Evaluation of GPM-IMERG Precipitation Product at Multiple Spatial and Sub-Daily Temporal Scales over Mainland China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Precipitation Amount, Frequency, and Intensity
2.4. Spatial and Temporal Scales
2.5. Statistical Metrics
2.5.1. Consistency Metrics
2.5.2. Classification Statistics Metrics
3. Results
3.1. Mean Precipitation Amount, Frequency, and Intensity
3.2. Effect of Temporal and Spatial Scales on IMERG Performance
3.3. Precipitation Characteristics at Different Precipitation Intensities
4. Discussion
5. Conclusions
- Generally, the IMERG shows large-scale patterns that resemble gauge observations, although it generally overestimates the PA and PI, and underestimates PF.
- The overestimation of PA in the IMERG over China is mainly due to it overestimating light precipitation, especially since it overestimates the frequency of occurrence at the light rain range. IMERG precipitation products exhibit poor performance with relatively low CSI for small precipitation intensities at all spatial and temporal scales.
- The evaluation results are highly sensitive to the implemented spatial and temporal resolutions, and the performance of the IMERG is improved when scaled up to coarser scales. Specifically, the IMERG performance in characterizing PA and PI of raining events improves with scaling to larger regions and longer periods, but it is reversed for PF.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yong, B.; Liu, D.; Gourley, J.J.; Tian, Y.D.; Huffman, G.J.; Ren, L.L.; Hong, Y. Global view of real-Time TRMM multisatellite precipitation analysis implications for its successor global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2015, 96, 283–296. [Google Scholar] [CrossRef]
- Sun, Q.H.; Miao, C.Y.; Duan, Q.Y.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Gu, G.J.; Sapiano, M.; Wang, J.J.; Huffman, G.J. Global Precipitation: Means, Variations and Trends During the Satellite Era (1979-2014). Surv. Geophys. 2017, 38, 679–699. [Google Scholar] [CrossRef] [Green Version]
- Ombadi, M.; Nguyen, P.; Sorooshian, S.; Hsu, K.L. Developing Intensity-Duration-Frequency (IDF) Curves from Satellite-Based Precipitation: Methodology and Evaluation. Water Resour. Res. 2018, 54, 7752–7766. [Google Scholar] [CrossRef]
- Li, D.L.; Min, X.X.; Xu, J.T.; Xue, J.; Shi, Z. Assessment of three gridded satellite-based precipitation products and their performance variabilities during typhoons over Zhejiang, southeastern China. J. Hydrol. 2022, 610, 127985. [Google Scholar] [CrossRef]
- Levizzani, V.; Cattani, E. Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate. Remote Sens. 2019, 11, 2301. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.Q.; Chen, S.; Li, Z.; Gao, L.; Li, X.Y. Comparison of Satellite Precipitation Products: IMERG and GSMaP with Rain Gauge Observations in Northern China. Remote Sens. 2022, 14, 4748. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The global precipitation measurement (gpm) mission for science and society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. NASA Global Precipitation Measurement Integrated MultisatellitE Retrievals for GPM (IMERG) Algorithm Theoretical Basis Document (ATBD) Version 06. 2019; p. 9. Available online: https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf (accessed on 20 February 2023).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Stocker, E.F. Integrated Multi-satellite Retrievals for GPM (IMERG) Technical Documentation. 2019, pp. 19–20. Available online: https://www.semanticscholar.org/paper/Integrated-Multi-satellitE-Retrievals-for-GPM-Huffman-Bolvin/b7c234ea4df1bdceacc63e26759de8fd1c4d7e9d (accessed on 20 February 2023).
