Real-Time 3D Mapping in Complex Environments Using a Spinning Actuated LiDAR System
Abstract
:1. Introduction
- We propose a tightly coupled laser–inertial SLAM algorithm named Spin-LOAM for a spinning actuated LiDAR system.
- An adaptive scan accumulation method that can improve the accuracy and reliability of matching by analyzing the spatial distribution of feature points.
- Extensive experiments were conducted in indoor and outdoor environments to verify the effectiveness of our algorithm.
2. Related Work
3. System Overview
4. Methodology
4.1. IMU Processing
4.1.1. Pose Prediction
4.1.2. IMU Pre-Integration
4.2. Feature Extraction
- (1)
- For a point , find its previous neighbors and succeeding neighbors in the same scan line.
- (2)
- Calculate the features , of the point using
- (3)
- For point with , if all points in its closer neighbors (depending on the closest point belonging to the neighbor or ) are smooth points, then add to .
- (4)
- For point with , if all points in its previous and succeeding neighbors are smooth points, then add to the candidate set of edge points.
- (5)
- Use the standard LOAM-based method to extract planar features and edge points , except that the edge points must belong to the candidate set.
4.3. Scan-to-Map Registration
4.4. Adaptive Scan Accumulation
4.4.1. Features’ Distribution Inspection
4.4.2. Outlier Removal in Matched Features
4.5. Loop Closure Detection
Algorithm 1: Loop closure detection. |
5. Experiments
5.1. Evaluation in Indoor Environments
5.2. Evaluation in Outdoor Environments
5.3. Runtime Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, Y.; Ibanez-Guzman, J. LiDAR for Autonomous Driving: The Principles, Challenges, and Trends for Automotive LiDAR and Perception Systems. IEEE Signal Process. Mag. 2020, 37, 50–61. [Google Scholar] [CrossRef]
- Bolourian, N.; Hammad, A. LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection. Autom. Constr. 2020, 117, 103250. [Google Scholar] [CrossRef]
- Beland, M.; Parker, G.; Sparrow, B.; Harding, D.; Chasmer, L.; Phinn, S.; Antonarakis, A.; Strahler, A. On promoting the use of LiDAR systems in forest ecosystem research. For. Ecol. Manag. 2019, 450, 117484. [Google Scholar] [CrossRef]
- Raj, T.; Hanim Hashim, F.; Baseri Huddin, A.; Ibrahim, M.F.; Hussain, A. A survey on LiDAR scanning mechanisms. Electronics 2020, 9, 741. [Google Scholar] [CrossRef]
- Li, K.; Li, M.; Hanebeck, U.D. Towards high-performance solid-state-LiDAR-inertial odometry and mapping. IEEE Robot. Autom. Lett. 2021, 6, 5167–5174. [Google Scholar] [CrossRef]
- Alsadik, B.; Remondino, F. Flight planning for LiDAR-based UAS mapping applications. ISPRS Int. J. Geo-Inf. 2020, 9, 378. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, F.Z. Extrinsic Calibration of Multiple LiDARs of Small FoV in Targetless Environments. IEEE Robot. Autom. Lett. 2021, 6, 2036–2043. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Yuan, S.; Cao, M.; Lyu, Y.; Nguyen, T.H.; Xie, L. MILIOM: Tightly Coupled Multi-Input LiDAR-Inertia Odometry and Mapping. IEEE Robot. Autom. Lett. 2021, 6, 5573–5580. [Google Scholar] [CrossRef]
- Jiao, J.; Ye, H.; Zhu, Y.; Liu, M. Robust Odometry and Mapping for Multi-LiDAR Systems With Online Extrinsic Calibration. IEEE Trans. Robot. 2022, 38, 351–371. [Google Scholar] [CrossRef]
- Zhang, D.; Gong, Z.; Chen, Y.; Zelek, J.; Li, J. SLAM-based multi-sensor backpack LiDAR systems in gnss-denied environments. In Proceedings of the IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8984–8987. [Google Scholar]
- Velas, M.; Spanel, M.; Sleziak, T.; Habrovec, J.; Herout, A. Indoor and outdoor backpack mapping with calibrated pair of velodyne LiDARs. Sensors 2019, 19, 3944. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Singh, S. LOAM: LiDAR Odometry and Mapping in Real-time. Robot. Sci. Syst. 2014, 2, 9. [Google Scholar]
- Shan, T.; Englot, B. Lego-loam: Lightweight and ground-optimized LiDAR odometry and mapping on variable terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar]
- Zhou, P.; Guo, X.; Pei, X.; Chen, C. T-LOAM: Truncated Least Squares LiDAR-Only Odometry and Mapping in Real Time. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 5701013. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F. BALM: Bundle Adjustment for LiDAR Mapping. IEEE Robot. Autom. Lett. 2021, 6, 3184–3191. [Google Scholar] [CrossRef]
- Zhou, L.; Koppel, D.; Kaess, M. LiDAR SLAM With Plane Adjustment for Indoor Environment. IEEE Robot. Autom. Lett. 2021, 6, 7073–7080. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.; Kaess, M. π-LSAM: LiDAR smoothing and mapping with planes. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 5751–5757. [Google Scholar]
