Evaluation of the High-Resolution MuSyQ LAI Product over Heterogeneous Land Surfaces
Abstract
:1. Introduction
2. Study Areas and Data
2.1. Study Area and Field Measurements
2.2. High Spatial-Resolution UAV Data
2.3. MuSyQ LAI
3. Methodology
3.1. Spatial Representativeness of Field LAI Measurements
3.2. MuSyQ LAI Product Error Analysis
3.3. Estimating the Fine-Resolution LAI Relative “True” Value
4. Results
4.1. Overall Error for MuSyQ LAI Data Products
4.2. Assessment of Validation Error Attributable to Data Acquisition from Different Platforms
4.3. Assessment of Validation Error Attributable to Differences between Retrieval Models
4.4. Assessment of Validation Error Attributable to Scale Effects
4.5. Inter-Comparison of the GF-1 Reflectance with Sentinel-2 Reflectance
5. Discussion
5.1. Uncertainties Associated with Land Cover Classification Data
5.2. Validation of the MuSyQ LAI Product against Field Measurements
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Pavlic, G.; Brown, L.; Cihlar, J.; Leblanc, S.G.; White, H.P.; Hall, R.J.; Peddle, D.R.; King, D.J.; Trofymow, J.A.; et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens. Environ. 2002, 80, 165–184. [Google Scholar] [CrossRef]
- Asner, G.P.; Braswell, B.H.; Schimel, D.S.; Wessman, C.A. Ecological Research Needs from Multiangle Remote Sensing Data. Remote Sens. Environ. 1998, 63, 155–165. [Google Scholar] [CrossRef]
- Jarlan, L.; Balsamo, G.; Lafont, S.; Beljaars, A.; Calvet, J.C.; Mougin, E. Analysis of leaf area index in the ECMWF land surface model and impact on latent heat and carbon fluxes: Application to West Africa. J. Geophys. Res. 2008, 113, D24117. [Google Scholar] [CrossRef]
- GCOS. The Global Observing System for Climate: Implementation Needs (GCOS-200); World Meteorological Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Yang, W.Z.; Huang, D.; Tan, B.; Stroeve, J.C.; Shabanov, N.V.; Knyazikhin, Y.; Nemani, R.R.; Myneni, R.B. Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the terra MODIS sensor: 2000-2005. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1829–1842. [Google Scholar] [CrossRef]
- Ma, H.; Liang, S.L. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 2022, 273, 112985. [Google Scholar] [CrossRef]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Nino, F.; Weiss, M.; Samain, O.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION—Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.N.; Su, Y.; Tan, B.; Huang, D.; Yang, W.Z.; Schull, M.; Bull, M.A.; Martonchik, J.V.; Diner, D.J.; Knyazikhin, Y.; et al. Analysis of the MISR LA/FPAR product for spatial and temporal coverage, accuracy and consistency. Remote Sens. Environ. 2007, 107, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Justice, C.O.; Roman, M.O.; Csiszar, I.; Vermote, E.F.; Wolfe, R.E.; Hook, S.J.; Friedl, M.; Wang, Z.S.; Schaaf, C.B.; Miura, T.; et al. Land and cryosphere products from Suomi NPP VIIRS: Overview and status. J. Geophys. Res. Atmos. 2013, 118, 9753–9765. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.; Fan, L.; Fensholt, R.; Frappart, F.; Ciais, P.; Xiao, X.; Sitch, S.; Xing, Z.; Yu, L.; Zhou, Z.; et al. Asymmetric response of primary productivity to precipitation anomalies in Southwest China. Agric. For. Meteorol. 2023, 331, 109350. [Google Scholar] [CrossRef]
- Piao, S.L.; Yin, G.D.; Tan, J.G.; Cheng, L.; Huang, M.T.; Li, Y.; Liu, R.G.; Mao, J.F.; Myneni, R.B.; Peng, S.S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Change Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef]
