GNSS Horizontal Motion Field in the Beijing Plain in View of The Variation Characteristics of The 3D Deformation Field
Abstract
:1. Introduction
2. GNSS Data and Processing
3. Results
3.1. GNSS Monitoring Results
3.2. Verification of GNSS Vertical U Component Results
4. Discussion
4.1. GNSS Velocity Field Time Series Variation Characteristic
4.2. Physical Mechanism of Land Subsidence Affecting GNSS Horizontal Velocity Field
5. Conclusions
- (1)
- Compared to the stable Eurasian framework, the GNSS stations range from −1.32 to 10.41 mm/yr in the E component and from −8.83 to 3.00 mm/yr in the N component, presenting obvious inconsistencies. From 2011 to 2021, there was significant uneven land subsidence in the Beijing Plain area, where the severe land subsidence areas were mainly located at the junction of Chaoyang and Tongzhou, the south of the Changping District, and the north of the Haidian District. The maximum land subsidence rate reached 107 mm/yr during the period of 2017 to 2021.
- (2)
- Land subsidence indeed affects the GNSS horizontal velocity field in the subsidence area; under the EURA_I08 reference frame, the horizontal deformation field in the Beijing Plain area was mainly caused by the tectonic activity-derived overall SEE-direction movement, accompanied by velocity field anomalies caused by local land subsidence.
- (3)
- Due to the implementation of the south-to-north water diversion project and the policy of water control and replenishment, the storage structure of the groundwater in Beijing has changed, and the velocity of local land subsidence has gradually slowed down. With this shift, the horizontal velocities of some GNSS stations located in the subsidence area have gradually tended toward the regional velocity field.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Liu, L.; Cai, Z.; Lin, Y. The space–time references of BeiDou Navigation Satellite System. Satell. Navig. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Cheng, P.; Cheng, Y.; Wang, X.; Xu, Y. Update China geodetic coordinate frame considering plate motion. Satell. Navig. 2021, 2, 1–12. [Google Scholar] [CrossRef]
- HU, S.; Wang, T.; Guan, Y.; Yang, Z. Analyzing the seasonal fluctuation and vertical deformation in Yunnan province based on GPS measurement and hydrological loading model. Chin. J. Geophys. 2021, 64, 2613–2630. [Google Scholar]
- Wang, M.; Shen, Z.K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.D.; Geiger, A.; Kahle, H.G.; Veis, G.; Billiris, H.; Paradissis, D.; Felekis, S. Velocity and deformation fields in the North Aegean domain, Greece, and implications for fault kinematics, derived from GPS data 1993-2009. Tectonophysics 2013, 34–49, 597–598. [Google Scholar] [CrossRef]
- Lazos, I.; Papanikolaou, I.; Sboras, S.; Foumelis, M.; Pikridas, C. Geodetic Upper Crust Deformation Based on Primary GNSS and INSAR Data in the Strymon Basin, Northern Greece—Correlation with Active Faults. Appl. Sci. 2022, 12, 9391. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, H.; Wright, T.J.; Lou, Y.; Zhang, R.; Zhang, W.; Shi, C.; Huang, J.; Wei, N. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J. Geophys. Res. Solid Earth 2017, 122, 9290–9312. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Avouac, J.-P.; Aati, S.; Milliner, C.; Zheng, F.; Shi, C. Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California Shear Zone. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lyu, M.; Chen, K.; Xue, C.; Zang, N.; Zhang, W.; Wei, G. Overall subshear but locally supershear rupture of the 2021 Mw 7.4 Maduo earthquake from high-rate GNSS waveforms and three-dimensional InSAR deformation. Tectonophysics 2022, 839, 229542. [Google Scholar] [CrossRef]
