Runoff Responses of Various Driving Factors in a Typical Basin in Beijing-Tianjin-Hebei Area
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Runoff, Runoff Depth and Potential Evaporation
2.3. Climate Impact Based on Budyko Theory
2.4. Geographically and Temporally Weighted Regression
2.5. Gray Correlation Analysis
2.6. Landscape Pattern Indexes
3. Results and Discussion
3.1. Interannual Variation of the Runoff and Runoff Depth
3.2. Spatial Distribution of Runoff and Runoff Depth
3.3. Response of Runoff and Runoff Depth under Land Use Change
3.4. Impacts on Runoff and Runoff Depth from Landscape Pattern
3.5. Influences on Runoff and Runoff Depth from Climate Factors
3.6. Correlation Degrees between Socioeconomic Indicators and Runoff as well as Runoff Depth
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sample, D.J.; Liu, J. Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture. J. Clean. Prod. 2014, 75, 174–194. [Google Scholar] [CrossRef]
- Butt, M.J.; Bilal, M. Application of snowmelt runoff model for water resource management. Hydrol. Process. 2011, 25, 3735–3747. [Google Scholar] [CrossRef]
- Lu, C.; Song, Z.; Wang, W.; Zhang, Y.; Si, H.; Liu, B.; Shu, L. Spatiotemporal variation and long-range correlation of groundwater depth in the Northeast China Plain and North China Plain from 2000~2019. J. Hydrol. Reg. Stud. 2021, 37, 100888. [Google Scholar] [CrossRef]
- Rahmati, O.; Golkarian, A.; Biggs, T.; Keesstra, S.; Mohammadi, F.; Daliakopoulos, I.N. Land subsidence hazard modeling: Machine learning to identify predictors and the role of human activities. J. Environ. Manag. 2019, 236, 466–480. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, G.; Wang, Z.; Liu, C.; Li, Y.; Jiang, X. Study on sustainable utilization of groundwater in North China Plain. Resour. Sci. 2009, 31, 355–360. [Google Scholar]
- Oliveira, K.D.; Tomasella, J.; Del’Arco Sanches, L. Spatial-temporal analysis of the climatic and anthropogenic influences on runoff in the Jucu River Basin, Southeastern Brazil. Land Degrad. Dev. 2019, 30, 2073–2087. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R.S. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag. 2015, 161, 460–468. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Thakur, P.K.; Kumar, P.; Ashraful Alam, M.; Garg, V.; Rousta, I.; Olafsson, H. Decadal Urban Land Use/Land Cover Changes and Its Impact on Surface Runoff Potential for the Dhaka City and Surroundings Using Remote Sensing. Remote Sens. 2020, 13, 83. [Google Scholar] [CrossRef]
- Hosseiny, H.; Crimmins, M.; Smith, V.B.; Kremer, P. A Generalized Automated Framework for Urban Runoff Modeling and Its Application at a Citywide Landscape. Water 2020, 12, 357. [Google Scholar] [CrossRef]
- Boardman, J.; Evans, R. The measurement, estimation and monitoring of soil erosion by runoff at the field scale: Challenges and possibilities with particular reference to Britain. Prog. Phys. Geogr. Earth Environ. 2020, 44, 31–49. [Google Scholar] [CrossRef]
- Love, D.; Uhlenbrook, S.; Corzo-Perez, G.; Twomlow, S.; van der Zaag, P. Rainfall–interception–evaporation–runoff relationships in a semi-arid catchment, northern Limpopo basin, Zimbabwe. Hydrol. Sci. J. 2010, 55, 687–703. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, R.; Liu, C.; Ikeda, K.; Gochis, D.; Yates, D.; Chen, F.; Tewari, M.; Barlage, M.; Dudhia, J.; Yu, W.; et al. High-Resolution Coupled Climate Runoff Simulations of Seasonal Snowfall over Colorado: A Process Study of Current and Warmer Climate. J. Clim. 2011, 24, 3015–3048. [Google Scholar] [CrossRef]