- Chen, X.; Chen, T.X.; Yan, Q.Y.; Cai, J.T.; Guo, R.J.; Gao, M.N.; Wei, X.Q.; Zhou, S.J.; Li, C.F.; Xie, Y. The Ongoing Greening in Southwest China despite Severe Droughts and Drying Trends. Remote Sens. 2021, 13, 3374. [Google Scholar] [CrossRef]
- Pasolli, L.; Asam, S.; Castelli, M.; Bruzzone, L.; Wohlfahrt, G.; Zebisch, M.; Notarnicola, C. Retrieval of Leaf Area Index in mountain grasslands in the Alps from MODIS satellite imagery. Remote Sens. Environ. 2015, 165, 159–174. [Google Scholar] [CrossRef]
- Jensen, J.L.R.; Humes, K.S.; Hudak, A.T.; Vierling, L.A.; Delmelle, E. Evaluation of the MODIS LAI product using independent lidar-derived LAI: A case study in mixed conifer forest. Remote Sens. Environ. 2011, 115, 3625–3639. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.A.; Li, A.N.; Bian, J.H.; Nan, X.; Zhao, W.; Zhang, Z.J.; Yin, G.F. Intercomparison and validation of MODIS and GLASS leaf area index (LAI) products over mountain areas: A case study in southwestern China. Int. J. Appl. Earth Obs. Geoinf. 2017, 55, 52–67. [Google Scholar] [CrossRef]
- Yang, Y.S.; Li, A.N.; Jin, H.A.; Yin, G.F.; Zhao, W.; Lei, G.B.; Bian, J.H. Intercomparison Among GEOV1,GLASS and MODIS LAI Products over Mountainous Area in Southwestern China. Remote Sens. Technol. Appl. 2016, 31, 438–450. [Google Scholar]
- Jing, J.C.; Jin, H.A.; Tang, B.; Li, A.N. Intercomparison and evaluation of influencing factors among different LAl products over mountainous areas. J. Nat. Resour. 2019, 34, 400–411. [Google Scholar]
- Bonan, G.B. Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sens. Environ. 1993, 43, 303–314. [Google Scholar] [CrossRef]
- Bai, Z.G. Technical characteristics of GF-1 satellite. Aerosp. China 2013, 8, 5–9. [Google Scholar]
- Zhang, H.; Li, J.; Zhang, Z.X.; Wu, S.L.; Zhong, B.; Liu, Q.H. A dataset of 16m/10-day leaf area indices of MuSyQ GF-series (2018–2020, China, Version 01). Sci. Data Bank 2021. [CrossRef]
- Zou, D.X.; Yan, K.; Pu, J.B.; Gao, S.; Li, W.J.; Mu, X.H.; Knyazikhin, Y.; Myneni, R.B. Revisit the Performance of MODIS and VIIRS Leaf Area Index Products from the Perspective of Time-Series Stability. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 8958–8973. [Google Scholar] [CrossRef]
- Xiao, Z.Q.; Liang, S.L.; Jiang, B. Evaluation of four long time-series global leaf area index products. Agric. For. Meteorol. 2017, 246, 218–230. [Google Scholar] [CrossRef]
- Fang, H.L.; Wei, S.S.; Liang, S.L. Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens. Environ. 2012, 119, 43–54. [Google Scholar] [CrossRef]
- Fernandes, R.; Plummer, S.; Nightingale, J.; Frederic, B.; Camacho De Coca, F.; Fang, H.; Garrigues, S.; Gobron, N.; Lang, M.; Lacaze, R.; et al. CEOS Global LAI Product Validation Good Practices. Best Pract. Satell. Deriv. Land Prod. Valid. 2014, 2, 76. [Google Scholar]
- Wu, M.Y. DJI Genie 4 officially released the most intelligent drone is here. Comput. Netw. 2016, 42, 36. [Google Scholar]
- Di Gennaro, S.F.; Toscano, P.; Gatti, M.; Poni, S.; Berton, A.; Matese, A. Spectral Comparison of UAV-Based Hyper and Multispectral Cameras for Precision Viticulture. Remote Sens. 2022, 14, 449. [Google Scholar] [CrossRef]
- Curran, P.J. The semivariogram in remote sensing: An introduction. Remote Sens. Environ. 1988, 24, 493–507. [Google Scholar] [CrossRef]
- Sertel, E.; Kaya, S.; Curran, P.J. Use of semivariograms to identify earthquake damage in an urban area. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1590–1594. [Google Scholar] [CrossRef]
- Roman, M.O.; Schaaf, C.B.; Woodcock, C.E.; Strahler, A.H.; