Aboveground Forest Biomass Estimation Using Tent Mapping Atom Search Optimized Backpropagation Neural Network with Landsat 8 and Sentinel-1A Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.3. Landsat 8 Data and Preprocessing
2.4. Synthetic Aperture Radar (SAR) Data and Preprocessing
3. Methods and Modelling
3.1. The Extraction of Feature Variables from Remote Sensing Data
3.2. Important Features Identified for Forest AGB Prediction
3.3. Regression Algorithms
3.3.1. Partial Least Squares Regression
3.3.2. Support Vactor Regression
3.3.3. Random Forest Regression
3.3.4. Tent Mapping Atom Search Optimization BP Neural Network
3.4. Experimental Design and Predictors
3.5. Model Assessment
4. Results
4.1. Variable Selection Result
4.2. Comparison of AGB Experimental Models
4.3. Forest AGB Predictive Mapping and Carbon Storage
5. Discussion
5.1. The Contribution of L8 and S1 Derivatives in the Estimation of AGB
5.2. The Performances of Different Prediction Models with Different Data Inputs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asner, G.P.; Flint Hughes, R.; Varga, T.A.; Knapp, D.E.; Kennedy-Bowdoin, T. Environmental and Biotic Controls over Aboveground Biomass throughout a Tropical Rain Forest. Ecosystems 2009, 12, 261–278. [Google Scholar] [CrossRef]
- Mohammadi, J.; Shataee Joibary, S.; Yaghmaee, F.; Mahiny, A.S. Modelling Forest Stand Volume and Tree Density Using Landsat ETM+ Data. Int. J. Remote Sens. 2010, 31, 2959–2975. [Google Scholar] [CrossRef]
- Gu, Y.; Wylie, B.K. Detecting Ecosystem Performance Anomalies for Land Management in the Upper Colorado River Basin Using Satellite Observations, Climate Data, and Ecosystem Models. Remote Sens. 2010, 2, 1880–1891. [Google Scholar] [CrossRef]
- Kaasalainen, S.; Holopainen, M.; Karjalainen, M.; Vastaranta, M.; Kankare, V.; Karila, K.; Osmanoglu, B. Combining Lidar and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects. Forests 2015, 6, 252–270. [Google Scholar] [CrossRef]
- He, X.Y.; Ren, C.Y.; Chen, L.; Wang, Z.; Zheng, H. The Progress of Forest Ecosystems Monitoring with Remote Sensing Techniques. Sci. Geogr. Sin. 2018, 38, 997–1011. [Google Scholar] [CrossRef]
- Qian, C.; Qiang, H.; Wang, F.; Li, M. Estimation of Forest Aboveground Biomass in Karst Areas Using Multi-Source Remote Sensing Data and the K-DBN Algorithm. Remote Sens. 2021, 13, 5030. [Google Scholar] [CrossRef]
- Amini, J.; Sumantyo, J.T.S. Employing a Method on SAR and Optical Images for Forest Biomass Estimation. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4020–4026. [Google Scholar] [CrossRef]
- Ahmed, R.; Siqueira, P.; Hensley, S. A Study of Forest Biomass Estimates from Lidar in the Northern Temperate Forests of New England. Remote Sens. Environ. 2013, 130, 121–135. [Google Scholar] [CrossRef]
- Moradi, F.; Sadeghi, S.M.M.; Heidarlou, H.B.; Deljouei, A.; Boshkar, E.; Borz, S.A. Above-Ground Biomass Estimation in a Mediterranean Sparse Coppice Oak Forest Using Sentinel-2 Data. Ann. For. Res. 2022, 65, 165–182. [Google Scholar] [CrossRef]
- Ding, L.; Li, Z.; Wang, X.; Yan, R.; Shen, B.; Chen, B.; Xin, X. Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging. Sensors 2019, 19, 5374. [Google Scholar] [CrossRef]