- Chen, X.; Milioto, A.; Palazzolo, E.; Giguere, P.; Behley, J.; Stachniss, C. Suma++: Efficient LiDAR-based semantic slam. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4530–4537. [Google Scholar]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. Lio-sam: Tightly-coupled LiDAR inertial odometry via smoothing and mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 5135–5142. [Google Scholar]
- Ye, H.; Chen, Y.; Liu, M. Tightly coupled 3D LiDAR inertial odometry and mapping. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3144–3150. [Google Scholar]
- Xu, W.; Zhang, F. Fast-lio: A fast, robust LiDAR-inertial odometry package by tightly-coupled iterated kalman filter. IEEE Robot. Autom. Lett. 2021, 6, 3317–3324. [Google Scholar] [CrossRef]
- Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. FAST-LIO2: Fast Direct LiDAR-Inertial Odometry. IEEE Trans. Robot. 2022, 38, 2053–2073. [Google Scholar] [CrossRef]
- Lv, J.; Hu, K.; Xu, J.; Liu, Y.; Ma, X.; Zuo, X. Clins: Continuous-time trajectory estimation for LiDAR-inertial system. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 6657–6663. [Google Scholar]
- Bosse, M.; Zlot, R.; Flick, P. Zebedee: Design of a Spring-Mounted 3-D Range Sensor with Application to Mobile Mapping. IEEE Trans. Robot. 2012, 28, 1104–1119. [Google Scholar] [CrossRef]
- Kaul, L.; Zlot, R.; Bosse, M. Continuous-Time Three-Dimensional Mapping for Micro Aerial Vehicles with a Passively Actuated Rotating Laser Scanner. J. Field Robot. 2016, 33, 103–132. [Google Scholar] [CrossRef]
- Park, C.; Moghadam, P.; Kim, S.; Elfes, A.; Fookes, C.; Sridharan, S. Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1206–1213. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, S.; Wen, S. A Real-time and Low-cost 3D SLAM System Based on a Continuously Rotating 2D Laser Scanner. In Proceedings of the 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Honolulu, HI, USA, 31 July–4 August 2017; pp. 454–459. [Google Scholar] [CrossRef]
- Zhen, W.; Hu, Y.; Liu, J.; Scherer, S. A Joint Optimization Approach of LiDAR-Camera Fusion for Accurate Dense 3-D Reconstructions. IEEE Robot. Autom. Lett. 2019, 4, 3585–3592. [Google Scholar] [CrossRef] [Green Version]
- Oelsch, M.; Karimi, M.; Steinbach, E. R-LOAM: Improving LiDAR Odometry and Mapping With Point-to-Mesh Features of a Known 3D Reference Object. IEEE Robot. Autom. Lett. 2021, 6, 2068–2075. [Google Scholar] [CrossRef]
- Karimi, M.; Oelsch, M.; Stengel, O.; Babaians, E.; Steinbach, E. LoLa-SLAM: Low-latency LiDAR SLAM using Continuous Scan Slicing. IEEE Robot. Autom. Lett. 2021, 2248–2255. [Google Scholar] [CrossRef]
- Benson, M.; Nikolaidis, J.; Clayton, G.M. Lissajous-like scan pattern for a nodding multi-beam LiDAR. In Proceedings of the Dynamic Systems and Control Conference, Atlanta, GA, USA, 30 September–3 October 2018; Volume 51906, p. V002T24A007. [Google Scholar]
- Lupton, T.; Sukkarieh, S. Efficient integration of inertial observations into visual SLAM without initialization. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 1547–1552. [Google Scholar]
- Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-Manifold Preintegration for Real-Time Visual–Inertial Odometry. IEEE Trans. Robot. 2017, 33, 1–21. [Google Scholar] [CrossRef]
- Chen, P.; Shi, W.; Bao, S.; Wang, M.; Fan, W.; Xiang, H. Low-Drift Odometry, Mapping and Ground Segmentation Using a Backpack LiDAR System. IEEE Robot. Autom. Lett. 2021, 6, 7285–7292. [Google Scholar] [CrossRef]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LiDAR SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016. [Google Scholar]
Length (m) | FAST-LIO2 | LIO-SAM | Spin-LOAM (Odom) | Spin-LOAM (Full) | |
---|---|---|---|---|---|
Data 1 | 189.0993 | 2.2631 | / | 0.6976 | 0.0090 |
Data 2 | 382.3672 | 0.0210 | 0.0128 | 0.0126 | 0.0114 |
Data 3 | 315.1776 | 0.0166 | 0.0145 | 0.0175 | 0.0164 |
Length (m) | FAST-LIO2 | LIO-SAM | Spin-LOAM (wo-asa) | Spin-LOAM (Odom) | Spin-LOAM (Full) | |
---|---|---|---|---|---|---|
Data 5 | 415.3925 | 0.0799 | 0.0854 | 0.0760 | 0.0753 | 0.0725 |
Data 6 | 782.0214 | 0.8844 | (0.4908) | 0.2623 | 0.2323 | 0.2175 |
Data 7 | 1335.2931 | 0.2271 | 0.2771 | 0.2064 | 0.1871 | 0.1786 |
Data 8 | 623.8667 | 0.1670 | / | 0.1431 | 0.1353 | 0.1308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Dai, J.; Zhao, Y.; Chen, C. Real-Time 3D Mapping in Complex Environments Using a Spinning Actuated LiDAR System. Remote Sens. 2023, 15, 963. https://doi.org/10.3390/rs15040963
Yan L, Dai J, Zhao Y, Chen C. Real-Time 3D Mapping in Complex Environments Using a Spinning Actuated LiDAR System. Remote Sensing. 2023; 15(4):963. https://doi.org/10.3390/rs15040963
Chicago/Turabian StyleYan, Li, Jicheng Dai, Yinghao Zhao, and Changjun Chen. 2023. "Real-Time 3D Mapping in Complex Environments Using a Spinning Actuated LiDAR System" Remote Sensing 15, no. 4: 963. https://doi.org/10.3390/rs15040963
APA StyleYan, L., Dai, J., Zhao, Y., & Chen, C. (2023). Real-Time 3D Mapping in Complex Environments Using a Spinning Actuated LiDAR System. Remote Sensing, 15(4), 963. https://doi.org/10.3390/rs15040963