97.2 | 79.6 | 89.0 |
Model | LDRM | MSEM | MCEM | MPA |
---|---|---|---|---|
Model1 | 87.1% | |||
Model2 | √ | 88.2% | ||
Model3 | √ | √ | 88.7% | |
Model4 | √ | √ | √ | 89.0% |
Method | Accuracy |
---|---|
Siam-UNet | 81.2 |
Siam-PSPNet | 75.1 |
Siam-DeepLabv3+ | 84.5 |
Our method | 86.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Xu, M.; Wang, G.; Shi, R.; Xu, Y.; Yan, R. SiameseNet Based Fine-Grained Semantic Change Detection for High Resolution Remote Sensing Images. Remote Sens. 2023, 15, 5631. https://doi.org/10.3390/rs15245631
Zhang L, Xu M, Wang G, Shi R, Xu Y, Yan R. SiameseNet Based Fine-Grained Semantic Change Detection for High Resolution Remote Sensing Images. Remote Sensing. 2023; 15(24):5631. https://doi.org/10.3390/rs15245631
Chicago/Turabian StyleZhang, Lili, Mengqi Xu, Gaoxu Wang, Rui Shi, Yi Xu, and Ruijie Yan. 2023. "SiameseNet Based Fine-Grained Semantic Change Detection for High Resolution Remote Sensing Images" Remote Sensing 15, no. 24: 5631. https://doi.org/10.3390/rs15245631
APA StyleZhang, L., Xu, M., Wang, G., Shi, R., Xu, Y., & Yan, R. (2023). SiameseNet Based Fine-Grained Semantic Change Detection for High Resolution Remote Sensing Images. Remote Sensing, 15(24), 5631. https://doi.org/10.3390/rs15245631