- Shu, Q.; Xi, L.; Wang, K.; Xie, F.; Pang, Y.; Song, H. Optimization of Samples for Remote Sensing Estimation of Forest Aboveground Biomass at the Regional Scale. Remote Sens. 2022, 14, 4187. [Google Scholar] [CrossRef]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.T. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sens. 2016, 8, 70. [Google Scholar] [CrossRef]
- Steininger, M.K. Satellite Estimation of Tropical Secondary Forest Above-Ground Biomass: Data from Brazil and Bolivia. Int. J. Remote Sens. 2000, 21, 1139–1157. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation. Remote Sens. 2016, 8, 469. [Google Scholar] [CrossRef]
- David, R.M.; Rosser, N.J.; Donoghue, D.N. Improving above Ground Biomass Estimates of Southern Africa Dryland Forests by Combining Sentinel-1 SAR and Sentinel-2 Multispectral Imagery. Remote Sens. Environ. 2022, 282, 113232. [Google Scholar] [CrossRef]
- Duncanson, L.I.; Niemann, K.O.; Wulder, M.A. Integration of GLAS and Landsat TM Data for Aboveground Biomass Estimation. Can. J. Remote Sens. 2010, 36, 129–141. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Xing, Y.; Hu, X.; Gong, J. Estimation of the Forest Stand Mean Height and Aboveground Biomass in Northeast China Using SAR Sentinel-1B, Multispectral Sentinel-2A, and DEM Imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 277–289. [Google Scholar] [CrossRef]
- Silveira, E.M.; Radeloff, V.C.; Martinuzzi, S.; Pastur, G.J.M.; Bono, J.; Politi, N.; Lizarraga, L.; Rivera, L.O.; Ciuffoli, L.; Rosas, Y.M. Nationwide Native Forest Structure Maps for Argentina Based on Forest Inventory Data, SAR Sentinel-1 and Vegetation Metrics from Sentinel-2 Imagery. Remote Sens. Environ. 2023, 285, 113391. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Shao, Z.; Jiang, W.; Gao, H. Integrating Sentinel-1 and 2 with LiDAR Data to Estimate Aboveground Biomass of Subtropical Forests in Northeast Guangdong, China. Int. J. Digit. Earth 2023, 16, 158–182. [Google Scholar] [CrossRef]
- Lu, D. The Potential and Challenge of Remote Sensing-based Biomass Estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Li, M. Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China. Forests 2019, 10, 104. [Google Scholar] [CrossRef]
- Nelson, R.; Ranson, K.J.; Sun, G.; Kimes, D.S.; Kharuk, V.; Montesano, P. Estimating Siberian Timber Volume Using MODIS and ICESat/GLAS. Remote Sens. Environ. 2009, 113, 691–701. [Google Scholar] [CrossRef]
- Monnet, J.-M.; Chanussot, J.; Berger, F. Support Vector Regression for the Estimation of Forest Stand Parameters Using Airborne Laser Scanning. IEEE Geosci. Remote Sens. Lett. 2011, 8, 580–584. [Google Scholar] [CrossRef]
- Datta, D.; Dey, M.; Ghosh, P.K.; Neogy, S.; Roy, A.K. Coupling Multi-Sensory Earth Observation Datasets, In-Situ Measurements, and Machine Learning Algorithms for Total Blue C Stock Estimation of an Estuarine Mangrove Forest. For. Ecol. Manag. 2023, 546, 121345. [Google Scholar] [CrossRef]
- Jiang, F.; Zhao, F.; Ma, K.; Li, D.; Sun, H. Mapping the Forest Canopy Height in Northern China by Synergizing ICESat-2 with Sentinel-2 Using a Stacking Algorithm. Remote Sens. 2021, 13, 1535. [Google Scholar] [CrossRef]
- Latifi, H.; Koch, B. Evaluation of Most Similar Neighbour and Random Forest Methods for Imputing Forest Inventory Variables Using Data from Target and Auxiliary Stands. Int. J. Remote Sens. 2012, 33, 6668–6694. [Google Scholar] [CrossRef]