- Pradhan, R.K.; Markonis, Y.; Godoy, M.R.V.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG performance: A global perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Gadelha, A.N.; Coelho, V.H.R.; Xavier, A.C.; Barbosa, L.R.; Melo, D.C.D.; Xuan, Y.Q.; Huffman, G.J.; Petersen, W.A.; Almeida, C.D. Grid box-level evaluation of IMERG over Brazil at various space and time scales. Atmos. Res. 2019, 218, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Hu, D.Y.; Liu, M.Q.; Wang, S.S.; Di, Y.F. Spatio-temporal accuracy evaluation of three high-resolution satellite precipitation products in China area. Atmos. Res. 2020, 241, 104952. [Google Scholar] [CrossRef]
- Ramadhan, R.; Yusnaini, H.; Marzuki, M.; Muharsyah, R.; Suryanto, W.; Sholihun, S.; Vonnisa, M.; Harmadi, H.; Ningsih, A.P.; Battaglia, A.; et al. Evaluation of GPM IMERG Performance Using Gauge Data over Indonesian Maritime Continent at Different Time Scales. Remote Sens. 2022, 14, 1172. [Google Scholar] [CrossRef]
- Wang, C.G.; Tang, G.Q.; Han, Z.Y.; Guo, X.L.; Hong, Y. Global intercomparison and regional evaluation of GPM IMERG Version-03, Version-04 and its latest Version-05 precipitation products: Similarity, difference and improvements. J. Hydrol. 2018, 564, 342–356. [Google Scholar] [CrossRef]
- Tang, G.Q.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.Q.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Pirmoradian, R.; Hashemi, H.; Fayne, J. Performance evaluation of IMERG and TMPA daily precipitation products over CONUS (2000-2019). Atmos. Res. 2022, 279, 106389. [Google Scholar] [CrossRef]
- Su, J.B.; Lu, H.S.; Crow, W.T.; Zhu, Y.H.; Cui, Y.F. The Effect of Spatiotemporal Resolution Degradation on the Accuracy of IMERG Products over the Huai River Basin. J. Hydrometeorol. 2020, 21, 1073–1088. [Google Scholar] [CrossRef] [Green Version]
- Sungmin, O.; Kirstetter, P.E. Evaluation of diurnal variation of GPM IMERG-derived summer precipitation over the contiguous US using MRMS data. Q. J. R. Meteorol. Soc. 2018, 144, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.J.; Yu, R.C.; Chen, H.M.; Dai, A.; Pan, Y. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Clim. 2008, 21, 3997–4010. [Google Scholar] [CrossRef]
- Li, R.Z.; Wang, K.C.; Qi, D. Validating the Integrated Multisatellite Retrievals for Global Precipitation Measurement in Terms of Diurnal Variability with Hourly Gauge Observations Collected at 50,000 Stations in China. J. Geophys. Res. Atmos. 2018, 123, 10423–10442. [Google Scholar] [CrossRef]
- Liu, Q.; Chiu, L.S.; Hao, X.J.; Yang, C.W. Spatiotemporal Trends and Variations of the Rainfall Amount, Intensity, and Frequency in TRMM Multi-satellite Precipitation Analysis (TMPA) Data. Remote Sens. 2021, 13, 4629. [Google Scholar] [CrossRef]
- Dai, A.; Lin, X.; Hsu, K.L. The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Clim. Dyn. 2007, 29, 727–744. [Google Scholar] [CrossRef]
- Li, Y.; Guo, B.; Wang, K.C.; Wu, G.C.; Shi, C.M. Performance of TRMM Product in Quantifying Frequency and Intensity of Precipitation during Daytime and Nighttime across China. Remote Sens. 2020, 12, 740. [Google Scholar] [CrossRef] [Green Version]
