Classification of Alteration Zones Based on Drill Core Hyperspectral Data Using Semi-Supervised Adversarial Autoencoder: A Case Study in Pulang Porphyry Copper Deposit, China
Abstract
:1. Introduction
2. Geological Settings of Study Area
3. Data and Method
3.1. Hyperspectral Data Collection and Preprocessing
3.2. Method
3.2.1. AE of SSAAE
- (1)
- Multiscale Feature Extractor
- (2)
- Encoder
- (3)
- Decoder
3.2.2. Adversarial Process of SSAAE
3.2.3. Object Loss Function
- (1)
- Semi-Supervised Classification Loss
- (2)
- Reconstruction Loss
- (3)
- Adversarial Loss
4. Experimental Results and Analysis
4.1. Experimental Setup
4.2. Experiment with Synthetic Dataset
4.2.1. Dataset Description
4.2.2. Hyperparameter Settings
4.2.3. Performance Comparison
4.2.4. Robustness to Noise
4.3. Experiment with Drilling Core Hyperspectral Dataset
4.3.1. Quantitative Evaluation
4.3.2. Qualitative Evaluation with ZK0113 and ZK0307
4.3.3. Qualitative Evaluation with No. 00 Exploration Cross-Section
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cannell, J.; Cooke, D.R.; Walshe, J.L.; Stein, H. Geology, Mineralization, Alteration, and Structural Evolution of the El Teniente Porphyry Cu-Mo Deposit. Econ. Geol. 2005, 100, 979–1003. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Z.; Zhou, J.; Zeng, M.; Xia, J.; Sun, T.; Zhao, X. New Insights into the Pulang Porphyry Copper Deposit in Southwest China: Indication of Alteration Minerals Detected Using ASTER and WorldView-3 Data. Remote Sens. 2021, 13, 2798. [Google Scholar] [CrossRef]
- De La Rosa, R.; Tolosana-Delgado, R.; Kirsch, M.; Gloaguen, R. Automated Multi-Scale and Multivariate Geological Logging from Drill-Core Hyperspectral Data. Remote Sens. 2022, 14, 2676. [Google Scholar] [CrossRef]
- Dohuee, M.; Khosravi, V.; Shirazi, A.; Shirazy, A.; Nazerian, H.; Pour, A.B.; Hezarkhani, A.; Pradhan, B. Alteration Detections Using ASTER Remote Sensing data and Fractal Geometry for Mineral prospecting in Hemich Area, NE Iran. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5520–5523. [Google Scholar] [CrossRef]
- Shirazi, A.; Hezarkhani, A.; Beiranvand Pour, A.; Shirazy, A.; Hashim, M. Neuro-Fuzzy-AHP (NFAHP) Technique for Copper Exploration Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Geological Datasets in the Sahlabad Mining Area, East Iran. Remote Sens. 2022, 14, 5562. [Google Scholar] [CrossRef]
- Rodger, A.; Fabris, A.; Laukamp, C. Feature Extraction and Clustering of Hyperspectral Drill Core Measurements to Assess Potential Lithological and Alteration Boundaries. Minerals 2021, 11, 136. [Google Scholar] [CrossRef]
- Cloutis, E.A.; Klima, R.L.; Kaletzke, L.; Coradini, A.; Golubeva, L.F.; McFadden, L.A.; Shestopalov, D.I.; Vilas, F. The 506nm absorption feature in pyroxene spectra: Nature and implications for spectroscopy-based studies of pyroxene-bearing targets. Icarus 2010, 207, 295–313. [Google Scholar] [CrossRef]
- Hamilton, V.E. Thermal infrared emission spectroscopy of the pyroxene mineral series. J. Geophys. Res. Planets 2000, 105, 9701–9716. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, V.E. Thermal infrared emission spectroscopy of titanium-enriched pyroxenes. J. Geophys. Res. 2003, 108, 5095. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, P. Lithological mapping from hyperspectral data by improved use of spectral angle mapper. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 95–109. [Google Scholar] [CrossRef]
- Khaleghi, M.; Ranjbar, H.; Shahabpour, J.; Honarmand, M. Spectral angle mapping, spectral information divergence, and principal component analysis of the ASTER SWIR data for exploration of porphyry copper mineralization in the Sarduiyeh area, Kerman province, Iran. Appl. Geomat. 2014, 6, 49–58. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Hezarkhani, A. Enhancement of hydrothermal alteration zones using the spectral feature fitting method in Rabor area, Kerman, Iran. Arab. J. Geosci. 2011, 6, 1957–1964. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; W.M., B.; Lowers, H.A.; Driscoll, R.L. USGS Spectral Library Version 7 Data: US Geological Survey Data Release; United States Geological Survey (USGS): Reston, VA, USA, 2017.
