Combining Remote Sensing Approaches for Detecting Marks of Archaeological and Demolished Constructions in Cahokia’s Grand Plaza, Southwestern Illinois
Abstract
:1. Introduction
- How can standalone approaches be successfully combined to develop a practical, supported procedure for the capture and representation of archaeological data?
- What are the merits and limitations of individual sensors in observing and detecting archaeological sites?
- Which remote sensing combination approaches provide the most LOD in comparison to standalone approaches?
2. Materials and Methods
2.1. Study Area: Cahokia’s Grand Plaza
- This case study is an extension of the existing study led by researchers Vilbig et al. (2020) [2] at Saint Louis University. They compared the analysis of standalone approaches (LiDAR and photogrammetry) at Cahokia Mounds and found that the digital models derived from photogrammetry provided comparable archaeological detail to LiDAR data. Testing the proposed method (standalone and integration/fusion approaches) of this study and comparing the findings with previous studies is vital to obtaining more archaeological data from the study area;
- The ancient city of Cahokia was abandoned in the 1400s and the reasons are still ambiguous as there are no contemporaneous records from this area. All the information received for this particular site is based on archaeologists’ hypotheses. Additionally, the outcomes of employing various remote sensing approaches are likely to suggest insights into appropriate applications for revealing new archaeological information.
2.2. Remote Sensing Data Acquisition
2.2.1. LiDAR Datasets
2.2.2. Photogrammetric Datasets
2.3. Standalone Detection Approaches
2.4. Combination Detection Approaches
2.4.1. Data Integration from the Same Sensor
2.4.2. Data Integration and Fusion from Different Sensors
3. Results
3.1. Standalone Approach Results
3.2. Combination Approach Results
4. Discussion
4.1. Standalone Data Outcomes
4.2. Combination Data Outcomes
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Standalone Raster (m2) | RRIM (m2) | Fused Data (m2) | Integrated Hillshade (m2) | Integrated Gradient (m2) | Integrated SVF (m2) | SVShad (I) (m2) | SVShad (II) (m2) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hillshade | Gradient | SVF | ||||||||||||
ID | SfM | LiDAR | SfM | LiDAR | SfM | LiDAR | SfM | LiDAR | ||||||
Md 48 | 11,755.7 | 11,756.4 | 11,761.6 | 11,758.8 | 11,753.4 | 11,760.8 | 11,759.83 | 11,756.39 | 11,755.4 | 11,757.8 | 11,759.6 | 11,753.5 | 11,751.56 | 11,757.11 |
Md 49 | 1335.94 | 1330.09 | 1329.58 | 1327.42 | 1329.39 | 1325.82 | 1315.53 | 1331.53 | 1335.78 | 1335.75 | 1331.06 | 1338.9 | 1339.69 | 1335.11 |
Md 50 | 1325.85 | 1319.14 | 1328.67 | 1314.38 | 1320 | 1319.96 | 13,485.75 | 1312.83 | 1321.10 | 1327.64 | 1324.96 | 1323.9 | 1327.95 | 1330.68 |
Md 51 | 1265.56 | 1256.5 | 1260.1 | 1263.45 | 1261.55 | 1257.93 | 1258.39 | 1265.72 | 1262.08 | 1261.37 | 1261.92 | 1265.9 | 1264.96 | 1265.67 |
Md 54 | 653.91 | 655.85 | 657.74 | 660.38 | 656.3 | 665.66 | 649.73 | 653.83 | 655.79 | 649.58 | 657.2 | 653.5 | 651.87 | 657.52 |
Md 55 | 1989.63 | 1977.56 | 1983.56 | 1985.21 | 1987.22 | 1987.8 | 1983.47 | 1984.29 | 1983.92 | 1985.39 | 1980.73 | 1980.7 | 1988.34 | 1987.25 |
