Township Development and Transport Hub Level: Analysis by Remote Sensing of Nighttime Light
Abstract
:1. Introduction
2. Literature Review
2.1. Relationship between Transportation and Regional Development
2.2. Application of Nighttime Light Series Data
3. Study Area and Data Description
4. Methodology
4.1. Research Framework
4.2. Nighttime Light Imagery and Measuring Indices
4.3. Hub Level Model Establishment of Townships
4.4. Local Geary Model for Multivariate Spatial Association Analysis
5. Results
5.1. Composite Development Indices of Township under Different Statistical Rules
5.2. Spatial Distribution of Township Hub Level
5.3. Spatial Association Mapping between Township Development and Hub Level
6. Discussion
6.1. Theoretical Contribution
6.2. Potential Applications and Relevance
6.3. Shortcomings and Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gu, C.; Hu, L.; Cook, I.G. China’s urbanization in 1949–2015: Processes and driving forces. Chin. Geogr. Sci. 2017, 27, 847–859. [Google Scholar] [CrossRef]
- Streule, M.; Karaman, O.; Sawyer, L.; Schmid, C. Popular Urbanization: Conceptualizing Urbanization Processes Beyond Informality. Int. J. Urban Reg. Res. 2020, 44, 652–672. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.; Wang, J.; Wen, B.; Yang, D.; Jiang, S.; Wu, Y. Analysis on Decoupling between Urbanization Level and Urbanization Quality in China. Sustainability 2020, 12, 6835. [Google Scholar] [CrossRef]
- He, D.; Yin, Q.; Zheng, M.; Gao, P. Transport and regional economic integration: Evidence from the Chang-Zhu-Tan region in China. Transp. Policy 2019, 79, 193–203. [Google Scholar] [CrossRef]
- Ma, F.; Li, X.; Sun, Q.; Liu, F.; Wang, W.; Bai, L. Regional Differences and Spatial Aggregation of Sustainable Transport Efficiency: A Case Study of China. Sustainability 2018, 10, 2399. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Wang, J.; Jin, F.; Ding, N. Evolution of regional transport dominance in China 1910–2012. J. Geogr. Sci. 2015, 25, 723–738. [Google Scholar] [CrossRef]
- Tian, N.; Tang, S.; Che, A.; Wu, P. Measuring regional transport sustainability using super-efficiency SBM-DEA with weighting preference. J. Clean. Prod. 2020, 242, 118474. [Google Scholar] [CrossRef]
- Report of the Second United Nations Global Sustainable Transport Conference. Available online: https://sdgs.un.org/sites/default/files/2022-06/GSTC2_Conference_Report.pdf (accessed on 14 October 2021).
- Liu, X.; Wang, Y.; Li, Y.; Wu, J. Quantifying the Spatio-Temporal Process of Township Urbanization: A Large-Scale Data-Driven Approach. ISPRS Int. J. Geo-Inf. 2019, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Hansson, J.; Pettersson-Löfstedt, F.; Svensson, H.; Wretstrand, A. Replacing regional bus services with rail: Changes in rural public transport patronage in and around villages. Transp. Policy 2021, 101, 89–99. [Google Scholar] [CrossRef]
- Hong, J.; Chu, Z.; Wang, Q. Transport infrastructure and regional economic growth: Evidence from China. Transportation 2011, 38, 737–752. [Google Scholar] [CrossRef]
- Pokharel, R.; Bertolini, L.; te Brömmelstroet, M.; Acharya, S.R. Spatio-temporal evolution of cities and regional economic development in Nepal: Does transport infrastructure matter? J. Transp. Geogr. 2021, 90, 102904. [Google Scholar] [CrossRef]
- Russo, F.; Rindone, C. Regional Transport Plans: From Direction Role Denied to Common Rules Identified. Sustainability. 2021, 13, 9052. [Google Scholar] [CrossRef]
- Fageda, X.; Olivieri, C. Transport infrastructure and regional convergence: A spatial panel data approach. Reg. Sci. 2019, 98, 1609–1631. [Google Scholar] [CrossRef]
- Rokicki, B.; Stępniak, M. Major transport infrastructure investment and regional economic development—An accessibility-based approach. J. Transp. Geogr. 2018, 72, 36–49. [Google Scholar] [CrossRef]
- Li, Y.; Fan, J.; Deng, H. Analysis of Regional Difference and Correlation between Highway Traffic Development and Economic Development in China. Transportation Research Record: J. Transp. Res. Board 2018, 2672, 12–25. [Google Scholar] [CrossRef]
- Aguirre, J.; Mateu, P.; Pantoja, C. Granting airport concessions for regional development: Evidence from Peru. Transp. Policy 2019, 74, 138–152. [Google Scholar] [CrossRef]