- Persson, H.J.; Jonzen, J.; Nilsson, M. Combining TanDEM-X and Sentinel-2 for Large-Area Species-Wise Prediction of Forest Biomass and Volume. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102275. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R.; Springer Texts in Statistics; Springer: New York, NY, USA, 2013; ISBN 978-1-07-161417-4. [Google Scholar]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine Learning Regression Algorithms for Biophysical Parameter Retrieval: Opportunities for Sentinel-2 and-3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Yang, S.; Feng, Q.; Liang, T.; Liu, B.; Zhang, W.; Xie, H. Modeling Grassland Above-Ground Biomass Based on Artificial Neural Network and Remote Sensing in the Three-River Headwaters Region. Remote Sens. Environ. 2018, 204, 448–455. [Google Scholar] [CrossRef]
- Zhou, R.; Yang, C.; Li, E.; Cai, X.; Wang, X. Aboveground Biomass Estimation of Wetland Vegetation at the Species Level Using Unoccupied Aerial Vehicle RGB Imagery. Front. Plant Sci. 2023, 14, 1181887. [Google Scholar] [CrossRef]
- Yin, J.; Liu, L.; Li, Q. Research on Biomass Inversion Model Based on ASO-BP Neural Network. Value Eng. 2023, 42, 153–155. [Google Scholar]
- Zheng, D.; Heath, L.S.; Ducey, M.J. Forest Biomass Estimated from MODIS and FIA Data in the Lake States: MN, WI and MI, USA. Forestry 2007, 80, 265–278. [Google Scholar] [CrossRef]
- Zhu, Y.; Feng, Z.; Lu, J.; Liu, J. Estimation of Forest Biomass in Beijing (China) Using Multisource Remote Sensing and Forest Inventory Data. Forests 2020, 11, 163. [Google Scholar] [CrossRef]
- Zeng, S.; Liu, R.; Zhu, Q.; He, X.; Li, Z.; Xiang, C.; Yu, G. Discussion on the Formulation of State-Owned Forest Farm Forest Management Plan—A Case Study of the State-Owned Shanxia Experimental Forest Farm in Xinyu. Jiangxi For. Sci. Technol. 2021, 49, 57–62. [Google Scholar] [CrossRef]
- Lei, K.; Zhang, H.; Qiu, H.; Yang, T.; Liu, Y.; Zhang, J.; Hu, X.; Cui, Z. A Novel Strategy for Constructing Large-Scale Forest Scene: Integrating Forest Hierarchical Models and Tree Growth Models to Improve the Efficiency and Stability of Forest Polymorphism Simulation. Forests 2023, 14, 1595. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.; Niu, X.; Song, Q.; Bai, H.; Li, Y.; Luo, J.; Chen, H.; Nie, L.; Luo, Z. Distribution and Eco-Stoichiometry of Carbon and Nitrogen of the Plant-Litter-Soil Continuum in Evergreen Broad-Leaved Forest. Energy Sources Part Recovery Util. Environ. Eff. 2020, 1–12. [Google Scholar] [CrossRef]
- Wu, H.; Lei, J.; Li, X.; Wang, H.; Duan, A.; Zhang, J. Aggregation Distributions across Stand Age in Provenances of Cunninghamia lanceolata (Lamb.) Hook. For. Ecol. Manag. 2021, 494, 119317. [Google Scholar] [CrossRef]
- Luo, Y.J.; Wang, X.K.; Lu, F. Comprehensive Database of Biomass Regressions for China’s Tree Species; China Forestry Publishing House: Beijing, China, 2015. [Google Scholar]
- Hui, G.; Luo, Y.; Zhang, X. Study on Productivity of Chinese Fir Plantation in Dagangshan Hilly Area of Jiangxi. For. Sci. 1989, 25, 564–569. [Google Scholar]
- State Forestry Administration of China (SFAC). Tree Biomass Models and Related Parameters to Carbon Accounting for Schima Superba; State Forestry Administration of China (SFAC): Beijing, China, 2016. [Google Scholar]
- Li, X.; Liu, Q.; Chen, Y.; Hu, L.; Yang, F. Estimation of Aboveground Biomass of Main Tree Species in Qianyanzhou Plantation Forest. J. Appl. Ecol. 2006, 17, 1382–1388. [Google Scholar]