Md 56 | 2621.85 | 2630.23 | 2626.56 | 2624.97 | 2630.88 | 2627.99 | 2637.94 | 2632.75 | 2635.33 | 2639.97 | 2633.07 | 2637.7 | 2635.34 | 2639.53 |
Md 57 | 953.85 | 955.63 | 951.45 | 955.88 | 950.57 | 950.71 | 950.39 | 955.02 | 953.73 | 952.47 | 959.29 | 957.9 | 954.78 | 955.19 |
Md 59 | 5921.46 | 5923.49 | 5926.38 | 5930.82 | 5935.58 | 5935.21 | 5936.37 | 5939.83 | 5939.65 | 5938.27 | 5936.97 | 5933.5 | 5935.94 | 5935.11 |
Md 60 | 7137.74 | 7139.11 | 7140.56 | 7147.69 | 7150.85 | 7143.11 | 7152.49 | 7159.37 | 7149.29 | 7150.97 | 7153.62 | 7153.1 | 7153.28 | 7152.7 |
Md 61 | 1475.32 | 1467.68 | 1477.48 | 1477.83 | 1478.79 | 1475.24 | 1479.39 | 1472.79 | 1475.06 | 1472.36 | 1475.82 | 1471.2 | 1472.85 | 1470.68 |
Building | 2275.37 | 2289.79 | 2276.72 | 2273.82 | 2271.83 | n/a | 2271.31 | 2276.48 | 2270.78 | 2273.93 | 2271.01 | 2272.1 | 2272.59 | 2270.75 |
Museum | 4218.34 | 4203.77 | 4215.12 | 4211.63 | 4212.55 | 4210.32 | 4207.35 | 4215.58 | 4212.67 | 4211.5 | 4211.74 | 4215.4 | 4213.46 | 4217.39 |
I | 1814.81 | n/a | n/a | n/a | n/a | n/a | 1811.28 | n/a | n/a | 1811.46 | n/a | n/a | 1821.20 | 1819.58 |
II | 1832.03 | 1814.59 | n/a | n/a | 1831.3 | n/a | 1827.53 | 1825.6 | 1829.79 | 1823.82 | 1836.63 | n/a | 1822.19 | 1822.92 |
III | 2059.66 | 2059.26 | 2060.14 | 2061.25 | 2063.85 | 2068.75 | 2069.03 | 2059.26 | 2061.03 | 2063.82 | 2057.39 | 2065.8 | 2063.39 | 2061.82 |
IV | 1985.94 | 1976.14 | n/a | n/a | 1984.18 | n/a | 1989.72 | n/a | 1963.62 | 1988.97 | 1986.97 | 1980.8 | 1988.05 | 1985.47 |
V | 1971.27 | n/a | n/a | n/a | 1932.46 | n/a | 1949.84 | 1949.56 | 1962.86 | 1975.55 | 1978.75 | 1953.6 | 1975.32 | 1977.94 |
VI | 1936.01 | 1941.85 | n/a | n/a | n/a | n/a | 1947.23 | 1946.42 | 1938.27 | 1946.39 | 1940.7 | 1940.50 | 1941.98 | 1943.11 |
VII | 1720.62 | 1748.25 | n/a | n/a | n/a | n/a | 1722.95 | n/a | n/a | 1719.36 | n/a | n/a | 1719.27 | 1723.07 |
VIII | 2157.7 | 2127.64 | n/a | n/a | n/a | n/a | 2160.32 | n/a | n/a | 2157.43 | n/a | 2158.6 | 2159.83 | 2159.16 |
IX | 1676.13 | 1699.96 | 1669.96 | n/a | n/a | n/a | 1673.39 | n/a | 1659.57 | 1668.94 | 1680.02 | 1672.33 | 1673.84 | 1675.38 |
X | 2536.1 | 2534.94 | 2538.12 | n/a | n/a | n/a | 2548.67 | n/a | n/a | 2522.8 | n/a | 2547.98 | 2530.10 | 2525.79 |
XI | n/a | n/a | n/a | n/a | n/a | n/a | 1727.88 | n/a | n/a | 1726.31 | n/a | n/a | 1726.96 | 1727.26 |
XII | 2041.02 | 2016.46 | n/a | n/a | n/a | n/a | 2048.69 | n/a | n/a | n/a | n/a | n/a | 2055.50 | 2052.68 |
XIII | 2127.6 | 2195.82 | n/a | n/a | n/a | n/a | 2132.14 | 2123.24 | n/a | n/a | n/a | 2124.37 | 2124.42 | 2122.83 |
XIV | 1782.86 | 1775.3 | n/a | 1789.29 | 1788.37 | n/a | 1786.56 | n/a | 1785.56 | 1788.32 | n/a | n/a | 1789.57 | 1789.20 |
XV | 2073.61 | 2068.5 | n/a | n/a | 2074.99 | n/a | 2075.84 | 2073.13 | n/a | 2072.1 | n/a | 2065.3 | 2067.92 | 2069.49 |
XVI | 1933.42 | 1932.31 | n/a | n/a | 1942.19 | n/a | 1942.65 | n/a | n/a | 1929.79 | n/a | n/a | 1939.52 | 1935.23 |
XVII | 2177.45 | 2162.31 | n/a | n/a | 2177.26 | 2174.89 | 2175.87 | n/a | n/a | 2163.15 | n/a | 2170.2 | 2169.38 | 2168.53 |