- Yuan, Z.; Pang, Y.; Gao, J.; Liu, X.; Sheng, H.; Zhuang, Y. Improving quantification of rainfall runoff pollutant loads with consideration of path curb and field ridge. Resour. Environ. Sustain. 2021, 6, 100042. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, H.; Chen, B.; Gao, M.; Cao, Q.; Cao, J.; Duan, L.; Zuo, J.; Shi, M. Land Subsidence Response to Different Land Use Types and Water Resource Utilization in Beijing-Tianjin-Hebei, China. Remote Sens. 2020, 12, 457. [Google Scholar] [CrossRef]
- Hunt, A. Soil formation, vegetation growth, and water balance: A theory for Budyko. Hydrogeol. Chem. Weather. Soil Form. 2021, 1, 67–80. [Google Scholar] [CrossRef]
- Pirnia, A.; Golshan, M.; Darabi, H.; Adamowski, J.; Rozbeh, S. Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. J. Water Clim. Chang. 2019, 10, 725–742. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and Temporal Weighted Regression (GTWR). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, A.; Li, J.; Li, F.; Peng, J. Gray Correlation Analysis and Prediction on Permanent Deformation of Subgrade Filled with Construction and Demolition Materials. Materials 2019, 12, 3035. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, L.; Peng, Q.; Li, J.; Liang, T. Effect of environmental factors on soil properties under different land use types in a typical basin of the North China Plain. J. Clean. Prod. 2022, 344, 131084. [Google Scholar] [CrossRef]
- Wei, X.; Sun, H.; Chen, Z.; Li, X.; Wei, H.; Jia, W.; Li, W. Element migration and enrichment characteristics of bedrock–regolith–soil–plant continuum system in the chestnut planting area, Chengde, China. Acta Geochim. 2022, 41, 839–860. [Google Scholar] [CrossRef]
- Wei, M.; Huang, S.; Li, L.; Zhang, T.; Akram, W.; Khatoon, Z.; Renaud, F.G. Evolution of water quality and biota in the Panjiakou Reservoir, China as a consequence of social and economic development: Implications for synergies and trade-offs between Sustainable Development Goals. Sustain. Sci. 2021, 17, 1385–1404. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, T.; Wang, Y.; Shi, Z. Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012. Environ. Impact Assess. Rev. 2015, 55, 45–53. [Google Scholar] [CrossRef]
- Dai, D.; Sun, M.; Lv, X.; Lei, K. Evaluating water resource sustainability from the perspective of water resource carrying capacity, a case study of the Yongding River watershed in Beijing-Tianjin-Hebei region, China. Environ. Sci. Pollut. Res. 2020, 27, 21590–21603. [Google Scholar] [CrossRef]
- Guan, D.; Hubacek, K.; Tillotson, M.; Zhao, H.; Liu, W.; Liu, Z.; Liang, S. Lifting China’s water spell. Environ. Sci. Technol. 2014, 48, 11048–11056. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Shi, C.; Yuan, S.; Shi, C.; Zhao, T. Effects of climate change and human activities on runoff in Luanhe Basin. J. Soil Water Conserv. 2018, 32, 264–269. [Google Scholar]
- Milly, P.C.D.; Dunne, K.A. Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 2020, 367, 1252–1255. [Google Scholar] [CrossRef]
- Milly, P.C.; Dunne, K.A. Potential evaporation and continental drying. Nat. Clim. Chang. 2016, 6, 946–949. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sens. Environ. 2018, 206, 72–83. [Google Scholar] [CrossRef]
- Lu, B.; Harris, P.; Charlton, M.; Brunsdon, C. The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo-Spat. Inf. Sci. 2014, 17, 85–101. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Azzeh, M.; Neagu, D.; Cowling, P.I. Fuzzy grey relational analvsis for software effort estimation. Empir. Softw. Eng. 2010, 15, 60–90. [Google Scholar] [CrossRef]
- Zheng, C.; Li, R.; Hu, M.; Zou, L. Determination of low-temperature crack control parameter of binding asphalt materials based on gray correlation analysis. Constr. Build. Mater. 2019, 217, 226–233. [Google Scholar] [CrossRef]
- Chengde Statistical Bureau. Chengde Statistical Yearbook; China Statistics Press: Beijing, China, 2006–2018.
