Estimation of Perceived Temperature of Road Workers Using Radiation and Meteorological Observation Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Observations
2.2. Classification of Observation Data
Classification of Analysis Date by Site
2.3. Model of Workers’ PT
2.3.1. KMM and PT
2.3.2. Investigation of Body Variables to Construct a Prediction Model for Worker PT
2.3.3. SOLWEIG Model
3. Results and Discussion
3.1. Analysis of Observation Data
3.1.1. Comparison and Validation Analysis with AWS Observation Data
3.1.2. Meteorological Data
3.1.3. Radiation Flux
3.2. Analysis of Worker PT Results
3.2.1. Calculation of Mean Radiant Temperature
3.2.2. Prediction of PT
3.3. Construction of Regression Model
3.3.1. Construction of Regression Model for Road Surface Temperature According to Temperature
3.3.2. Construction of Regression Model for PT According to Temperature
3.3.3. Calculation of Road Surface Temperature and Workers’ PT Rating According to Temperature
4. Discussion
4.1. Observation
4.2. Perceived Temperature
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, D.; Deo, R.; Chung, J.; Lee, J. Projection of heat wave mortality related to climate change in Korea. Nat. Hazards 2016, 80, 623–637. [Google Scholar] [CrossRef]
- Gong, Y.; Gou, A.; Tang, M. Research Progress of Urban Heat Wave Environment. Earth Environ. Sci. 2021, 634, 012034. [Google Scholar] [CrossRef]
- Heo, S.; Bell, M.L.; Lee, J.T. Comparison of health risks by heat wave definition: Applicability of wet-bulb globe temperature for heat wave criteria. Environ. Res. 2019, 168, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Perkins-Kirkpatrick, S.E.; White, C.J.; Alexander, L.V.; Argüeso, D.; Boschat, G.; Cowan, T.; Evans, J.P.; Ekstrom, M.; Oliver, E.C.J.; Purich, A. Natural hazards in Australia: Heatwaves. Clim. Chang. 2016, 139, 101–114. [Google Scholar]
- Sanderson, M.G.; Economou, T.; Salmon, K.H.; Jones, S.E. Historical trends and variability in heat waves in the United Kingdom. Atmosphere 2017, 8, 191. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, D. Projecting the Elderly Population at Heat Wave Risk for Climate Change: A Spatial Approach. Korean. J. Korean Geogr. Soc. 2022, 49, 949–969. [Google Scholar]
- Park, J.; Chae, Y. Analysis of heat-related illness and excess mortality by heat waves in South Korea in 2018. J. Korean Geogr. Soc. 2020, 55, 391–408. [Google Scholar]
- Chandran, S.; Subba Rao, A.V.M.; Sandeep, V.M.; Pramod, V.P.; Pani, P.; Rao, V.U.M.; Kumari, V.; Srinivasa Rao, C. Indian summer heat wave of 2015: A biometeorological analysis using half hourly automatic weather station data with special reference to Andhra Pradesh. Int. J. Biometeorol. 2017, 61, 1063–1072. [Google Scholar]
- Pattanaik, D.R.; Mohapatra, M.; Srivastava, A.K.; Kumar, A. Heat wave over India during summer 2015: An assessment of real time extended range forecast. Meteorol. Atmos. Phys. 2017, 129, 375–393. [Google Scholar] [CrossRef]
- Dutta, P.; Rajiva, A.; Andhare, D.; Azhar, G.S.; Tiwari, A.; Sheffield, P.; Climate Study Group. Perceived heat stress and health effects on construction workers. Indian J. Occup. Environ. Med. 2015, 19, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B. Characteristics and Health Status of Outdoor Workers Exposed to High Temperature. Korean J. Occup. Health Nurs. 2022, 31, 95–103. [Google Scholar]
- Foster, J.; Smallcombe, J.W.; Hodder, S.; Jay, O.; Flouris, A.D.; Nybo, L.; Havenith, G. Quantifying the impact of heat on human physical work capacity; part III: The impact of solar radiation varies with air temperature, humidity, and clothing coverage. Int. J. Biometeorol. 2022, 66, 175–188. [Google Scholar] [PubMed]