XVIII | 1643.08 | 1662.08 | n/a | n/a | 1645.89 | n/a | 1644.87 | n/a | n/a | 1635.14 | 2000.62 | 1643.3 | 1649.29 | 1650.69 |
XIX | 2569.58 | 2589.17 | 2569.09 | n/a | 2570.25 | n/a | 2571 | n/a | n/a | 2548.29 | 2569.0 | 2551.82 | 2549.23 | |
XX | 3897.08 | 3987.22 | 3909.86 | 3893.91 | 3902.63 | 3889.03 | 3903.71 | 3889.25 | 3970.69 | 3976.8 | 3979.78 | 3975.1 | 3985.71 | 3980.5 |
XXI | n/a | n/a | n/a | n/a | n/a | n/a | 2217.78 | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
XXII | 4309.49 | n/a | n/a | 4318.24 | n/a | n/a | 4316.92 | n/a | n/a | 4327.83 | n/a | n/a | n/a | 4311.62 |
XXIII | 2077.23 | n/a | n/a | n/a | n/a | n/a | 2086.45 | n/a | n/a | n/a | n/a | n/a | 2076.11 | 2075.83 |
XXIV | 4310.1 | n/a | n/a | n/a | 4307.02 | n/a | 4328.57 | 4338.37 | n/a | 4349.57 | n/a | 4332.9 | 4319.25 | 4312.57 |
XXV | n/a | n/a | n/a | n/a | n/a | n/a | 1266.55 | 1272.83 | n/a | n/a | n/a | n/a | n/a | n/a |
XXVI | n/a | n/a | n/a | n/a | n/a | n/a | 2050.58 | n/a | n/a | 2074.33 | n/a | n/a | n/a | n/a |
XXVII | 1895.02 | n/a | n/a | n/a | n/a | n/a | 1897.49 | 1896.07 | n/a | 1892.54 | n/a | n/a | n/a | 1897.76 |
XXVIII | 2506.7 | 2498.62 | n/a | 2499.49 | 2475.38 | 2493.92 | 2548.21 | 2546.82 | n/a | 2539.03 | n/a | 2462.9 | 2505.19 | 2500.93 |
XXIX | 2097.86 | 2097.86 | 2078.82 | 2078.82 | 2080.48 | 2076.78 | 2093.38 | 2088.06 | 2087.15 | 2092.99 | 2097.15 | 2088.4 | 2089.99 | 2090.29 |
XXX | 5646.28 | 5657.59 | 5642.6 | 5644.2 | 5666.71 | 5644.32 | 5658.63 | 5636.36 | 5657.36 | 5651.56 | 5649.53 | 5652.3 | 5650.23 | 5647.01 |
XXXI | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 2069.36 | n/a | 2075.07 | n/a | 2065.7 | 2071.18 | 2071.95 |
XXXII | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 2332.05 | 2327.72 | n/a | 2332.38 | 2330.46 |
XXXIII | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 1621.17 | n/a | n/a | n/a | n/a |
XXXIV | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 1227.35 | 1233.76 | n/a | 1226.82 | 1229.91 |
XXXV | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 790.53 | n/a | n/a | n/a |
References
- Neubauer, W. GIS in archaeology—The interface between prospection and excavation. Archaeol. Prospect. 2004, 11, 159–166. [Google Scholar] [CrossRef]
- Vilbig, J.M.; Sagan, V.; Bodine, C. Archaeological surveying with airborne LiDAR and UAV photogrammetry: A comparative analysis at Cahokia Mounds. J. Archaeol. Sci. Rep. 2020, 33, 102509. [Google Scholar] [CrossRef]
- Remondino, F.; Campana, S. 3D Recording and Modelling in Archaeology and Cultural Heritage. BAR Int. Ser. 2014, 2598, 111–127. [Google Scholar]
- Huggett, J. The Apparatus of Digital Archaeology. Internet Archaeol. 2017, 44. [Google Scholar] [CrossRef]
- Remondino, F. Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef] [Green Version]
- Pavelka, K.; Šedina, J.; Matoušková, E.; Faltýnová, M.; Hlaváčova, I. Using Remote Sensing and RPAS For Archaeology and Monitoring In Western Greenland. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 979–983. [Google Scholar] [CrossRef] [Green Version]
- Campana, S. Drones in Archaeology. State-of-the-art and Future Perspectives. Archaeol. Prospect. 2017, 296, 275–296. [Google Scholar] [CrossRef]