- Rowan, L.C.; Goetz, A.F.H.; Ashley, R.P. Discrimination of Hydrothermally Altered and Unaltered Rocks in Visible and near Infrared Multispectral Images. Geophysics 1977, 42, 522–535. [Google Scholar] [CrossRef]
- Gürsoy, Ö.; Canbaz, O.; Gökçe, A.; Atun, R. Spectral Classification in Lithological Mapping; A Case Study of Matched Filtering. Cumhur. Sci. J. 2017, 38, 731–737. [Google Scholar] [CrossRef]
- Zadeh, M.H.; Tangestani, M.H.; Roldan, F.V.; Yusta, I. Mineral Exploration and Alteration Zone Mapping Using Mixture Tuned Matched Filtering Approach on ASTER Data at the Central Part of Dehaj-Sarduiyeh Copper Belt, SE Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 284–289. [Google Scholar] [CrossRef]
- Lin, G.-C.; Wang, W.-J.; Wang, C.-M. Feature Selection Algorithm for Classification of Multispectral MR Images Using Constrained Energy Minimization. In Proceedings of the 10th International Conference on Hybrid Intelligent Systems, Atlanta, GA, USA, 23–25 August 2010; pp. 43–46. [Google Scholar] [CrossRef]
- Aali, A.A.; Shirazy, A.; Shirazi, A.; Pour, A.B.; Hezarkhani, A.; Maghsoudi, A.; Hashim, M.; Khakmardan, S. Fusion of Remote Sensing, Magnetometric, and Geological Data to Identify Polymetallic Mineral Potential Zones in Chakchak Region, Yazd, Iran. Remote Sens. 2022, 14, 6018. [Google Scholar] [CrossRef]
- Shabani, A.; Ziaii, M.; Monfared, M.; Shirazy, A.; Shirazi, A. Multi-Dimensional Data Fusion for Mineral Prospectivity Mapping (MPM) Using Fuzzy-AHP Decision-Making Method, Kodegan-Basiran Region, East Iran. Minerals 2022, 12, 1629. [Google Scholar] [CrossRef]
- Lobo, A.; Garcia, E.; Barroso, G.; Martí, D.; Fernandez-Turiel, J.-L.; Ibáñez-Insa, J. Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor Conditions. Remote Sens. 2021, 13, 3258. [Google Scholar] [CrossRef]
- Garcia-Dias, R.; Prieto, C.a.; Almeida, J.S.; Ordovás-Pascual, I. Machine learning in APOGEE: Unsupervised spectral classification with K-means. Astron. Astrophys. 2018, 612, A98. [Google Scholar] [CrossRef]
- Rahman, S.A.E. Hyperspectral Imaging Classification Using ISODATA Algorithm: Big Data Challenge. In Proceedings of the 2015 Fifth International Conference on e-Learning (Econf), Manama, Bahrain, 18–20 October 2015; pp. 247–250. [Google Scholar] [CrossRef]
- Zeng, S.; Huang, R.; Kang, Z.; Sang, N. Image segmentation using spectral clustering of Gaussian mixture models. Neurocomputing 2014, 144, 346–356. [Google Scholar] [CrossRef]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:2003.05991. [Google Scholar]
- Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial Autoencoders. arXiv 2016, arXiv:1511.05644. [Google Scholar]
- Abbaszadeh, M.; Hezarkhani, A.; Soltani-Mohammadi, S. An SVM-based machine learning method for the separation of alteration zones in Sungun porphyry copper deposit. Geochemistry 2013, 73, 545–554. [Google Scholar] [CrossRef]
- Fazakis, N.; Kostopoulos, G.; Karlos, S.; Kotsiantis, S.; Sgarbas, K. Self-trained eXtreme Gradient Boosting Trees. In Proceedings of the 10th International Conference on Information, Intelligence, Systems, and Applications (IISA), Patras, Greece, 15–17 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Romaszewski, M.; Głomb, P.; Cholewa, M. Semi-supervised hyperspectral classification from a small number of training samples using a co-training approach. ISPRS J. Photogramm. Remote Sens. 2016, 121, 60–76. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y. Courville A. Convolutional Networks; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Abdel-Hamid, O.; Mohamed, A.-R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional Neural Networks for Speech Recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [Google Scholar] [CrossRef] [Green Version]
- Li, C.Y.; Vu, N.T. Densely Connected Convolutional Networks for Speech Recognition. In Proceedings of the Speech Communication, 13th ITG-Symposium, Oldenburg, Germany, 10–12 October 2018; pp. 1–5. [Google Scholar]
- Chang, Y.-L.; Tan, T.-H.; Lee, W.-H.; Chang, L.; Chen, Y.-N.; Fan, K.-C.; Alkhaleefah, M. Consolidated Convolutional Neural Network for Hyperspectral Image Classification. Remote Sen. 2022, 14, 1571. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [Google Scholar] [CrossRef]
- Zhang, Y.; Pal, S.; Coates, M.; Ustebay, D. Bayesian Graph Convolutional Neural Networks for Semi-Supervised Classification. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-19), Honolulu, HI, USA, 27 January–1 February 2019; pp. 5829–5836. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Baghbaderani, R.K.; Li, W.; Gao, L.; Zhang, Y.; Qi, H. Physically Constrained Transfer Learning Through Shared Abundance Space for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10455–10472. [Google Scholar] [CrossRef]
- Yang, X.; Chen, J.; Wang, C.; Chen, Z. Residual Dense Autoencoder Network for Nonlinear Hyperspectral Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5580–5595. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Q.; Li, J.; Shen, H.; Zhang, L. Hyperspectral Image Denoising Employing a Spatial–Spectral Deep Residual Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1205–1218. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Ren, Y.-S.; Chen, S.-B.; Zhang, G.-L.; Zeng, Q.-H.; Hao, Y.-J.; Li, J.-M.; Yang, Z.-J.; Sun, X.-H.; Sun, Z.-M. Geological, Geochronological, and Geochemical Insights into the Formation of the Giant Pulang Porphyry Cu (–Mo–Au) Deposit in Northwestern Yunnan Province, SW China. Minerals 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Cao, K.; Yang, Z.-M.; Mavrogenes, J.; White, N.C.; Xu, J.-F.; Li, Y.; Li, W.-K. Geology and Genesis of the Giant Pulang Porphyry Cu-Au District, Yunnan, Southwest China. Econ. Geol. 2019, 114, 275–301. [Google Scholar] [CrossRef]
- Wang, P.; Dong, G.-C.; Zhao, G.-C.; Han, Y.-G.; Li, Y.-P. Petrogenesis of the Pulang porphyry complex, southwestern China: Implications for porphyry copper metallogenesis and subduction of the Paleo-Tethys Oceanic lithosphere. Lithos 2018, 304–307, 280–297. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; Liang, Z. Geochemical Characteristics and Zonation of Primary Halos of Pulang Porphyry Copper Deposit, Northwestern Yunnan Province, Southwestern China. J. China Univ. Geosci. 2008, 19, 371–377. [Google Scholar] [CrossRef]
- Xia, Q.; Li, T.; Kang, L.; Leng, S.; Wang, X. Study on the PTX Parameters and Fractal Characteristics of Ore-Forming Fluids in the East Ore Section of the Pulang Copper Deposit, Southwest China. J. Earth Sci. 2021, 32, 390–407. [Google Scholar] [CrossRef]