- Huang, T.; Zhong, Q.; Peng, X. Research on Biomass and Productivity of Liriodendron Chinese Plantation. Jiangxi For. Sci. Technol. 2000, 4–9. [Google Scholar] [CrossRef]
- Ouyang, S.; Dai, C.; Hou, Y.; Xu, Y.; Luo, J. Construction of Biomass Model of Main Species in the Shelterbelt around Dongting Lake. Hunan For. Sci. Technol. 2010, 37, 22–24. [Google Scholar]
- Zhong, Q.; Zhang, Z.; Zhang, C.; Zhou, H.; Huang, Z. Analysis of Biomass and Structural Dynamics of Machilus pauhoi Kaneh. J. Jiangxi Agric. Univ. 2001, 23, 533–536. [Google Scholar]
- Wang, J.L.; Wang, X.H.; Yue, C.R.; Cheng, F.; Xu, T.S.; Cheng, P.F.; Wang, X.M.; Gao, Y. Carbon Content Rate in Dominant Species of Four Forest Types in Shangri-La, Northwest Yunnan Province. Ecol. Environ. Sci. 2012, 21, 613–619. [Google Scholar] [CrossRef]
- Deng, Y.; Pan, J.; Wang, J.; Liu, Q.; Zhang, J. Mapping of Forest Biomass in Shangri-La City Based on LiDAR Technology and Other Remote Sensing Data. Remote Sens. 2022, 14, 5816. [Google Scholar] [CrossRef]
- Healey, S.P.; Yang, Z.; Cohen, W.B.; Pierce, D.J. Application of Two Regression-Based Methods to Estimate the Effects of Partial Harvest on Forest Structure Using Landsat Data. Remote Sens. Environ. 2006, 101, 115–126. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, L.; Wang, L. Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5569–5582. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Investigating the Robustness of the New Landsat-8 Operational Land Imager Derived Texture Metrics in Estimating Plantation Forest Aboveground Biomass in Resource Constrained Areas. ISPRS J. Photogramm. Remote Sens. 2015, 108, 12–32. [Google Scholar] [CrossRef]
- Bhatt, C.K.; Nain, A.S. Estimation of Biophysical Parameters of Rice Using Sentinel-1A SAR Data in Udham Singh Nagar (Uttarakhand). Mausam 2021, 72, 739–748. [Google Scholar] [CrossRef]
- Forkuor, G.; Zoungrana, J.-B.B.; Dimobe, K.; Ouattara, B.; Vadrevu, K.P.; Tondoh, J.E. Above-Ground Biomass Mapping in West African Dryland Forest Using Sentinel-1 and 2 Datasets-A Case Study. Remote Sens. Environ. 2020, 236, 111496. [Google Scholar] [CrossRef]
- Kira, K.; Rendell, L.A. The Feature Selection Problem: Traditional Methods and a New Algorithm. In Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, CA, USA, 12–16 July 1992; pp. 129–134. [Google Scholar]
- Pham, M.H.; Do, T.H.; Pham, V.-M.; Bui, Q.-T. Mangrove Forest Classification and Aboveground Biomass Estimation Using an Atom Search Algorithm and Adaptive Neuro-Fuzzy Inference System. PLoS ONE 2020, 15, e0233110. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, H.; Xu, Q. Survival Forest with Partial Least Squares for High Dimensional Censored Data. Chemom. Intell. Lab. Syst. 2018, 179, 12–21. [Google Scholar] [CrossRef]
- Ju, Y.; Ji, Y.; Huang, J.; Zhang, W. Inversion of Forest Aboveground Biomass Using Combination of LiDAR and Multispectral Data. J. Nanjing For. Univ. 2022, 46, 58. [Google Scholar] [CrossRef]
- Wold, S. PLS for Multivariate Linear Modeling. Chemom. Methods Mol. Des. 1995, 195–218. [Google Scholar]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support Vector Regression Machines. Adv. Neural Inf. Process. Syst. 1996, 9. Available online: https://proceedings.neurips.cc/paper_files/paper/1996/hash/d38901788c533e8286cb6400b40b386d-Abstract.html (accessed on 15 October 2023).