- Trier, Ø.D.; Cowley, D.C.; Waldeland, A.U. Using deep neural networks on airborne laser scanning data: Results from a case study of semi—Automatic mapping of archaeological topography on Arran, Scotland. Archaeol. Prospect. 2019, 26, 165–175. [Google Scholar] [CrossRef]
- Garcia-Molsosa, A.; Orengo, H.A.; Lawrence, D.; Philip, G.; Hopper, K.; Petrie, C.A. Potential of deep learning segmentation for the extraction of archaeological features from historical map series. Archaeol. Prospect. 2021, 28, 187–199. [Google Scholar] [CrossRef]
- Guyot, A.; Lennon, M.; Lorho, T.; Hubert-Moy, L. Combined Detection and Segmentation of Archeological Structures from LiDAR Data Using a Deep Learning Approach. J. Comput. Appl. Archaeol. 2021, 4. [Google Scholar] [CrossRef]
- Barnes, I. Aerial Remote-sensing Techniques Used in the Management of Archaeological Monuments on the British Army’s Salisbury Plain Training Area, Wiltshire, UK. Archaeol. Prospect. 2003, 10, 83–90. [Google Scholar] [CrossRef]
- Bewley, R.H. Aerial survey for archaeology. Photogramm. Rec. 2003, 18, 273–292, 2003. [Google Scholar] [CrossRef] [Green Version]
- Kucukkaya, A.G. Photogrammetry and remote sensing in archeology. J. Quant. Spectrosc. Radiat. Transf. 2004, 88, 83–88. [Google Scholar] [CrossRef]
- Nuttens, T.; De Maeyer, P.; De Wulf, A.; Goossens, R.; Stal, C. Comparison of 3D Accuracy of Terrestrial Laser Scanning and Digital Photogrammetry: An Archaeological Case Study. In Proceedings of the 31st EARSeL Symposium: Remote Sensing and Geoinformation Not Only for Scientific Cooperation, Prague, Czech Republic, 30 May–2 June 2011; pp. 66–74. [Google Scholar]
- Yurtseven, H. Comparison of GNSS, TLS and Different Altitude UAV-Generated Datasets on The Basis of Spatial Differences. ISPRS Int. J. Geo-Inf. 2019, 8, 175. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Li, W.; Lai, S.; Zhu, L.; Jiang, W.; Zhang, Q. The integration of terrestrial laser scanning and terrestrial and unmanned aerial vehicle digital photogrammetry for the documentation of Chinese classical gardens—A case study of Huanxiu. J. Cult. Herit. 2018, 33, 222–230. [Google Scholar] [CrossRef]
- Filzwieser, R.; Olesen, L.H.; Verhoeven, G.; Mauritsen, E.S.; Neubauer, W.; Trinks, I.; Nowak, M.; Nowak, R.; Schneidhofer, P.; Nau, E.; et al. Integration of Complementary Archaeological Prospection Data from a Late Iron Age Settlement at Vesterager—Denmark. J. Archaeol. Method Theory. 2018, 25, 313–333. [Google Scholar] [CrossRef]
- Luhmann, T.; Chizhova, M.; Gorkovchuk, D. Fusion of UAV and Terrestrial Photogrammetry with Laser Scanning for 3D Reconstruction of Historic Churches in Georgia. Drones 2020, 4, 53. [Google Scholar] [CrossRef]
- Hatzopoulos, J.N.; Stefanakis, D.; Georgopoulos, A.; Tapinaki, S.; Pantelis, V.; Liritzis, I. Use of various surveying technologies to 3D digital mapping and modelling of cultural heritage structures for maintenance and restoration purposes: The Tholos in Delphi, Greece. Mediterr. Archaeol. Archaeom. 2017, 17, 311–336. [Google Scholar] [CrossRef]
- Dostal, C.; Yamafune, K. Photogrammetric texture mapping: A method for increasing the Fidelity of 3D models of cultural heritage materials. J. Archaeol. Sci. Rep. 2018, 18, 430–436. [Google Scholar] [CrossRef]