- Šímová, P.; Gdulová, K. Landscape indices behavior: A review of scale effects. Appl. Geogr. 2012, 34, 385–394. [Google Scholar]
- Kuchma, T.; Tarariko, O.; Syrotenko, O. Landscape Diversity Indexes Application for Agricultural Land Use Optimization. Procedia Technol. 2013, 8, 566–569. [Google Scholar] [CrossRef]
- Rets, E.P.; Durmanov, I.N.; Kireeva, M.B. Peak Runoff in the North Caucasus: Recent Trends in Magnitude, Variation and Timing. Water Resour. 2019, 46, S56–S66. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, F. Abrupt change of runoff and its major driving factors in Haihe River Catchment, China. J. Hydrol. 2009, 374, 373–383. [Google Scholar] [CrossRef]
- Lorente, C.; Causapé, J.; Glud, R.N.; Hancke, K.; Merchán, D.; Muñiz, S.; Val, J.; Navarro, E. Impacts of agricultural irrigation on nearby freshwater ecosystems: The seasonal influence of triazine herbicides in benthic algal communities. Sci. Total Environ. 2015, 503-504, 151–158. [Google Scholar] [CrossRef]
- Men, B.; Liu, H.; Tian, W.; Wu, Z.; Hui, J. The Impact of Reservoirs on Runoff Under Climate Change: A Case of Nierji Reservoir in China. Water 2019, 11, 1005. [Google Scholar] [CrossRef]
- Nyssen, J.; Clymans, W.; Descheemaeker, K.; Poesen, J.; Vandecasteele, I.; Vanmaercke, M.; Zenebe, A.; Van Camp, M.; Haile, M.; Haregeweyn, N.; et al. Impact of soil and water conservation measures on catchment hydrological response—A case in north Ethiopia. Hydrol. Process. 2010, 24, 1880–1895. [Google Scholar] [CrossRef]
- Appels, W.M.; Bogaart, P.W.; van der Zee, S.E. Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity. J. Hydrol. 2016, 534, 493–504. [Google Scholar] [CrossRef]
- Mahmoud, S.H. Investigation of rainfall–runoff modeling for Egypt by using remote sensing and GIS integration. Catena 2014, 120, 111–121. [Google Scholar] [CrossRef]
- Muñoz-Villers, L.E.; McDonnell, J.J. Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrol. Earth Syst. Sci. 2013, 17, 3543–3560. [Google Scholar] [CrossRef]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef]
- Alaoui, A.; Caduff, U.; Gerke, H.H.; Weingartner, R. Preferential Flow Effects on Infiltration and Runoff in Grassland and Forest Soils. Vadose Zone J. 2011, 10, 367–377. [Google Scholar] [CrossRef]
- Dunnett, N.; Nagase, A.; Booth, R.; Grime, P. Influence of vegetation composition on runoff in two simulated green roof experiments. Urban Ecosyst. 2008, 11, 385–398. [Google Scholar] [CrossRef]
- Silva, L.L. Are basin and reservoir tillage effective techniques to reduce runoff under sprinkler irrigation in Mediterranean conditions? Agric. Water Manag. 2017, 191, 50–56. [Google Scholar] [CrossRef]
- Hümann, M.; Schüler, G.; Müller, C.; Schneider, R.; Johst, M.; Caspari, T. Identification of runoff processes—The impact of different forest types and soil properties on runoff formation and floods. J. Hydrol. 2011, 409, 637–649. [Google Scholar] [CrossRef]
- Brauman, K.A.; Freyberg, D.L.; Daily, G.C. Forest structure influences on rainfall partitioning and cloud interception: A comparison of native forest sites in Kona, Hawai’i. Agric. For. Meteorol. 2010, 150, 265–275. [Google Scholar] [CrossRef]
- Tian, T.; Mou, F.; Wang, J.; Zhao, L.; Chen, L.; Li, Q. Impact of land use change on surface runoff in the main urban area of Chongqing. Res. Soil Water Conserv. 2021, 28, 128–135. [Google Scholar]
- Singh, R.J.; Deshwal, J.; Sharma, N.; Ghosh, B.; Bhattacharyya, R. Effects of conservation tillage based agro-geo-textiles on resource conservation in sloping croplands of Indian Himalayan Region. Soil Tillage Res. 2019, 191, 37–47. [Google Scholar] [CrossRef]