- Smola, A.J.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Vapnik, V.; Chapelle, O. Bounds on Error Expectation for Support Vector Machines. Neural Comput. 2000, 12, 2013–2036. [Google Scholar] [CrossRef]
- de Almeida, C.T.; Galvao, L.S.; Ometto, J.P.H.B.; Jacon, A.D.; de Souza Pereira, F.R.; Sato, L.Y.; Lopes, A.P.; de Alencastro Graça, P.M.L.; de Jesus Silva, C.V.; Ferreira-Ferreira, J. Combining LiDAR and Hyperspectral Data for Aboveground Biomass Modeling in the Brazilian Amazon Using Different Regression Algorithms. Remote Sens. Environ. 2019, 232, 111323. [Google Scholar] [CrossRef]
- Wu, N.; Crusiol, L.G.T.; Liu, G.; Wuyun, D.; Han, G. Comparing the Performance of Machine Learning Algorithms for Estimating Aboveground Biomass in Typical Steppe of Northern China Using Sentinel Imageries. Ecol. Indic. 2023, 154, 110723. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. Atom Search Optimization and Its Application to Solve a Hydrogeologic Parameter Estimation Problem. Knowl.-Based Syst. 2019, 163, 283–304. [Google Scholar] [CrossRef]
- Moghadassi, A.R.; Nikkholgh, M.R.; Parvizian, F.; Hosseini, S.M. Estimation of Thermophysical Properties of Dimethyl Ether as a Commercial Refrigerant Based on Artificial Neural Networks. Expert Syst. Appl. 2010, 37, 7755–7761. [Google Scholar] [CrossRef]
- Li, Q. Forest Aboveground Biomass Estimation in Liupan Mountains Based on Multisource Remote Sensing Data. MS Ningxia Univ. 2022. [Google Scholar] [CrossRef]
- Viana, H.; Aranha, J.; Lopes, D.; Cohen, W.B. Estimation of Crown Biomass of Pinus Pinaster Stands and Shrubland Above-Ground Biomass Using Forest Inventory Data, Remotely Sensed Imagery and Spatial Prediction Models. Ecol. Model. 2012, 226, 22–35. [Google Scholar] [CrossRef]
- Byrd, K.B.; O’Connell, J.L.; Di Tommaso, S.; Kelly, M. Evaluation of Sensor Types and Environmental Controls on Mapping Biomass of Coastal Marsh Emergent Vegetation. Remote Sens. Environ. 2014, 149, 166–180. [Google Scholar] [CrossRef]
- Saud, P.; Lynch, T.B.; KC, A.; Guldin, J.M. Using Quadratic Mean Diameter and Relative Spacing Index to Enhance Height–Diameter and Crown Ratio Models Fitted to Longitudinal Data. Forestry 2016, 89, 215–229. [Google Scholar] [CrossRef]
- Georgopoulos, N.; Sotiropoulos, C.; Stefanidou, A.; Gitas, I.Z. Total Stem Biomass Estimation Using Sentinel-1 and-2 Data in a Dense Coniferous Forest of Complex Structure and Terrain. Forests 2022, 13, 2157. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest Aboveground Biomass Estimation Using Landsat 8 and Sentinel-1A Data with Machine Learning Algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef]
- Liu, M.; Popescu, S. Estimation of Biomass Burning Emissions by Integrating ICESat-2, Landsat 8, and Sentinel-1 Data. Remote Sens. Environ. 2022, 280, 113172. [Google Scholar] [CrossRef]
- Andreatta, D.; Gianelle, D.; Scotton, M.; Vescovo, L.; Dalponte, M. Detection of Grassland Mowing Frequency Using Time Series of Vegetation Indices from Sentinel-2 Imagery. GISci. Remote Sens. 2022, 59, 481–500. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite Remote Sensing of Grasslands: From Observation to Management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Gong, J.; Li, S.; Dou, H.; Dang, D.; Xuan, X.; Wang, H. Remote-Sensing Inversion Method for Aboveground Biomass of Typical Steppe in Inner Mongolia, China. Ecol. Indic. 2021, 120, 106883. [Google Scholar] [CrossRef]
- Jiang, F.; Deng, M.; Tang, J.; Fu, L.; Sun, H. Integrating Spaceborne LiDAR and Sentinel-2 Images to Estimate Forest Aboveground Biomass in Northern China. Carbon Balance Manag. 2022, 17, 12. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, L. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China. Sensors 2016, 16, 834. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of Sample Size, Data Type and Prediction Method for Remote Sensing-Based Estimations of Aboveground Forest Biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Krahwinkler, P.; Rossman, J. Using Decision Tree Based Multiclass Support Vector Machines for Forest Mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 307–318. [Google Scholar]
- Han, Y.; Yu, X.; Zhu, P.; Xiao, X.; Wei, M.; Xie, S. A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation. Sensors 2023, 23, 7929. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Wu, T. Estimation of State of Health Based on Charging Characteristics and Back-Propagation Neural Networks with Improved Atom Search Optimization Algorithm. Glob. Energy Interconnect. 2023, 6, 228–237. [Google Scholar] [CrossRef]
- Liu, C.; Li, L.; Qiang, Y.; Zhang, S. Predicting Construction Accidents on Sites: An Improved Atomic Search Optimization Algorithm Approach. Eng. Rep. 2023, e12773. [Google Scholar] [CrossRef]
Species of Trees | Aboveground Biomass Model | Reference |
---|---|---|
Cunninghamia lanceolata | [40] | |
Schima superba | [41] | |
Pinus massoniana | [42] | |
Liriodendron chinense | [43] | |
Liquidambar formosana | [44] | |
Machilus pauhoi Kaneh | [45] | |
Plotted biomass calculation | [39] |
Forest Indicators | Field Sample (n = 50) | ||
---|---|---|---|
Max | Min | Mean | |
Biomass (Mg/ha) | 126.96 | 14.92 | 78.08 |
Mean H (m) | 17.29 | 8.18 | 12.53 |
Mean DBH (cm) | 25.11 | 14.02 | 18.6 |
Tree density (no. trees/ha) | 1244.44 | 111.11 | 711.11 |
Source | Type | Variable | Full Name |
---|---|---|---|
Landsat 8 | Spectral bands | Blue (B2) | |
Green (B3) | |||
Red (B4) | |||
Near-infrared (B5) | |||
SWIRI (B6) | |||
SWIRII (B7) | |||
Spectral indices | NDVI | Normalized difference vegetation index, | |
GRVI | Greenness ratio vegetation index, | ||
DVI | Difference vegetation index, | ||
EVI | Enhanced vegetation index, | ||
SR | Simple ratio vegetation index, | ||
SAVI | Soil-adjusted vegetation index, | ||
OSAVI | Optimized soil regulation vegetation index, | ||
SLAVI | Specific leaf area vegetation index, | ||