- Orengo, H.A.; Krahtopoulou, A.; Garcia-Molsosa, A.; Palaiochoritis, K.; Stamati, A. Photogrammetric re-discovery of the hidden long-term landscapes of western Thessaly, central Greece. J. Archaeol. Sci. 2015, 64, 100–109. [Google Scholar] [CrossRef]
- Kadhim, I.; Abed, F.M. Investigating the old city of Babylon: Tracing buried structural history based on photogrammetry and integrated approaches. In Earth Resources and Environmental Remote Sensing/GIS Applications XII; SPIE: Bellingham, DC, USA, 2021; Volume 11863, pp. 75–90. [Google Scholar] [CrossRef]
- Kokalj, Ž.; Somrak, M. Why not a single image? Combining visualizations to facilitate fieldwork and on-screen mapping. Remote Sens. 2019, 11, 747. [Google Scholar] [CrossRef] [Green Version]
- Jaber, A.; Abed, F. The Fusion of Laser Scans and Digital Images for Effective Cultural Heritage Conservation. Master’s Thesis, University of Baghdad, Baghdad, Iraq, 2020. [Google Scholar]
- Inomata, T.; Pinzón, F.; Ranchos, J.L.; Haraguchi, T.; Nasu, H.; Fernandez-Diaz, J.C.; Aoyama, K.; Yonenobu, H. Archaeological application of Airborne LiDAR with object-based vegetation classification and visualization techniques at the lowland Maya Site of Ceibal, Guatemala. Remote Sens. 2017, 9, 563. [Google Scholar] [CrossRef] [Green Version]
- Bennett, R.; Welham, K.; Hill, R.A.; Ford, A. A Comparison of Visualization Techniques for Models Created from Airborne Laser Scanned Data. Archaeol. Prospect. 2012, 19, 41–48. [Google Scholar] [CrossRef]
- Tzvetkov, J. Relief visualization techniques using free and open source GIS tools. Pol. Cartogr. Rev. 2018, 50, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.S.; Sanger, M.C.; Lipo, C.P. Automated mound detection using lidar and object-based image analysis in Beaufort County, South Carolina. Southeast. Archaeol. 2019, 38, 23–37. [Google Scholar] [CrossRef]
- Kadhim, I.; Abed, F.M. The Potential of LiDAR and UAV-Photogrammetric Data Analysis to Interpret Archaeological Sites: A Case Study of Chun Castle in South-West England. ISPRS Int. J. Geo-Inf. 2021, 10, 41. [Google Scholar] [CrossRef]
- Cowley, D.; Jones, R.; Carey, G.; Mitchell, J. Barwhill Revisited: Rethinking Old Interpretations Through Integrated Survey Datasets. Trans. Dumfries. Galloway Nat. Hist. Antiqu. Soc. 2019, 93, 9–26. [Google Scholar]
- Holata, L.; Plzák, J.; Světlík, R.; Fonte, J. Integration of Low-Resolution ALS and Ground-Based SfM Photogrammetry Data. A Cost-Effective Approach Providing an ‘Enhanced 3D Model’ of the Hound Tor Archaeological Landscapes. Remote Sens. 2018, 10, 1357. [Google Scholar] [CrossRef] [Green Version]
- Papasaika, H.; Baltsavias, E. Fusion of LIDAR and photogrammetric generated Digital Elevation Models. In Proceedings of the ISPRS Hannover Workshop on High-Resolution Earth Imaging for Geospatial Information, Hannover, Germany, 2–5 June 2009; pp. 1–2. [Google Scholar]
- Megahed, Y.; Shaker, A.; Yan, W.Y. Fusion of airborne lidar point clouds and aerial images for heterogeneous land-use urban mapping. Remote Sens. 2021, 13, 814. [Google Scholar] [CrossRef]
- Ronnholm, P. Registration quality—Towards integration of laser scanning and photogrammetry. EuroSDR 2011, 1370, 6–43. [Google Scholar]