- Ly, A.; Marsman, M.; Wagenmakers, E.J. Analytic posteriors for Pearson’s correlation coefficient. Stat. Neerl. 2018, 72, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fan, W.; Li, Y.; Yi, Y. The influence of changes in land use and landscape patterns on soil erosion in a watershed. Sci. Total Environ. 2017, 574, 34–45. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Wu, B. Changes of the wetland landscape and the consequent impacts on the waterbirds in Western Songnen plain. Procedia Environ. Sci. 2011, 10, 2608–2613. [Google Scholar]
- Zhang, Y.; Bi, Z.; Zhang, X.; Yu, Y. Influence of Landscape Pattern Changes on Runoff and Sediment in the Dali River Watershed on the Loess Plateau of China. Land 2019, 8, 180. [Google Scholar] [CrossRef]
- Zhang, N.; Luo, Y.-J.; Chen, X.-Y.; Li, Q.; Jing, Y.-C.; Wang, X.; Feng, C.-H. Understanding the effects of composition and configuration of land covers on surface runoff in a highly urbanized area. Ecol. Eng. 2018, 125, 11–25. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, H. The Role of Spatial Patterns of Low Impact Development in Urban Runoff Pollution Control within Parcel Based Catchments. Front. Environ. Sci. 2022, 10, 989. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, C.; Wang, C.; Shan, P.; Zhang, Y.; Wu, G. Ecosystem health assessment of the Liao River Basin upstream region based on ecosystem services. Acta Ecol. Sin. 2016, 36, 294–300. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; Potter, N.J.; Vaze, J.; Petheram, C.; Zhang, L.; Teng, J.; Post, D.A. Observed hydrologic non-stationarity in far south-eastern Australia: Implications for modelling and prediction. Stoch. Environ. Res. Risk Assess. 2014, 28, 3–15. [Google Scholar] [CrossRef]
- Miao, C.; Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Duan, Q. Evaluation of the PERSIANN-CDR Daily Rainfall Estimates in Capturing the Behavior of Extreme Precipitation Events over China. J. Hydrometeorol. 2015, 16, 1387–1396. [Google Scholar] [CrossRef]
- Potter, N.J.; Chiew, F.H.S. An investigation into changes in climate characteristics causing the recent very low runoff in the southern Murray-Darling Basin using rainfall-runoff models. Water Resour. Res. 2011, 47, W00G10. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Peel, M.C.; McMahon, T.A.; Finlayson, B.L. Vegetation impact on mean annual evaporation at a global catchment scale. Water Resour. Res. 2010, 46, W09508. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Larsen, J.R.; Van Emmerik, T.H.M.; Woods, R.A. A Global Assessment of Runoff Sensitivity to Changes in Precipitation, Potential Evaporation, and Other Factors. Water Resour. Res. 2017, 53, 8475–8486. [Google Scholar] [CrossRef] [Green Version]
- Trancoso, R.; Larsen, J.R.; McAlpine, C.; McVicar, T.R.; Phinn, S. Linking the Budyko framework and the Dunne diagram. J. Hydrol. 2016, 535, 581–597. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Assessing the differences in sensitivities of runoff to changes in climatic conditions across a large basin. J. Hydrol. 2011, 406, 234–244. [Google Scholar] [CrossRef]
- Liu, Q.; McVicar, T.R. Assessing climate change induced modification of Penman potential evaporation and runoff sensitivity in a large water-limited basin. J. Hydrol. 2012, 464, 352–362. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, J.; Bao, Z.; Liu, C.; Jin, J.; Wang, G. Past variations and future projection of runoff in typical basins in 10 water zones, China. Sci. Total Environ. 2021, 798, 149277. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, J.-H.; Li, W.; Yang, P.; Cao, Y. Exploring the impact of green space health on runoff reduction using NDVI. Urban For. Urban Green. 2017, 28, 81–87. [Google Scholar] [CrossRef]
- Schoener, G. Urban Runoff in the U.S. Southwest: Importance of Impervious Surfaces for Small-Storm Hydrology. J. Hydrol. Eng. 2018, 23, 05017033. [Google Scholar] [CrossRef]