Albedo | Surface reflectance, | ||
ARVI | Atmospherically resistant vegetation index, | ||
NDII | Normalized difference infrared index, | ||
PCA | Pca1, Pca2, Pca3, Pca4, Pca5, Pca6, Pca7 | ||
TCB | Tasseled cap brightness | ||
TCG | Tasseled cap greenness | ||
TCW | Tasseled cap wetness | ||
Textural features | ME | Mean, | |
VAR | Variance, | ||
HO | Homogeneity, | ||
CON | Contrast, | ||
DIS | Dissimilarity, | ||
ENT | Entropy, | ||
SM | Second moment, | ||
COR | Correlation, | ||
Sentinel-1A | VV | Vertical transmit–vertical channel | |
VH | Vertical transmit–horizontal channel | ||
VH/VV | Cross-polarized ratio | ||
VH-VV | Polarization difference | ||
VH+VV | Polarization sum |
Experiment | Abbreviation | Description |
---|---|---|
1 | L8 | All spectral bands, vegetation indices, band transformations, and texture features. |
2 | S1 | Polarization bands and corresponding sum, difference, and quotient bands. |
3 | L8-S1 | All obtained L8 and S1 predictors. |
4 | S-L8-S1 | Represents the predictions selected from the L8-S1 dataset using the different filtering rules in Figure 5. |
Data | Algorithm | Features | R2 | RMSE(Mg/ha) | MAE(Mg/ha) |
---|---|---|---|---|---|
L8 | PLSR | 35 | 0.42 | 23.99 | 21.65 |
SVR | 35 | 0.36 | 23.97 | 19.99 | |
RF | 35 | 0.47 | 25.04 | 20.30 | |
Tent_ASO_BP | 35 | 0.50 | 24.61 | 21.44 | |
S1 | PLSR | 5 | 0.37 | 26.29 | 20.99 |
SVR | 5 | 0.29 | 25.56 | 20.47 | |
RF | 5 | 0.33 | 21.54 | 17.42 | |
Tent_ASO_BP | 5 | 0.48 | 25.12 | 20.73 | |
L8-S1 | PLSR | 40 | 0.46 | 25.53 | 23.43 |
SVR | 40 | 0.45 | 16.44 | 13.93 | |
RF | 40 | 0.51 | 20.32 | 16.31 | |
Tent_ASO_BP | 40 | 0.60 | 14.34 | 11.23 | |
S-L8-S1 | PLSR | 23 | 0.50 | 16.52 | 12.15 |
SVR | 14 | 0.52 | 17.66 | 15.11 | |
RF | 14 | 0.54 | 21.33 | 17.35 | |
Tent_ASO_BP | 14 | 0.74 | 11.54 | 9.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Sun, Z.; Zhang, H.; Zhang, H.; Qiu, H. Aboveground Forest Biomass Estimation Using Tent Mapping Atom Search Optimized Backpropagation Neural Network with Landsat 8 and Sentinel-1A Data. Remote Sens. 2023, 15, 5653. https://doi.org/10.3390/rs15245653
Chen Z, Sun Z, Zhang H, Zhang H, Qiu H. Aboveground Forest Biomass Estimation Using Tent Mapping Atom Search Optimized Backpropagation Neural Network with Landsat 8 and Sentinel-1A Data. Remote Sensing. 2023; 15(24):5653. https://doi.org/10.3390/rs15245653
Chicago/Turabian StyleChen, Zhao, Zhibin Sun, Huaiqing Zhang, Huacong Zhang, and Hanqing Qiu. 2023. "Aboveground Forest Biomass Estimation Using Tent Mapping Atom Search Optimized Backpropagation Neural Network with Landsat 8 and Sentinel-1A Data" Remote Sensing 15, no. 24: 5653. https://doi.org/10.3390/rs15245653
APA StyleChen, Z., Sun, Z., Zhang, H., Zhang, H., & Qiu, H. (2023). Aboveground Forest Biomass Estimation Using Tent Mapping Atom Search Optimized Backpropagation Neural Network with Landsat 8 and Sentinel-1A Data. Remote Sensing, 15(24), 5653. https://doi.org/10.3390/rs15245653