- Rönnholm, P.; Honkavaara, E.; Litkey, P.; Hyyppä, H.; Hyyppä, J. Integration of Laser Scanning and Photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2007, 36, 355–362. [Google Scholar]
- Franceschi, M.; Martinelli, M.; Gislimberti, L.; Rizzi, A.; Massironi, M. Integration of 3D modeling, aerial LiDAR and photogrammetry to study a synsedimentary structure in the Early Jurassic Calcari Grigi. Eur. J. Remote Sens. 2015, 48, 527–539. [Google Scholar] [CrossRef]
- Moussa, W. Integration of Digital Photogrammetry and Terrestrial Laser Scanning for Cultural Heritage Data Recording. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2014. [Google Scholar]
- Voltolini, F.; Rizzi, A.; Remondino, F.; Girardi, S.; Gonzo, L. Integration of non-inavsive techniques for documentation and preservation of complex architectures and artworks. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2007, 36, 1–7. [Google Scholar]
- Guarnieri, A.; Remondino, F.; Vettore, A. Digital Photogrammetry and TLS Data Fusion Applied to Cultural Heritage 3D Modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 1–6. [Google Scholar]
- Guidi, G.; Remondino, F.; Russo, M.; Menna, F.; Rizzi, A. 3D modeling of large and complex site using multi-sensor integration and multi-resolution data. In Proceedings of the 9th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST, Braga, Portugal, 2–5 December 2008; pp. 85–92. [Google Scholar] [CrossRef]
- Jaber, A.; Abed, F.M. Revealing the potentials of 3D modelling techniques; a comparison study towards data fusion from hybrid sensors Revealing the potentials of 3D modelling techniques; a comparison study towards data fusion from hybrid sensors. IOP Conf. Ser. Mater. Sci. Eng. 2020, 737. [Google Scholar] [CrossRef]
- Barsanti, S.G.; Remondino, F.; Visintini, D. Photogrammetry and laser scanning for archaeological site 3D modeling—Some critical issues. In Proceedings of the 2nd Workshop on The New Technologies for Aquileia (NTA-2012), Aquileia, Italy, 25 June 2012; pp. 1–10. [Google Scholar]
- Cerrillo-Cuenca, E. An approach to the automatic surveying of prehistoric barrows through LiDAR. Quat. Int. 2017, 435, 135–145. [Google Scholar] [CrossRef]
- Yeomans, C.M.; Middleton, M.; Shail, R.K.; Grebby, S.; Lusty, P.A. Integrated Object-Based Image Analysis for semi-automated geological lineament detection in southwest England. Comput. Geosci. 2019, 123, 137–148. [Google Scholar] [CrossRef]
- Stephen, D. The Great Cahokia Mound. Am. Antiqu. Orient. J. 1891, 13, 3. [Google Scholar]
- Alt, S.M.; Kruchten, J.D.; Pauketat, T.R. The construction and use of Cahokia’s Grand Plaza. J. Field Archaeol. 2010, 35, 131–146. [Google Scholar] [CrossRef]
- Holley, G.R.; Dalan, R.A.; Smith, P.A. Investigation in the Cahokia Site Grand Plaza. Am. Antiq. 1993, 58, 306–319. [Google Scholar] [CrossRef]
- Hodges, G. Why Was the Ancient city of Cahokia Abandoned. National Geographic. 2021. Available online: https://www.nationalgeographic.com/environment/article/why-was-ancient-city-of-cahokia-abandoned-new-clues-rule-out-one-theory#:~:text=It%20might%20have%20been%20a,warfare%20had%20become%20a%20problem (accessed on 16 March 2022).