- Chung, S.; Song, K.H. Regional economic structure and airport-centric development strategy formulation: The case of South Korea. Sci. Prog. 2021, 104 (Suppl. S3), 368504211021695. [Google Scholar] [CrossRef]
- Jia, S.; Zhou, C.; Qin, C. No difference in effect of high-speed rail on regional economic growth based on match effect perspective? Transp. Res. Part A Policy Pract. 2017, 106, 144–157. [Google Scholar] [CrossRef]
- Zhang, A.; Wan, Y.; Yang, H. Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research. Transp. Policy 2019, 81, A1–A19. [Google Scholar] [CrossRef]
- Van de Vijver, E.; Derudder, B.; Witlox, F. Air Passenger Transport and Regional Development: Cause and Effect in Europe. Traffic Transp. 2016, 28, 143–154. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, K.; Fu, X. Air transport services in regional Australia: Demand pattern, frequency choice and airport entry. Transp. Res. Part A Policy Pract. 2017, 103, 472–489. [Google Scholar] [CrossRef]
- Cascetta, E.; Carteni, A.; Henke, I.; Pagliara, F. Economic growth, transport accessibility and regional equity impacts of high-speed railways in Italy: Ten years ex post evaluation and future perspectives. Transp. Res. Part A Policy Pract. 2020, 139, 412–428. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, C.; Liu, D. The spatial and temporal dimensions of the interdependence between the airline industry and the Chinese economy. J. Transp. Geogr. 2019, 74, 201–210. [Google Scholar] [CrossRef]
- Zhou, B.; Wen, Z.; Yang, Y. Agglomerating or dispersing? Spatial effects of high-speed trains on regional tourism economies. Tour. Manag. 2021, 87, 104392. [Google Scholar] [CrossRef]
- Huang, Y.; Zong, H. The spatial distribution and determinants of China’s high-speed train services. Transp. Res. Part A Policy Pract. 2020, 142, 56–70. [Google Scholar] [CrossRef]
- Carlos, A.V.G.G. Soil Resource Assessment and Mapping using Remote Sensing and GI.S. Earth Sci. 2009, 37, 511–525. [Google Scholar] [CrossRef]
- Shi, J.; Du, Y.; Du, J.; Jiang, L.; Chai, L.; Mao, K.; Wang, Y. Progresses on microwave remote sensing of land surface parameters. Sci. China Earth Sci. 2012, 55, 1052–1078. [Google Scholar] [CrossRef]
- Comber, A.; Fisher, P.; Brunsdon, C.; Khmag, A. Spatial analysis of remote sensing image classification accuracy. Remote Sens. Environ. 2012, 127, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.; Cheng, W.; Zhou, C. Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Delahunty, T.; Zhao, N.; Cao, G. These lit areas are undeveloped: Delimiting China’s urban extents from thresholded nighttime light imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 39–50. [Google Scholar] [CrossRef]
- Wang, C.; Qin, H.; Zhao, K.; Dong, P.; Yang, X.; Zhou, G.; Xi, X. Assessing the Impact of the Built-Up Environment on Nighttime Lights in China. Remote Sens. 2019, 11, 1712. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Huang, K.; Wang, N. Assessing Spatiotemporal Characteristics of Urbanization Dynamics in Southeast Asia Using Time Series of DMSP/OLS Nighttime Light Data. Remote Sens. 2018, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Hsu, F.; Zhizhin, M.; Ghosh, T.; Elvidge, C.; Taneja, J. The Annual Cycling of Nighttime Lights in India. Remote Sens. 2021, 13, 1199. [Google Scholar] [CrossRef]
- Shi, K.; Shen, J.; Wu, Y.; Liu, S.; Li, L. Carbon dioxide (CO2) emissions from the service industry, traffic, and secondary industry as revealed by the remotely sensed nighttime light data. Int. J. Digit. Earth 2021, 14, 1514–1527. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Li, S.; Xin, L.; Wang, X.; Li, Q.; Xiang, W. Modeling population density based on nighttime light images and land use data in China. Appl. Geogr. 2018, 90, 239–247. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Wang, C.; Ni, Y.; Ma, R. Assessing Light Pollution in China Based on Nighttime Light Imagery. Remote Sens. 2017, 9, 135. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Sha, D.; Liu, W.; Houser, P.; Zhang, L.; Hou, R.; Yang, C. Spatiotemporal Patterns of COVID-19 Impact on Human Activities and Environment in Mainland China Using Nighttime Light and Air Quality Data. Remote Sens. 2020, 12, 1576. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, S.; Zhou, Y.; Wang, L.; Wang, F. A Novel Method of Evaluating Highway Traffic Prosperity Based on Nighttime Light Remote Sensing. Remote Sens. 2019, 12, 102. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Huang, Q.; He, C.; Sun, Z.; Zhang, D. How does sprawl differ across cities in China? A multi-scale investigation using nighttime light and census data. Landsc. Urban Plan. 2016, 148, 89–98. [Google Scholar] [CrossRef]
- Beyer, R.C.M.; Franco-Bedoya, S.; Galdo, V. Examining the economic impact of COVID-19 in India through daily electricity consumption and nighttime light intensity. World Dev. 2021, 140, 105287. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Wang, Y. Estimating local-scale urban heat island intensity using nighttime light satellite imageries. Sustain. Cities Soc. 2020, 57, 102125. [Google Scholar] [CrossRef]
- Doll, C.N.; Muller, J.P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Levin, N.; Duke, Y. High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens. Environ. 2012, 119, 1–10. [Google Scholar] [CrossRef]
- Mellander, C.; Lobo, J.; Stolarick, K.; Matheson, Z. Night-time light data: A good proxy measure for economic activity? PLoS ONE 2015, 10, e0139779. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Giglio, S.; Bertacchini, F.; Bilotta, E.; Pantano, P. Using social media to identify tourism attractiveness in six Italian cities. Tour. Manag. 2019, 72, 306–312. [Google Scholar] [CrossRef]
- Hafez, R.M.; Madney, I. Suez Canal Region as an economic hub in Egypt location analysis for the mass real estate appraisal process. HBRC J. 2020, 16, 59–75. [Google Scholar] [CrossRef]
- Yang, Y.C.; Chen, S.L. Determinants of global logistics hub ports: Comparison of the port development policies of Taiwan, Korea, and Japan. Transp. Policy 2016, 45, 179–189. [Google Scholar] [CrossRef]
- Anderluh, A.; Hemmelmayr, V.C.; Rüdiger, D. Analytic hierarchy process for city hub location selection—The Viennese case. Transp. Res. Procedia 2020, 46, 77–84. [Google Scholar] [CrossRef]
- Anselin, L. A Local Indicator of Multivariate Spatial Association: Extending Geary’s c. Geogr. Anal. 2019, 51, 133–150. [Google Scholar] [CrossRef]
- Anselin, L.; Li, X.; Koschinsky, J. GeoDa, From the Desktop to an Ecosystem for Exploring Spatial Data. Geogr. Anal. 2022, 54, 439–466. [Google Scholar] [CrossRef]
- Wang, T.; Chen, J.; Pu, Y.; Chen, Z.; Chen, D.; Jia, M. A weighted Euclidean distance method for rural settlements traffic location evaluation. Proc. SPIE Geoinform. Geospat. Inf. Sci. 2007, 6753, 67530. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, J. Optimal traffic counting locations for origin–destination matrix estimation. Transp. Res. Part B Methodol. 1998, 32, 109–126. [Google Scholar] [CrossRef]
- Button, K.J.; Gillingwater, D. Reviews: Transport, Location and Spatial Policy. Environ. Plan. A 1984, 16, 551–564. [Google Scholar] [CrossRef]
- Locke, C.M.; Rissman, A.R. Factors influencing zoning ordinance adoption in rural and exurban townships. Landsc. Urban Plan. 2015, 134, 167–176. [Google Scholar] [CrossRef]
Statistical Type | Positive Correlation | Negative Correlation | No Significant | |||
---|---|---|---|---|---|---|
Total | Rate | Total | Rate | Total | Rate | |
Mean of light value | 2978 | 44.98% | 324 | 4.79% | 3468 | 51.23% |
Sum of light value | 2111 | 31.18% | 508 | 7.55% | 4151 | 61.31% |
Sum of high light value | 1772 | 26.17% | 504 | 7.44% | 4494 | 66.38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhang, H.; Wang, Z. Township Development and Transport Hub Level: Analysis by Remote Sensing of Nighttime Light. Remote Sens. 2023, 15, 1056. https://doi.org/10.3390/rs15041056
Chen L, Zhang H, Wang Z. Township Development and Transport Hub Level: Analysis by Remote Sensing of Nighttime Light. Remote Sensing. 2023; 15(4):1056. https://doi.org/10.3390/rs15041056
Chicago/Turabian StyleChen, Lijun, Haiping Zhang, and Zhiqiang Wang. 2023. "Township Development and Transport Hub Level: Analysis by Remote Sensing of Nighttime Light" Remote Sensing 15, no. 4: 1056. https://doi.org/10.3390/rs15041056
APA StyleChen, L., Zhang, H., & Wang, Z. (2023). Township Development and Transport Hub Level: Analysis by Remote Sensing of Nighttime Light. Remote Sensing, 15(4), 1056. https://doi.org/10.3390/rs15041056