- Li, C.; Liu, X. The metallogenic regularity related to the tectonic and petrographic features of Pulang porphyry copper orefield, Yunnan, and its ore-controlling characteristics. Front. Earth Sci. 2015, 22, 53–66. [Google Scholar] [CrossRef]
- Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Grancisco, CA, USA,, 4–9 February 2017; pp. 4278–4284. [Google Scholar] [CrossRef]
- Gao, S.H.; Cheng, M.M.; Zhao, K.; Zhang, X.Y.; Yang, M.H.; Torr, P. Res2Net: A New Multi-Scale Backbone Architecture. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481. [Google Scholar]
- Cortes, C.; Mohri, M.; Rostamizadeh, A. L2 Regularization for Learning Kernels. arXiv 2012, arXiv:1205.2653. [Google Scholar]
- Feng, X.-R.; Li, H.-C.; Li, J.; Du, Q.; Plaza, A.; Emery, W.J. Hyperspectral Unmixing Using Sparsity-Constrained Deep Nonnegative Matrix Factorization with Total Variation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6245–6257. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Basu, S.; Banerjee, A.; Mooney, R.J. Active Semi-Supervision for Pairwise Constrained Clustering. In Proceedings of the 2004 SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics, Lake Buena Vista, FL, USA, 22–24 April 2004; pp. 333–344. [Google Scholar] [CrossRef] [Green Version]
- Vaddi, R.; Manoharan, P. CNN based hyperspectral image classification using unsupervised band selection and structure-preserving spatial features. Infrared Phys. Technol. 2020, 110, 103457. [Google Scholar] [CrossRef]
- Kramer, P.R.; Kurbanmuradov, O.; Sabelfeld, K. Comparative analysis of multiscale Gaussian random field simulation algorithms. J. Comput. Phys. 2007, 226, 897–924. [Google Scholar] [CrossRef] [Green Version]
- Heinz, D.; Chang, C. Fully Constrained Least Squares Linear Spectral Mixture Analysis Method for Material Quantification in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–556. [Google Scholar] [CrossRef] [Green Version]
- Salih Hasan, B.M.; Abdulazeez, A.M. A Review of Principal Component Analysis Algorithm for Dimensionality Reduction. J. Soft Comput. Data Min. 2021, 2, 20–30. [Google Scholar] [CrossRef]
- van der Meer, F. Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 55–68. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W. Geological characteristics of the Pulang porphyry copper deposit, Yunnan. Geol. China 2006, 33, 352–362. [Google Scholar]
Altered Rocks | Alteration Zones | Alteration Types | Typical Alteration Minerals |
---|---|---|---|
Quartz monzonite porphyry; Quartz diorite porphyrite; Granodiorite porphyry | Silicified | Silification | Quartz; opal |
Potassic | Potassification | Orthoclase; biotite; quartz | |
Phyllic | Sericitization | Sericite (muscovite/illite); quartz | |
Argillic | Argillization | Kaoline; montmorillonite; quartz | |
Propylic | Propylitization | Epidote; chlorite; quartz | |
Hornfelsic | Hornfels | Hornstone; quartz |
Method | Description | Unsupervised | Supervised | Semi-Supervised |
---|---|---|---|---|
K-Means [21] | Calculating the distance between pending spectra and cluster centroids | ● | ○ | ○ |
GMM [23] | Computing the likelihood of pending spectra in each certain Gaussian distribution | ● | ○ | ○ |
SAM [10] | Calculating the spectral angle distance between the pending and reference spectra | ○ | ● | ○ |