- Chen, K.; Ge, M.; Babeyko, A.; Li, X.; Diao, F.; Tu, R. Retrieving real-time co-seismic displacements using GPS/GLONASS: A preliminary report from the September 2015 M w 8.3 Illapel earthquake in Chile. Geophys. J. Int. 2016, 206, 941–953. [Google Scholar] [CrossRef]
- Wilkinson, M.W.; McCaffrey, K.J.W.; Jones, R.R.; Roberts, G.P.; Holdsworth, R.E.; Gregory, L.C.; Walters, R.J.; Wedmore, L.; Goodall, H.; Iezzi, F. Near-field fault slip of the 2016 Vettore Mw 6.6 earthquake (Central Italy) measured using low-cost GNSS. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sboras, S.; Lazos, I.; Mouzakiotis, E.; Karastathis, V.; Pavlides, S.; Chatzipetros, A. Fault modelling, seismic sequence evolution and stress transfer scenarios for the July 20, 2017 (M W 6.6) Kos–Gökova Gulf earthquake, SE Aegean. Acta Geophys. 2020, 68, 1245–1261. [Google Scholar] [CrossRef]
- Shen, Z.K.; Zhao, C.; Yin, A.; Li, Y.; Jackson, D.D.; Fang, P.; Dong, D. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. J. Geophys. Res. Solid Earth 2000, 105, 5721–5734. [Google Scholar] [CrossRef]
- Wu, B. Research on the characteristics of crustal deformation in Bohai Rim Region. Chin. Acad. Surv. Mapp. 2015, 49–50. [Google Scholar]
- Chen, C. Characteristics of Segmentary Motion and Deformation along the Zhangjiakou-Bohai Fault. Earthquake 2016, 36, 1–11. [Google Scholar]
- Chen, C. Study on Deformation Characteristics and Current Activity State of Crustal Structure in Beijing and Its Adjacent Areas. Institude Earthq. Sci. China Earthq. Adm. 2017. [Google Scholar]
- Lei, K.; Ma, F.; Chen, B.; Luo, Y.; Cui, W.; Liu, H.; Tian, F. The three-dimensional (3D) surface displacement in Beijing plain based on time series InSAR and GPS technologies. J. Eng. Geol. 2022, 30, 417–431. [Google Scholar]
- Zhou, C.; Gong, H.; Chen, B.; Li, X.; Li, J.; Wang, X.; Gao, M.; Si, Y.; Guo, L.; Shi, M. Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain, China with machine learning technology. Geomorphology 2019, 335, 48–61. [Google Scholar] [CrossRef]
- Tian, F.; Guo, M.; Luo, Y.; Zhou, Y.; Jia, S. The deformation behavior of soil mass in the subsidence area of Beijing. Geol. China 2012, 39, 236–242. [Google Scholar]
- Cigna, F.; Tapete, D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sens. Environ. 2021, 253, 112161. [Google Scholar] [CrossRef]
- Sato, H.P.; Abe, K.; Ootaki, O. GPS-measured land subsidence in Ojiya city, Niigata prefecture, Japan. Eng. Geol. 2003, 67, 379–390. [Google Scholar] [CrossRef]
- Baldi, P.; Casula, G.; Cenni, N.; Loddo, F.; Pesci, A. GPS-based monitoring of land subsidence in the Po Plain (Northern Italy). Earth Planet. Sci. Lett. 2009, 288, 204–212. [Google Scholar] [CrossRef]
- Shi, M.; Gong, H.; Gao, M.; Chen, B.; Zhang, S.; Zhou, C. Recent ground subsidence in the North China Plain, China, revealed by sentinel-1A datasets. Remote Sens. 2020, 12, 3579. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Q.; Zhao, C.; Yang, C.; Sun, Q.; Chen, W. Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PS-InSAR technique. Remote Sens. Environ. 2017, 188, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Saleh, M.; Masson, F.; Mohamed, A.-M.S.; Boy, J.-P.; Abou-Aly, N.; Rayan, A. Recent ground deformation around lake Nasser using GPS and InSAR, Aswan, Egypt. Tectonophysics 2018, 744, 310–321. [Google Scholar] [CrossRef]
- Rateb, A.; Abotalib, A.Z. Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. Sci. Total Environ. 2020, 729, 138868. [Google Scholar] [CrossRef]
