Solar Potential Uncertainty in Building Rooftops as a Function of Digital Surface Model Accuracy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Digital Surface Model
2.2. Urban Geometry
2.3. Solar Radiation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- JRC. Photovoltaics in the European Union 2022, Status Report on Technology Development, Trends, Value Chains and Markets; Joint Research Centre: Brussels, Belgium, 2022; ISBN 9789276575733. [Google Scholar]
- Freitas, S.; Catita, C.; Redweik, P.; Brito, M.C.C. Modelling solar potential in the urban environment: State-of-the-art review. Renew. Sustain. Energy Rev. 2015, 41, 915–931. [Google Scholar] [CrossRef]
- Jakubiec, J.A.; Reinhart, C.F. A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Sol. Energy 2013, 93, 127–143. [Google Scholar] [CrossRef]
- Brito, M.C.; Gomes, N.; Santos, T.; Tenedório, J.A. Photovoltaic potential in a Lisbon suburb using LiDAR data. Sol. Energy 2012, 86, 283–288. [Google Scholar] [CrossRef]
- Bódis, K.; Kougias, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114, 109309. [Google Scholar]
- Khan, J.; Arsalan, M.H. Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi-Pakistan. Renew. Energy 2016, 90, 188–203. [Google Scholar] [CrossRef]
- Singh, R.; Banerjee, R. Estimation of rooftop solar photovoltaic potential of a city. Sol. Energy 2015, 115, 589–602. [Google Scholar] [CrossRef]
- Verso, A.; Martin, A.; Amador, J.; Dominguez, J. GIS-based method to evaluate the photovoltaic potential in the urban environments: The particular case of Miraflores de la Sierra. Sol. Energy 2015, 117, 236–245. [Google Scholar] [CrossRef]
- Lindberg, F.; Sun, T.; Grimmond, S.; Tang, Y. UMEP Manual Documentation. 2021; p. 192. Available online: https://umep-docs.readthedocs.io/en/latest/ (accessed on 12 January 2023).
- Lindberg, F.; Grimmond, C.S.B.; Gabey, A.; Huang, B.; Kent, C.W.; Sun, T.; Theeuwes, N.E.; Järvi, L.; Ward, H.C.; Capel-Timms, I.; et al. Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environ. Model. Softw. 2018, 99, 70–87. [Google Scholar] [CrossRef]
- Lindberg, F.; Jonsson, P.; Honjo, T.; Wästberg, D. Solar energy on building envelopes—3D modelling in a 2D environment. Sol. Energy 2015, 115, 369–378. [Google Scholar] [CrossRef]
- Revesz, M.; Zamini, S.; Oswald, S.M.; Trimmel, H.; Weihs, P. SEBEpv—New digital surface model based method for estimating the ground reflected irradiance in an urban environment. Sol. Energy 2020, 199, 400–410. [Google Scholar] [CrossRef]
- Karami, A.; Menna, F.; Remondino, F. Combining Photogrammetry and Photometric Stereo to Achieve Precise and Complete 3D Reconstruction. Sensors 2022, 22, 8172. [Google Scholar] [CrossRef] [PubMed]
- Schonberger, J.L.; Frahm, J.M. Structure-from-Motion Revisited. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- Alliez, P.; Forge, F.; de Luca, L.; Pierrot-Deseilligny, M.; Preda, M. Culture 3D Cloud: A Cloud Computing Platform for 3D Scanning, Documentation, Preservation and Dissemination of Cultural Heritage. ERCIM News 2017, 111, 64. [Google Scholar]
- Chodoronek, M. The Use and Application of Photogrammetry for the In-field Documentation of Archaeological Features: Three Case Studies from the Great Plains and Southeastern Alaska; University of Nebraska-Lincoln: Lincoln, NE, USA, 2015. [Google Scholar]
- Ducke, B.; Score, D.; Reeves, J. Multiview 3D reconstruction of the archaeological site at Weymouth from image series. Comput. Graph. 2011, 35, 375–382. [Google Scholar] [CrossRef]
- Quirós, E.; Pozo, M.; Ceballos, J. Solar potential of rooftops in Cáceres city, Spain. J. Maps 2018, 14, 44–51. [Google Scholar] [CrossRef]
- Blaise, R.; Gilles, D. Adapted strategy for large-scale assessment of solar potential on facades in urban areas. Sol. Energy Adv. 2022, 2, 100030. [Google Scholar] [CrossRef]
- Huang, X.; Hayashi, K.; Matsumoto, T.; Tao, L.; Huang, Y.; Tomino, Y. Estimation of Rooftop Solar Power Potential by Comparing Solar Radiation Data and Remote Sensing Data—A Case Study in Aichi, Japan. Remote Sens. 2022, 14, 1742. [Google Scholar] [CrossRef]
- Buffat, R. Feature-Aware Surface Interpolation of Rooftops Using Low-Density Lidar Data for Photovoltaic Applications; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783319337838. [Google Scholar]
- Goodwin, N.R.; Coops, N.C.; Tooke, T.R.; Christen, A.; Voogt, J.A. Characterizing urban surface cover and structure with airborne lidar technology. Can. J. Remote Sens. 2009, 35, 297–309. [Google Scholar] [CrossRef]
- Prieto, I.; Izkara, J.L.; Usobiaga, E. The application of lidar data for the solar potential analysis based on urban 3D model. Remote Sens. 2019, 11, 2348. [Google Scholar] [CrossRef] [Green Version]
- Gawley, D.; McKenzie, P. Investigating the suitability of GIS and remotely-sensed datasets for photovoltaic modelling on building rooftops. Energy Build. 2022, 265, 112083. [Google Scholar] [CrossRef]