SVM [26] | Finding the margin-maximizing hyperplane in the feature space | ○ | ● | ○ |
SXGBoost [27] | Self-trained eXtreme Gradient Boosting Trees | ○ | ○ | ● |
AcPCKMeans [52] | Active Semi-Supervision for Pairwise Constrained K-Means | ○ | ○ | ● |
Class | Unsupervised | Supervised | Semi-Supervised | Reference | ||||
---|---|---|---|---|---|---|---|---|
K-Means | GMM | SAM | SVM | SXGBoost | AcPCKMeans | SSAAE | ||
Montmorillonite | 2019 | 2019 | 1859 | 2019 | 1782 | 2019 | 2019 | 2034 |
Chlorite | 2490 | 2490 | 2468 | 2496 | 2422 | 2490 | 2477 | 2520 |
Epidote | 1319 | 1341 | 1051 | 1341 | 1092 | 1325 | 1412 | 1479 |
Muscovite | 1538 | 1320 | 1540 | 1540 | 1368 | 1540 | 1540 | 1574 |
Quartz | 2349 | 2349 | 2354 | 2344 | 2130 | 2349 | 2341 | 2393 |
OA(%) | 97.15 | 95.19 | 92.72 | 97.40 | 87.94 | 97.23 | 97.89 | 100.00 |
AA(%) | 96.56 | 94.13 | 91.23 | 96.89 | 86.64 | 96.67 | 97.68 | 100.00 |
Kappa(%) | 96.39 | 93.90 | 90.76 | 96.71 | 84.66 | 96.49 | 97.33 | 100.00 |
Class No. | Class | Training Samples | Testing Samples |
---|---|---|---|
1 | Quartz monzonite porphyry | 54 | 36 |
2 | Silification | 64 | 46 |
3 | Potassification | 44 | 34 |
4 | Sericitization | 89 | 57 |
5 | Epidotization | 53 | 39 |
6 | Chloritization | 79 | 51 |
7 | Hornfels | 61 | 40 |
8 | Others | 48 | 31 |
Total | 492 | 334 |
Class | Unsupervised | Supervised | Semi-Supervised | Reference | ||||
---|---|---|---|---|---|---|---|---|
K-Means | GMM | SAM | SVM | SXGBoost | AcPCKMeans | SSAAE | ||
Quartz monzonite porphyry | 20 | 15 | 17 | 19 | 7 | 11 | 18 | 36 |
Silification | 33 | 29 | 28 | 30 | 26 | 35 | 46 | 46 |
Potassification | 25 | 16 | 15 | 18 | 8 | 21 | 21 | 34 |
Sericitization | 43 | 45 | 44 | 45 | 44 | 46 | 52 | 57 |
Epidotization | 27 | 22 | 17 | 20 | 10 | 26 | 38 | 39 |
Chloritization | 37 | 30 | 31 | 34 | 31 | 39 | 35 | 51 |
Hornfels | 34 | 31 | 31 | 34 | 31 | 30 | 40 | 40 |
Others | 18 | 17 | 12 | 14 | 12 | 26 | 25 | 31 |
OA(%) | 70.96 | 61.38 | 58.38 | 64.07 | 50.60 | 70.06 | 82.34 | 100.00 |
AA(%) | 69.38 | 59.79 | 56.25 | 61.53 | 47.42 | 68.89 | 81.21 | 100.00 |
Kappa(%) | 66.41 | 55.41 | 51.92 | 58.40 | 42.69 | 65.44 | 79.65 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Chen, J.; Chen, Z. Classification of Alteration Zones Based on Drill Core Hyperspectral Data Using Semi-Supervised Adversarial Autoencoder: A Case Study in Pulang Porphyry Copper Deposit, China. Remote Sens. 2023, 15, 1059. https://doi.org/10.3390/rs15041059
Yang X, Chen J, Chen Z. Classification of Alteration Zones Based on Drill Core Hyperspectral Data Using Semi-Supervised Adversarial Autoencoder: A Case Study in Pulang Porphyry Copper Deposit, China. Remote Sensing. 2023; 15(4):1059. https://doi.org/10.3390/rs15041059
Chicago/Turabian StyleYang, Xu, Jianguo Chen, and Zhijun Chen. 2023. "Classification of Alteration Zones Based on Drill Core Hyperspectral Data Using Semi-Supervised Adversarial Autoencoder: A Case Study in Pulang Porphyry Copper Deposit, China" Remote Sensing 15, no. 4: 1059. https://doi.org/10.3390/rs15041059
APA StyleYang, X., Chen, J., & Chen, Z. (2023). Classification of Alteration Zones Based on Drill Core Hyperspectral Data Using Semi-Supervised Adversarial Autoencoder: A Case Study in Pulang Porphyry Copper Deposit, China. Remote Sensing, 15(4), 1059. https://doi.org/10.3390/rs15041059