- Woods, W.I. Cahokia Mounds. Britannica. 2016. Available online: https://www.britannica.com/place/Cahokia-Mounds (accessed on 1 May 2022).
- Thompson, A.E.; Prufer, K.M. Airborne lidar for detecting ancient settlements, and landscape modifications at Uxbenká, Belize. Res. Rep. Belizean Archaeol. 2015, 12, 251–259. [Google Scholar]
- King, C. Cahokia Mounds Hosted Only Copper Works In North America. St. Louis Public Radio. 2014. Available online: https://news.stlpublicradio.org/arts/2014-08-01/cahokia-mounds-hosted-only-copper-works-in-north-america (accessed on 19 March 2022).
- Von Schwerin, J.; Richards-Rissetto, H.; Remondino, F.; Spera, M.G.; Auer, M.; Billen, N.; Loos, L.; Stelson, L.; Reindel, M. Airborne LiDAR acquisition, post-processing and accuracy-checking for a 3D WebGIS of Copan, Honduras. J. Archaeol. Sci. Rep. 2016, 5, 85–104. [Google Scholar] [CrossRef] [Green Version]
- Corns, A.; Shaw, R. High resolution 3-dimensional documentation of archaeological monuments & landscapes using airborne LiDAR. J. Cult. Herit. 2009, 10, 72–77. [Google Scholar] [CrossRef]
- Daxer, C. Topographic Openness Maps and Red Relief Image Maps in QGIS. Technol. Rep. Inst. Geol. 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Somrak, M.; Džeroski, S.; Kokalj, Ž. Learning to classify structures in ALS-derived visualizations of ancient Maya settlements with CNN. Remote Sens. 2020, 12, 14. [Google Scholar] [CrossRef]
- Jiao, Z.H.; Ren, H.; Mu, X.; Zhao, J.; Wang, T.; Dong, J. Evaluation of Four Sky View Factor Algorithms Using Digital Surface and Elevation Model Data. Earth Space Sci. 2019, 6, 222–237. [Google Scholar] [CrossRef]
- Lo, C.M.; Lee, C.F.; Keck, J. Application of sky view factor technique to the interpretation and reactivation assessment of landslide activity. Environ. Earth Sci. 2017, 76, 1–14. [Google Scholar] [CrossRef]
- Dirksen, M.; Ronda, R.J.; Theeuwes, N.E.; Pagani, G.A. Sky view factor calculations and its application in urban heat island studies. Urb. Clim. 2019, 30, 100498. [Google Scholar] [CrossRef]
- Chiba, T.; Hasi, B. Ground surface visualization using red relief image map for a variety of map scales. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, R.; Shirasawa, M.; Pike, R.J. Visualizing Topography by Openness: A New Application of Image Processing to Digital Elevation Models. Photogramm. Eng. Remote Sens. 2002, 68, 257–265. [Google Scholar]
- Papasaika, H.; Poli, D.; Baltsavias, E. A framework for the fusion of digital elevation models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 811–818. [Google Scholar]
- Al-Najjar, H.A.; Kalantar, B.; Pradhan, B.; Saeidi, V.; Halin, A.A.; Ueda, N.; Mansor, S. Land cover classification from fused DSM and UAV images using convolutional neural networks. Remote Sens. 2019, 11, 1461. [Google Scholar] [CrossRef] [Green Version]
- Singh, H. Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python; Apress: Uttar Pradesh, India, 2019. [Google Scholar]
- Kokalj, Ž.; Zakšek, K.; Oštir, K. Visualizations of lidar derived relief models. In Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation; Opitz, R.S., Cowley, D.C., Eds.; Oxbow Books: Oxford, UK, 2013; pp. 100–114. [Google Scholar]
- Fernández-Lozano, J.; Gutiérrez-Alonso, G. Improving archaeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain). J. Archaeol. Sci. Rep. 2016, 5, 509–520. [Google Scholar] [CrossRef]