- Acharya, P.; Boggess, B.; Zhang, K. Assessing heat stress and health among construction workers in a changing climate: A review. Int. J. Environ. Res. Public Health 2018, 15, 247. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.A.; Epstein, Y.; Kjellstrom, T. Excessive occupa tional heat exposure: A significant ergonomic challenge and health risk for current and future workers. Extrem. Physiol. Med. 2014, 3, 14. [Google Scholar]
- Sett, M.; Sahu, S. Effects of occupational heat exposure on female brick workers in West Bengal, India. Glob. Health Action 2014, 7, 21923. [Google Scholar] [CrossRef] [Green Version]
- Tawatsupa, B.; Yiengprugsawan, V.; Kjellstrom, T.; Berecki-Gisolf, J.; Seubsman, S.; Sleigh, A. The association between heat stress and occupational injury among Thai workers: Finding of the Thai Cohort Study. Ind. Health 2013, 51, 34–46. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [PubMed]
- Masumoto, K. Urban heat island in Osaka city distribution of air temperature and wet bulb globe temperature. In Proceedings of the The seventh International Conference on Urban Climate, Yokohama, Japan, 29 June–3 July 2009. [Google Scholar]
- Tanaka, M. Heat stress standard for hot work environments in Japan. Ind. Health 2007, 45, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspar, A.R.; Quintela, D.A. Physical modelling of globe and natural wet bulb temperatures to predict WBGT heat stress index in outdoor environments. Int. J. Biometeorol. 2009, 53, 221–230. [Google Scholar]
- Kim, J. A Study on the Cooling Center Manual of Facility and Maintenance for Extreme Heat Disaster. Korean Soc. Hazard Mitig. 2008, 8, 17–22. [Google Scholar]
- Fanger, P.O. Thermal comfort. Analysis and applications in environmental engineering. Therm. Comf. Anal. Appl. Environ. Eng. 1970, 244. [Google Scholar]
- Thiele-Eich, I.; Brienen, S.; Kapala, A.; Jendritzky, G.; Simmer, C. Future thermal comfort in Germany; Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg; Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg: Freiburg, Germany, 2010; p. 189. [Google Scholar]
- Matzarakis, A.; Laschewski, G.; Muthers, S. The heat health warning system in Germany—Application and warnings for 2005 to 2019. Atmosphere 2020, 11, 170. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Kim, K.R.; Lee, J.Y.; Shin, J.Y. Determination of thermal sensation levels for Koreans based on perceived temperature and climate chamber experiments with hot and humid settings. Int. J. Biometeorol. 2022, 66, 1095–1107. [Google Scholar] [PubMed]
- Kim, G.; Cho, C.; Kang, M.; Park, J.; Shin, J.; Lee, J.; Han, M.; Miloslav, B. Advanced Research on Biometeorology and Urban Meteorology Development Research of Advanced Applied Meteorological Instrument; National Institute of Meteorological Sciences: Seogwipo-si, South Korea, 2018; p. 9. [Google Scholar]
- Kang, M.; Belorid, M.; Kim, K.R. Development of impact-based heat health warning system based on ensemble forecasts of perceived temperature and its evaluation using heat-related patients in 2019. Atmosphere. Korean Meteorol. Soc. 2020, 30, 195–207. [Google Scholar]
- Shin, J.Y.; Kang, M.; Kim, K.R. Outdoor thermal stress changes in South Korea: Increasing inter-annual variability induced by different trends of heat and cold stresses. Sci. Total Environ. 2022, 805, 150132. [Google Scholar]
- Park, M.S.; Park, S.H.; Chae, J.H.; Choi, M.H.; Song, Y.; Kang, M.; Roh, J.W. High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea. Atmos. Meas. Tech. 2017, 10, 1575–1594. [Google Scholar]