- Williams, S.D.; Bock, Y.; Fang, P.; Jamason, P.; Nikolaidis, R.M.; Prawirodirdjo, L.; Miller, M.; Johnson, D.J. Error analysis of continuous GPS position time series. J. Geophys. Res. Solid Earth 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Altamimi, Z.; Métivier, L.; Collilieux, X. ITRF2008 plate motion model. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Hu, L.; Dai, K.; Xing, C.; Li, Z.; Tomás, R.; Clark, B.; Shi, X.; Chen, M.; Zhang, R.; Qiu, Q. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101886. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Novali, F.; Prati, C.; Rocca, F. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1685–1701. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, D.; Hooper, A.; Wright, T. A spatially variable power law tropospheric correction technique for InSAR data. J. Geophys. Res. Solid Earth 2015, 120, 1345–1356. [Google Scholar] [CrossRef]
- Bekaert, D.; Walters, R.; Wright, T.; Hooper, A.; Parker, D. Statistical comparison of InSAR tropospheric correction techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Foumelis, M.; Blasco, J.M.D.; Desnos, Y.-L.; Engdahl, M.; Fernández, D.; Veci, L.; Lu, J.; Wong, C. ESA SNAP-StaMPS integrated processing for sentinel-1 persistent scatterer interferometry. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1364–1367. [Google Scholar]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514, 1–13. [Google Scholar] [CrossRef]
- Zhang, S.; Song, M.; Luo, Y.; Lei, K.; Liu, W.; Pang, X. Research on tropospheric correction for time series InSAR. Sci. Surv. Mapp. 2021, 46, 108–117. [Google Scholar]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic atmospheric correction model for interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Lin, X. Stability analysis of Beijing leveling origin. Sci. Surv. Mapp. 1994, 03, 24–27. [Google Scholar]
- Huang, X.; Wang, L.; Xu, J.; Fang, Z. Characteristics of neotectonic movement in Beijing area. Seismol. Geol. 1991, 13, 43–51. [Google Scholar]
- Chen, B.; Gong, H.; Chen, Y.; Li, X.; Zhou, C.; Lei, K.; Zhu, L.; Duan, L.; Zhao, X. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. Sci. Total Environ. 2020, 735, 139111. [Google Scholar] [CrossRef]
- Guo, L.; Gong, H.; Li, J.; Zhu, L.; Xue, A.; Liao, L.; Sun, Y.; Li, Y.; Zhang, Z.; Hu, L. Understanding uneven land subsidence in Beijing, China, using a novel combination of geophysical prospecting and InSAR. Geophys. Res. Lett. 2020, 47, e2020GL088676. [Google Scholar] [CrossRef]
- Rothenburg, L.; Obah, A.; El Baruni, S. Horizontal ground movements due to water abstraction and formation of earth fissures. Int. Assoc. Hydrol. Sci. 1995, 234, 239–249. [Google Scholar]
- Burbey, T.J.; Warner, S.M.; Blewitt, G.; Bell, J.W.; Hill, E. Three-dimensional deformation and strain induced by municipal pumping, part 1: Analysis of field data. J. Hydrol. 2006, 319, 123–142. [Google Scholar] [CrossRef]
- Burbey, T.J. Three-dimensional deformation and strain induced by municipal pumping, Part 2: Numerical analysis. J. Hydrol. 2006, 330, 422–434. [Google Scholar] [CrossRef]
- Liu, H. Horizontal Aquifer Movement Induced from Ground Water Pumping and Its Relation with Ground Fissure; Chang’an University: Chang’an, China, 2021. [Google Scholar]
- Samieie-Esfahany, S.; Hanssen, R.F.; Thienen-Visser, K.; Muntendam-Bos, A. On the effect of horizontal deformation on InSAR subsidence estimates. In Proceedings of the Fringe 2009 Workshop ESA ESRIN, Frascati, Italy, 30 November–4 December 2009; p. 7. [Google Scholar]
- Zhu, L.; Gong, H.; Chen, Y.; Wang, S.; Ke, Y.; Guo, G.; Li, X.; Chen, B.; Wang, H.; Teatini, P. Effects of Water Diversion Project on groundwater system and land subsidence in Beijing, China. Eng. Geol. 2020, 276, 105763. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, B.; Qiao, X.; Ding, K. Block kinematics in North China from GPS measurements. Geochem. Geophys. Geosystems 2022, 23, e2021GC010216. [Google Scholar] [CrossRef]