- Miller, J.D.; Hess, T. Urbanisation impacts on storm runoff along a rural-urban gradient. J. Hydrol. 2017, 552, 474–489. [Google Scholar] [CrossRef]
- Chen, S.; Liu, F.; Zhang, Z.; Zhang, Q.; Wang, W. Changes of groundwater flow field of Luanhe River Delta under the human activities and its impact on the ecological environment in the past 30 years. China Geol. 2021, 4, 455–462. [Google Scholar] [CrossRef]
- Bhave, A.G.; Conway, D.; Dessai, S.; Stainforth, D.A. Water Resource Planning Under Future Climate and Socioeconomic Uncertainty in the Cauvery River Basin in Karnataka, India. Water Resour. Res. 2018, 54, 708–728. [Google Scholar] [CrossRef]
- Willuweit, L.; O’Sullivan, J.J.; Shahumyan, H. Simulating the effects of climate change, economic and urban planning scenarios on urban runoff patterns of a metropolitan region. Urban Water J. 2016, 13, 803–818. [Google Scholar] [CrossRef]
Period | Land Use | Forest | Grassland | Cropland | Water | Artificial Surface | Barren | Total |
---|---|---|---|---|---|---|---|---|
2006–2010 | Forest | 22,127.48 | 4.72 | 34.20 | 0 | 14.11 | 0 | 22,180.50 |
Grassland | 503.46 | 9932.74 | 203.41 | 1.03 | 13.06 | 0.19 | 10,653.88 | |
Cropland | 194.50 | 379.33 | 5674.73 | 3.65 | 53.33 | 0 | 6305.54 | |
Water | 0.71 | 0.58 | 2.40 | 38.28 | 0.58 | 0.01 | 42.55 | |
Artificial surface | 0 | 0 | 0.02 | 1.99 | 364.53 | 0 | 366.54 | |
Barren | 0 | 0.16 | 0.01 | 0 | 0.02 | 0.22 | 0.41 | |
Total | 22,826.14 | 10,317.53 | 5914.77 | 44.96 | 445.62 | 0.42 | 3.95 × 104 | |
2010–2014 | Forest | 22,695.19 | 4.29 | 103.24 | 0 | 23.42 | 0 | 22,826.14 |
Grassland | 678.09 | 9381.43 | 241.04 | 1.21 | 15.58 | 0.17 | 10,317.53 | |
Cropland | 132.75 | 351.84 | 5364.74 | 5.20 | 60.24 | 0 | 5914.77 | |
Water | 0.15 | 0.61 | 2.04 | 41.36 | 0.80 | 0.01 | 44.96 | |
Artificial surface | 0 | 0 | 0.01 | 1.10 | 444.51 | 0 | 445.62 | |
Barren | 0 | 0.11 | 0.03 | 0 | 0.03 | 0.26 | 0.42 | |
Total | 23,506.18 | 9738.29 | 5711.09 | 48.86 | 544.57 | 0.44 | 3.95 × 104 | |
2014–2018 | Forest | 22,425.79 | 707.75 | 337.14 | 1.47 | 28.74 | 0.06 | 23,506.18 |
Grassland | 1535.05 | 7584.94 | 586.16 | 1.47 | 27.07 | 0.66 | 9738.29 | |
Cropland | 233.04 | 316.19 | 5056.18 | 4.67 | 100.10 | 0.03 | 5711.09 | |
Water | 1.36 | 0.88 | 3.17 | 42.27 | 1.14 | 0.03 | 48.86 | |
Artificial surface | 9.87 | 9.70 | 49.20 | 1.39 | 474.32 | 0.03 | 544.57 | |
Barren | 0.03 | 0.12 | 0.02 | 0 | 0.03 | 0.23 | 0.44 | |
Total | 24,205.90 | 8620.01 | 6031.99 | 51.27 | 631.41 | 1.05 | 3.95 × 104 |
Landscape Pattern Index | Runoff | Runoff Depth |
---|---|---|
NP | 0.113 | −0.120 |
PD | 0.247 * | −0.106 |
LPI | 0.161 | 0.343 ** |
ED | −0.0938 | −0.396 *** |
LSI | −0.0878 | −0.266 * |
SHAPE_MN | −0.328 ** | −0.233 * |
ENN_MN | −0.0666 | 0.389 *** |
CONTAG | 0.179 | 0.367 ** |
COHESION | 0.216 | 0.212 |
SHDI | −0.185 | −0.344 ** |
AI | 0.0983 | 0.401 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Liu, S.; Guo, Y.; Liu, X. Runoff Responses of Various Driving Factors in a Typical Basin in Beijing-Tianjin-Hebei Area. Remote Sens. 2023, 15, 1027. https://doi.org/10.3390/rs15041027
Feng Z, Liu S, Guo Y, Liu X. Runoff Responses of Various Driving Factors in a Typical Basin in Beijing-Tianjin-Hebei Area. Remote Sensing. 2023; 15(4):1027. https://doi.org/10.3390/rs15041027
Chicago/Turabian StyleFeng, Zhaohui, Siyang Liu, Yikai Guo, and Xiaojie Liu. 2023. "Runoff Responses of Various Driving Factors in a Typical Basin in Beijing-Tianjin-Hebei Area" Remote Sensing 15, no. 4: 1027. https://doi.org/10.3390/rs15041027
APA StyleFeng, Z., Liu, S., Guo, Y., & Liu, X. (2023). Runoff Responses of Various Driving Factors in a Typical Basin in Beijing-Tianjin-Hebei Area. Remote Sensing, 15(4), 1027. https://doi.org/10.3390/rs15041027