- Li, Z.; Zhao, Y.; Luo, Y.; Yang, L.; Li, P.; Jin, X.; Gao, X. A comparative study on the surface radiation characteristics of photovoltaic power plant in the Gobi desert. Renew. Energy 2022, 182, 764–771. [Google Scholar] [CrossRef]
- Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0–Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeorol. 2008, 52, 697–713. [Google Scholar] [CrossRef]
- Lau, K.K.L.; Ren, C.; Ho, J.; Ng, E. Numerical modelling of mean radiant temperature in high-density sub-tropical urban environment. Energy Build. 2016, 114, 80–86. [Google Scholar]
- Chen, L.; Yu, B.; Yang, F.; Mayer, H. Intra-urban differences of mean radiant temperature in different urban settings in Shanghai and implications for heat stress under heat waves: A GIS-based approach. Energy Build. 2016, 130, 829–842. [Google Scholar]
- Yi, C.; Kwon, H.G.; Yang, H. Spatial temperature differences in local climate zones of Seoul metropolitan area during a heatwave. Urban Clim. 2022, 41, 101012. [Google Scholar]
- Yang, H.; Kwon, H.; Yi, C. Analysis of improvement of the solar radiation model using urban surface characteristics parameters. J. Clim. Chang. Res. 2022, 13, 1. [Google Scholar]
- Choi, D.; Lee, B. An experimental study of surface materials for planting of building surface by the radiant heat balance analysis in the summer. J. Korean Sol. Energy Soc. 2010, 30, 3. [Google Scholar]
- Moretti, L.; Cantisani, G.; Carpiceci, M.; D’Andrea, A.; Del Serrone, G.; Di Mascio, P.; Loprencipe, G. Effect of sampietrini pavers on urban heat islands. Int. J. Environ. Res. Public Health 2021, 18, 13108. [Google Scholar] [CrossRef] [PubMed]
- Bonauto, D.; Anderson, R.; Rauser, E.; Burke, B. Occupational heat illness in Washington State, 1995–2005. Am. J. Ind. Med. 2007, 50, 940–950. [Google Scholar] [CrossRef]
- Rowlinson, S.; Jia, Y.A. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry. Ann. Occup. Hyg. 2014, 58, 326–339. [Google Scholar]
- Morioka, I.; Miyai, N.; Miyashita, K. Hot environment and health problems of outdoor workers at a construction site. Ind. Health. 2006, 44, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Inaba, R.; Mirbod, S.M. Comparison of subjective symptoms and hot prevention measures in summer between traffic control workers and construction workers in Japan. Ind. Health 2007, 45, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Chan, A.P.C. Optimizing work-rest schedule for construction rebar workers in hot and humid environment. Build Environ. 2013, 61, 104–113. [Google Scholar]
- Chan, A.P.C.; Yi, W.; Wong, D.P.; Yam, M.C.H.; Chan, D.W.M. Determining an optimal recovery time for construction rebar workers after working to exhaustion in a hot and humid environment. Build Environ. 2012, 58, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.P.; Yi, W.; Chan, D.W.; Wong, D.P. Using the thermal work limit as an environmental determinant of heat stress for construction workers. J. Manag. Eng. 2013, 29, 414–423. [Google Scholar] [CrossRef] [Green Version]
- Montazer, S.; Farshad, A.A.; Monazzam, M.R.; Eyvazlou, M.; Yaraghi, A.A.; Mirkazemi, R. Assessment of construction workers’ hydration status using urine specific gravity. Int. J. Occup. Med. Environ. Health 2013, 26, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Bates, G.P.; Schneider, J. Hydration status and physiological workload of UAE construction workers: A prospective longitudinal observational study. J. Occup. Med. Toxicol. 2008, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.A.; Rowlinson, S.; Ciccarelli, M. Climatic and psychosocial risks of heat illness incidents on construction site. Appl. Ergon. 2016, 53, 25–35. [Google Scholar] [PubMed]