- Ramadhan, R.; Marzuki, M.; Yusnaini, H.; Muharsyah, R.; Suryanto, W.; Sholihun, S.; Vonnisa, M.; Battaglia, A.; Hashiguchi, H. Capability of GPM IMERG Products for Extreme Precipitation Analysis over the Indonesian Maritime Continent. Remote Sens. 2022, 14, 412. [Google Scholar] [CrossRef]
- Zhu, L.M.; Liu, J.Z.; Zhu, A.X.; Sheng, M.L.; Duan, Z. Spatial Distribution of Diurnal Rainfall Variation in Summer over China. J. Hydrometeorol. 2018, 19, 667–678. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J.J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Xu, S.G.; Shen, Y.; Niu, Z. Evaluation of the IMERG version 05B precipitation product and comparison with IMERG version 04A over mainland China at hourly and daily scales. Adv. Space Res. 2019, 63, 2387–2398. [Google Scholar] [CrossRef]
- Su, X.L.; Shum, C.K.; Luo, Z.C. Evaluating IMERG V04 Final Run for Monitoring Three Heavy Rain Events Over Mainland China in 2016. IEEE Geosci. Remote Sens. Lett. 2018, 15, 444–448. [Google Scholar] [CrossRef]
- Muetzelfeldt, M.R.; Schiemann, R.; Turner, A.G.; Klingaman, N.P.; Vidale, P.L.; Roberts, M.J. Evaluation of Asian summer precipitation in different configurations of a high-resolution general circulation model in a range of decision-relevant spatial scales. Hydrol. Earth Syst. Sci. 2021, 25, 6381–6405. [Google Scholar] [CrossRef]
- Tang, G.Q.; Behrangi, A.; Long, D.; Li, C.M.; Hong, Y. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. J. Hydrol. 2018, 559, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.H.; Yong, B.; Yi, L.; Wu, H.; Xu, H. From TRMM to GPM, how do improvements of post/near-real-time satellite precipitation estimates manifest? Atmos. Res. 2022, 268, 106029. [Google Scholar] [CrossRef]
- Li, X.Y.; Sungmin, O.; Wang, N.; Liu, L.C.; Huang, Y.Z. Evaluation of the GPM IMERG V06 products for light rain over Mainland China. Atmos. Res. 2021, 253, 105510. [Google Scholar] [CrossRef]
- Shi, J.; Yuan, F.; Shi, C.; Zhao, C.; Zhang, L.; Ren, L.; Zhu, Y.; Jiang, S.; Liu, Y. Statistical Evaluation of the Latest GPM-Era IMERG and GSMaP Satellite Precipitation Products in the Yellow River Source Region. Water 2020, 12, 1006. [Google Scholar] [CrossRef] [Green Version]
- Abebe, S.A.; Qin, T.; Yan, D.; Gelaw, E.B.; Workneh, H.T.; Kun, W.; Liu, S.; Dong, B. Spatial and Temporal Evaluation of the Latest High-Resolution Precipitation Products over the Upper Blue Nile River Basin, Ethiopia. Water 2020, 12, 3072. [Google Scholar] [CrossRef]
- Wu, H.; Yong, B.; Shen, Z.H.; Qi, W.Q. Comprehensive error analysis of satellite precipitation estimates based on Fengyun-2 and GPM over Chinese mainland. Atmos. Res. 2021, 263, 105805. [Google Scholar] [CrossRef]
- Mayor, Y.G.; Tereshchenko, I.; Fonseca-Hernandez, M.; Pantoja, D.A.; Montes, J.M. Evaluation of Error in IMERG Precipitation Estimates under Different Topographic Conditions and Temporal Scales over Mexico. Remote Sens. 2017, 9, 503. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.X.; Ye, J.; Fang, G.H.; Huang, X.F.; Yan, M. Assessment of GPM IMERG Satellite Precipitation Estimation under Complex Climatic and Topographic Conditions. Atmosphere 2021, 12, 780. [Google Scholar] [CrossRef]