- Lastilla, L.; Belloni, V.; Ravanelli, R.; Crespi, M. DSM generation from single and cross-sensor multi-view satellite images using the new agisoft metashape: The case studies of Trento and Matera (Italy). Remote Sens. 2021, 13, 593. [Google Scholar] [CrossRef]
- Beltran-Velamazan, C.; Monzón-Chavarrías, M.; López-Mesa, B. A method for the automated construction of 3D models of cities and neighborhoods from official cadaster data for solar analysis. Sustainability 2021, 13, 6028. [Google Scholar] [CrossRef]
- Amaro, R.; Blanc, P. Estimating Global Horizontal Irradiance at the Urban Level: A Sensitivity Analysis Using Different Digital Surface Models. In Proceedings of the 8th World Conference on Photovoltaic Energy Conversion, Milan, Italy, 26–30 September 2022. [Google Scholar]
- Desthieux, G.; Carneiro, C.; Camponovo, R.; Ineichen, P.; Morello, E.; Boulmier, A.; Abdennadher, N.; Dervey, S.; Ellert, C. Solar energy potential assessment on rooftops and facades in large built environments based on lidar data, image processing, and cloud computing. Methodological background, application, and validation in Geneva (solar cadaster). Front. Built Environ. 2018, 4, 14. [Google Scholar] [CrossRef]
- Govehovitch, B.; Thebault, M.; Bouty, K.; Giroux-Julien, S.; Peyrol, É.; Guillot, V.; Ménézo, C.; Desthieux, G. Numerical Validation of the Radiative Model for the Solar Cadaster Developed for Greater Geneva. Appl. Sci. 2021, 11, 8086. [Google Scholar] [CrossRef]
- Polo, J.; Martín-Chivelet, N.; Sanz-Saiz, C. BIPV Modeling with Artificial Neural Networks: Towards a BIPV Digital Twin. Energies 2022, 15, 4173. [Google Scholar] [CrossRef]
- Polo, J.; Martín-Chivelet, N.; Alonso-Abella, M.; Alonso-García, C. Photovoltaic generation on vertical façades in urban context from open satellite-derived solar resource data. Sol. Energy 2021, 224, 1396–1405. [Google Scholar] [CrossRef]
- Spanish Geographic National Institute Download Centre of the IGN. Available online: https://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?# (accessed on 29 November 2022).
- Jebur, A.K.; Tayeb, F.A.; Jawad, Z.S. Show the Potential of Agisoft Photoscan Software to Create a 3D Model for Salhiyah Residential Complex in Baghdad Based on Aerial Photos. IOP Conf. Ser. Mater. Sci. Eng. 2020, 745, 012132. [Google Scholar] [CrossRef]
- Peña-Villasenín, S.; Gil-Docampo, M.; Ortiz-Sanz, J. Desktop vs. cloud computing software for 3D measurement of building façades: The monastery of San Martín Pinario. Meas. J. Int. Meas. Confed. 2020, 149, 106984. [Google Scholar] [CrossRef]
- Mueller, R.W.; Matsoukas, C.; Gratzki, A.; Behr, H.D.; Hollmann, R. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance—A LUT based eigenvector hybrid approach. Remote Sens. Environ. 2009, 113, 1012–1024. [Google Scholar] [CrossRef]
- Mueller, R.; Behrendt, T.; Hammer, A.; Kemper, A. A New Algorithm for the Satellite-Based Retrieval of Solar Surface Irradiance in Spectral Bands. Remote Sens. 2012, 4, 622–647. [Google Scholar] [CrossRef] [Green Version]
- Amillo, A.; Huld, T.; Müller, R. A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation. Remote Sens. 2014, 6, 8165–8189. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, M.; Habte, A.; Wilbert, S.; Gueymard, C.; Remund, J. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Third Edition; Report IEA-PVPS 16-04:2021; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Driesse, A.; Zaaiman, W.; Riley, D.; Taylor, N.; Stein, J.S. Investigation of pyranometer and photodiode calibrations under different conditions. In Proceedings of the IEEE Photovoltaic Specialists Conference, Portland, OR, USA, 5–10 June 2016; Volume 43. [Google Scholar]
- Urraca, R.; Gracia-Amillo, A.M.; Koubli, E.; Huld, T.; Trentmann, J.; Riihelä, A.; Lindfors, A.V.; Palmer, D.; Gottschalg, R.; Antonanzas-Torres, F. Extensive validation of CM SAF surface radiation products over Europe. Remote Sens. Environ. 2017, 199, 171–186. [Google Scholar] [CrossRef] [PubMed]
DSM | Point 1 (%) | Point 2 (%) | Point 3 (%) |
---|---|---|---|
LiDAR DSM | 23 | 13 | 38 |
Photo DSM | 25 | 9 | 49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polo, J.; García, R.J. Solar Potential Uncertainty in Building Rooftops as a Function of Digital Surface Model Accuracy. Remote Sens. 2023, 15, 567. https://doi.org/10.3390/rs15030567
Polo J, García RJ. Solar Potential Uncertainty in Building Rooftops as a Function of Digital Surface Model Accuracy. Remote Sensing. 2023; 15(3):567. https://doi.org/10.3390/rs15030567
Chicago/Turabian StylePolo, Jesús, and Redlich J. García. 2023. "Solar Potential Uncertainty in Building Rooftops as a Function of Digital Surface Model Accuracy" Remote Sensing 15, no. 3: 567. https://doi.org/10.3390/rs15030567
APA StylePolo, J., & García, R. J. (2023). Solar Potential Uncertainty in Building Rooftops as a Function of Digital Surface Model Accuracy. Remote Sensing, 15(3), 567. https://doi.org/10.3390/rs15030567