- Gabriel, K.M.; Endlicher, W.R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ. Pollut. 2011, 159, 2044–2050. [Google Scholar] [CrossRef]
Omni-NRS (CNR4) | |
---|---|
Sensitivity | 5~20 µV/W/m2 |
Temperature dependence according to sensitivity (range of −10 to +40 degrees) | 4% or less |
Response speed | 18 s or less |
Nonlinearity | 1% or less |
Operating temperature | −40° to 80° |
International Standard Grade (WMO) | Good Quality WMO |
Mobile meteorological observation equipment (Vaisala) | |
Temperature | −52 °C to +60 °C |
Wind speed | 0 to 60 m/s (134 mps) |
Humidity | 0 to 100% relative humidity |
Atmospheric pressure | 600 to 1100 hPa |
Sky view camera (AXIS M3007-P) | |
Image sensor | 1/3.2” Progressive Scanning RGB CMOS |
Lens | M12 mount, F2.8, Fixed iris 1.3 mm Horizontal angle of view: 187° Vertical angle of view: 168° |
Sensitivity | 0.6~200,000 lux, F2.8 |
Shutter time | 1/24,000 s~2 s |
Angle of camera | Rotation ±180° |
Category | Sunny Day | Cloudy Day | ||
---|---|---|---|---|
Category | Sunny concrete | Sunny asphalt | Cloudy concrete | Cloudy asphalt |
Analysis days | 6 days | 3 days | 6 days | 2 days |
Thermal Perception | Young Group PT (°C) | Older Group PT (°C) |
---|---|---|
Very hot | 43 ≤ PT | 40 ≤ PT |
Hot | 36 ≤ PT < 43 | 24 ≤ PT < 40 |
Warm | 28 ≤ PT < 36 | ? ≤ PT < 24 |
Slightly warm | ? ≤ PT < 28 | ? |
Young Group | Older Group | |||||||
---|---|---|---|---|---|---|---|---|
Sunny | Cloudy | Sunny | Cloudy | |||||
Time | Concrete | Asphalt | Concrete | Asphalt | Concrete | Asphalt | Concrete | Asphalt |
10:00 | 43.5 | 43.7 | 39.4 | 40.8 | 39.6 | 39.7 | 33.9 | 35.8 |
11:00 | 46.5 | 45 | 41.9 | 41.2 | 43.6 | 41.8 | 37.3 | 36.4 |
12:00 | 48.1 | 47.4 | 41.5 | 40.4 | 45.8 | 44.8 | 36.7 | 35.2 |
13:00 | 48.1 | 48.6 | 40.7 | 41.9 | 45.8 | 46.5 | 35.6 | 37.3 |
14:00 | 49.8 | 47.2 | 40.1 | 38.7 | 48.2 | 44.4 | 34.6 | 32.9 |
15:00 | 49.6 | 48.5 | 39 | 38.5 | 47.8 | 46.3 | 33.3 | 32.6 |
16:00 | 49.1 | 47 | 37.8 | 36.7 | 47.2 | 44.1 | 31.6 | 30.1 |
17:00 | 47.4 | 44.4 | 37.4 | 37.5 | 44.8 | 40.6 | 31.2 | 31.3 |
AVE | 47.8 | 46.5 | 39.7 | 39.5 | 45.4 | 43.5 | 34.3 | 34.0 |
2 m Temperature (°C) | Surface Temperature (°C) | Young Group PT (°C) | Older Group PT (°C) |
---|---|---|---|
20 | 20.6 | 27.9 | 18.1 |
21 | 22.9 | 29.4 | 20.3 |
22 | 25.1 | 31.0 | 22.4 |
23 | 27.4 | 32.6 | 24.6 |
24 | 29.7 | 34.2 | 26.7 |
25 | 32.0 | 35.7 | 28.9 |
26 | 34.3 | 37.3 | 31.0 |
27 | 36.6 | 38.9 | 33.2 |
28 | 38.9 | 40.5 | 35.3 |
29 | 41.2 | 42.0 | 37.5 |
30 | 43.5 | 43.6 | 39.6 |
31 | 45.8 | 45.2 | 41.8 |
32 | 48.1 | 46.8 | 43.9 |
33 | 50.4 | 48.3 | 46.1 |
34 | 52.7 | 49.9 | 48.2 |
35 | 55.0 | 51.5 | 50.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Kwon, H.-G.; Ahn, S.; Yang, H.; Yi, C. Estimation of Perceived Temperature of Road Workers Using Radiation and Meteorological Observation Data. Remote Sens. 2023, 15, 1065. https://doi.org/10.3390/rs15041065
Lee H, Kwon H-G, Ahn S, Yang H, Yi C. Estimation of Perceived Temperature of Road Workers Using Radiation and Meteorological Observation Data. Remote Sensing. 2023; 15(4):1065. https://doi.org/10.3390/rs15041065
Chicago/Turabian StyleLee, Hankyung, Hyuk-Gi Kwon, Sukhee Ahn, Hojin Yang, and Chaeyeon Yi. 2023. "Estimation of Perceived Temperature of Road Workers Using Radiation and Meteorological Observation Data" Remote Sensing 15, no. 4: 1065. https://doi.org/10.3390/rs15041065
APA StyleLee, H., Kwon, H. -G., Ahn, S., Yang, H., & Yi, C. (2023). Estimation of Perceived Temperature of Road Workers Using Radiation and Meteorological Observation Data. Remote Sensing, 15(4), 1065. https://doi.org/10.3390/rs15041065