Station | Base Type | Receiver Type | Antenna Type | Source |
---|---|---|---|---|
BJFS | shale | TRIMBLE NETR8 | TRM59800.00 | IGS |
BJNM | limestone | SEPT POLARX3ETR | NOV702GG | IGS |
CEHY | sandy | TRIMBLE NETR9 | TRM29659.00 | Beijing CORS |
CHAO | sandy | TRIMBLE NETR9 | TRM55971.00 | Beijing CORS |
DAXN | sandy | TRIMBLE NETR5 | TRM41249.00 | Beijing CORS |
DSQI | sandy | TRIMBLE NETR8 | TRM59800.00 | Beijing CORS |
NKYU | granite | TRIMBLE NETR9 | TRM59800.00 | Beijing CORS |
NLSH | clay | TRIMBLE NETR9 | TRM29659.00 | Beijing CORS |
PING | sandy | TRIMBLE NETR8 | TRM59800.00 | Beijing CORS |
SHIJ | sandy | TRIMBLE NETR8 | TRM59800.00 | Beijing CORS |
XIJI | sandy | TRIMBLE NETR5 | TRM41249.00 | Beijing CORS |
CPXT | sandy | TPS LEGACY | TOPCR3_GGD | Beijing Meteorological Administration |
CYLG | sandy | TPS LEGACY | TOPCR3_GGD | Beijing Meteorological Administration |
FSZF | clay | TPS LEGACY | TOPCR3_GGD | Beijing Meteorological Administration |
FTXF | sandy | TPS LEGACY | TOPCR3_GGD | Beijing Meteorological Administration |
HBZS | sandy | TPS LEGACY | TOPCR3_GGD | Beijing Meteorological Administration |
HDBA | sandy | TPS LEGACY | TOPCR3_GGD | Beijing Meteorological Administration |
LLHS | sandy | TPS LEGACY | TOPCR3_GGD | Beijing Meteorological Administration |
SYSG | sandy | TPS LEGACY | TOPCR3_GGD | Beijing Meteorological Administration |
TZMJ | sandy | TPS LEGACY | TOPCR3_GGD | Beijing Meteorological Administration |
TZQX | sandy | TPS LEGACY | TOPCR3_GGD | Beijing Meteorological Administration |
Main Parameters | Solving Strategy |
---|---|
Interval of time | 30 s |
Satellite cutoff altitude angle | 10° |
Baseline processing mode | RELAX |
Observed value | LC-AUTCLN |
Ionospheric delay | The LC observation value was used to eliminate the ionospheric delay. |
Tropospheric delay | The zenith dry delay was calculated by the GPT model. Zenith tropospheric delay is estimated every two hours and two NS and ES gradients are estimated daily. |
Solar pressure model | SPHRC |
Earth tide correction | IERS10 |
Ocean tide correction | FES2004 |
Atmospheric mapping function | VMF1 |
Coordinate reference frame | ITRF2014 |
GNSS measuring station constraints | (N, E, U) 30.00 m 30.00 m 30.00 m |
IGS station constraint | (N, E, U) 0.025 m 0.025 m 0.025 m |
Station | GNSS (mm/yr) | InSAR (mm/yr) | Absolute Error (mm/yr) | Time Span | Number of InSAR Images |
---|---|---|---|---|---|
cylg | −35.439 | −43.220 | 7.781 | 20 May 2017 to 11 January 2021 | 37 |
nlsh | 1.903 | −3.823 | 5.726 | 20 May 2017 to 16 February 2021 | 38 |
sysg | −15.419 | −22.493 | 7.074 | 20 May 2017 to 4 May 2020 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Hu, S.; Wang, T.; Liang, H.; Yang, Z. GNSS Horizontal Motion Field in the Beijing Plain in View of The Variation Characteristics of The 3D Deformation Field. Remote Sens. 2023, 15, 787. https://doi.org/10.3390/rs15030787
Wang J, Hu S, Wang T, Liang H, Yang Z. GNSS Horizontal Motion Field in the Beijing Plain in View of The Variation Characteristics of The 3D Deformation Field. Remote Sensing. 2023; 15(3):787. https://doi.org/10.3390/rs15030787
Chicago/Turabian StyleWang, Jun, Shunqiang Hu, Tan Wang, Hong Liang, and Zhenyu Yang. 2023. "GNSS Horizontal Motion Field in the Beijing Plain in View of The Variation Characteristics of The 3D Deformation Field" Remote Sensing 15, no. 3: 787. https://doi.org/10.3390/rs15030787
APA StyleWang, J., Hu, S., Wang, T., Liang, H., & Yang, Z. (2023). GNSS Horizontal Motion Field in the Beijing Plain in View of The Variation Characteristics of The 3D Deformation Field. Remote Sensing, 15(3), 787. https://doi.org/10.3390/rs15030787