- Lu, E.; Ding, Y.; Zhou, B.; Zou, X.K.; Chen, X.Y.; Cai, W.Y.; Zhang, Q.; Chen, H.S. Is the interannual variability of summer rainfall in China dominated by precipitation frequency or intensity? An analysis of relative importance. Clim. Dyn. 2016, 47, 67–77. [Google Scholar] [CrossRef]
- Aminyavari, S.; Saghafian, B.; Sharifi, E. Assessment of Precipitation Estimation from the NWP Models and Satellite Products for the Spring 2019 Severe Floods in Iran. Remote Sens. 2019, 11, 2741. [Google Scholar] [CrossRef] [Green Version]
Spatiotemporal Scales | PA (mm/h) | PF (%) | PI (mm/h) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
IMERG | MPA | BIAS | IMERG | MPA | BIAS | IMERG | MPA | BIAS | ||
0.1° | 1 h | 0.15 | 0.13 | 15.56% | 22.79 | 9.61 | 228.55% | 0.61 | 1.24 | −64.68% |
3 h | 0.15 | 0.13 | 15.70% | 31.58 | 15.47 | 104.11% | 0.44 | 0.77 | −42.65% | |
12 h | 0.15 | 0.13 | 16.11% | 54.02 | 31.91 | 69.27% | 0.26 | 0.37 | −29.27% | |
24 h | 0.15 | 0.13 | 16.96% | 68.20 | 46.03 | 48.17% | 0.21 | 0.25 | −17.21% | |
1 h | 0.1° | 0.15 | 0.13 | 15.56% | 22.79 | 9.61 | 228.55% | 0.61 | 1.24 | −64.68% |
0.25° | 0.15 | 0.13 | 16.56% | 36.74 | 15.06 | 143.94% | 0.39 | 0.78 | −50.14% | |
0.5° | 0.15 | 0.13 | 15.65% | 46.88 | 21.21 | 121.08% | 0.31 | 0.56 | −45.21% | |
1° | 0.15 | 0.13 | 15.52% | 64.22 | 35.03 | 83.34% | 0.23 | 0.35 | −34.39% |
Spatiotemporal Scales | RMSE | |||
---|---|---|---|---|
PA (mm/h) | PF (%) | PI (mm/h) | ||
0.1° | 1 h | 0.05 | 23.33 | 0.89 |
3 h | 0.05 | 23.82 | 0.39 | |
12 h | 0.05 | 24.54 | 0.15 | |
24 h | 0.05 | 25.16 | 0.08 | |
1 h | 0.1° | 0.05 | 23.33 | 0.89 |
0.25° | 0.04 | 23.58 | 0.43 | |
0.5° | 0.04 | 27.64 | 0.29 | |
1° | 0.03 | 31.14 | 0.14 |
Precipitation Characteristic | 0 mm | 0.02 mm | 0.1 mm | 0.2 mm |
---|---|---|---|---|
PA (mm/h) | 0.05 | 0.05 | 0.05 | 0.05 |
PF (%) | 5.82 | 5.76 | 4.48 | 3.66 |
PI (mm/h) | 0.72 | 0.72 | 0.91 | 1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Lu, D.; Yong, B.; Shen, Z.; Wu, H.; Yu, L. Evaluation of GPM-IMERG Precipitation Product at Multiple Spatial and Sub-Daily Temporal Scales over Mainland China. Remote Sens. 2023, 15, 1237. https://doi.org/10.3390/rs15051237
Zhou Z, Lu D, Yong B, Shen Z, Wu H, Yu L. Evaluation of GPM-IMERG Precipitation Product at Multiple Spatial and Sub-Daily Temporal Scales over Mainland China. Remote Sensing. 2023; 15(5):1237. https://doi.org/10.3390/rs15051237
Chicago/Turabian StyleZhou, Zehui, Dekai Lu, Bin Yong, Zhehui Shen, Hao Wu, and Lei Yu. 2023. "Evaluation of GPM-IMERG Precipitation Product at Multiple Spatial and Sub-Daily Temporal Scales over Mainland China" Remote Sensing 15, no. 5: 1237. https://doi.org/10.3390/rs15051237
APA StyleZhou, Z., Lu, D., Yong, B., Shen, Z., Wu, H., & Yu, L. (2023). Evaluation of GPM-IMERG Precipitation Product at Multiple Spatial and Sub-Daily Temporal Scales over Mainland China. Remote Sensing, 15(5), 1237. https://doi.org/10.3390/rs15051237