- Challis, K.; Forlin, P.; Kincey, M. A generic toolkit for the visualization of archaeological features on airborne LiDAR elevation data. Archaeol. Prospect. 2011, 18, 279–289. [Google Scholar] [CrossRef]
- López, J.B.; Jiménez, G.A.; Romero, M.S.; García, E.A.; Martín, S.F.; Medina, A.L.; Guerrero, J.E. 3D modelling in archaeology: The application of Structure from Motion methods to the study of the megalithic necropolis of Panoria (Granada, Spain). J. Archaeol. Sci. Rep. 2016, 10, 495–506. [Google Scholar] [CrossRef]
- Kokalj, Ž.; Zakšek, K.; Oštir, K. Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models. Antiquity 2011, 85, 263–273. [Google Scholar] [CrossRef]
- Doneus, M.; Briese, C.; Fera, M.; Janner, M. Archaeological prospection of forested areas using full-waveform airborne laser scanning. J. Archaeol. Sci. 2008, 35, 882–893. [Google Scholar] [CrossRef]
- Agudo, P.U.; Pajas, J.A.; Pérez-Cabello, F.; Redón, J.V.; Lebrón, B.E. The potential of drones and sensors to enhance detection of archaeological cropmarks: A comparative study between multi-spectral and thermal imagery. Drones 2018, 2, 29. [Google Scholar] [CrossRef]
- Azmi, S.M.; Ahmad, B.; Ahmad, A. Accuracy assessment of topographic mapping using UAV image integrated with satellite images. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 1. [Google Scholar] [CrossRef] [Green Version]
- Forlani, G.; Pinto, L.; Roncella, R.; Pagliari, D. Terrestrial photogrammetry without ground con-trol Points. Earth Sci. Inform. 2014, 7, 882–893. [Google Scholar] [CrossRef]
Raster | Integrated Hillshade | Integrated Gradient | Integrated SVF | SVShade (I) | SVShade (II) |
---|---|---|---|---|---|
Contrast enhancement (Both data sources) | Min–max | Min–max | Min–max | Min–max | Min–max |
Blending mode (Both data sources) | Multiply | Multiply | Multiply | Multiply | Multiply |
Transparency (%) | LiDAR: 75 | LiDAR: 70% | LiDAR: 70 | LiDAR: 70 | LiDAR: 60 |
SfM: 75 | SfM: 65% | SfM: 70 | SfM: 70 | SfM: 60 | |
Brightness (%) | LiDAR: default | LiDAR: 50 | LiDAR: Default | LiDAR hillshade: 10 | LiDAR SVF: 20 |
SfM: 20 | SfM: 50 | SfM: Default | SfM SVF: 20 | SfM hillshade: 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadhim, I.; Abed, F.M.; Vilbig, J.M.; Sagan, V.; DeSilvey, C. Combining Remote Sensing Approaches for Detecting Marks of Archaeological and Demolished Constructions in Cahokia’s Grand Plaza, Southwestern Illinois. Remote Sens. 2023, 15, 1057. https://doi.org/10.3390/rs15041057
Kadhim I, Abed FM, Vilbig JM, Sagan V, DeSilvey C. Combining Remote Sensing Approaches for Detecting Marks of Archaeological and Demolished Constructions in Cahokia’s Grand Plaza, Southwestern Illinois. Remote Sensing. 2023; 15(4):1057. https://doi.org/10.3390/rs15041057
Chicago/Turabian StyleKadhim, Israa, Fanar M. Abed, Justin M. Vilbig, Vasit Sagan, and Caitlin DeSilvey. 2023. "Combining Remote Sensing Approaches for Detecting Marks of Archaeological and Demolished Constructions in Cahokia’s Grand Plaza, Southwestern Illinois" Remote Sensing 15, no. 4: 1057. https://doi.org/10.3390/rs15041057
APA StyleKadhim, I., Abed, F. M., Vilbig, J. M., Sagan, V., & DeSilvey, C. (2023). Combining Remote Sensing Approaches for Detecting Marks of Archaeological and Demolished Constructions in Cahokia’s Grand Plaza, Southwestern Illinois. Remote Sensing, 15(4), 1057. https://doi.org/10.3390/rs15041057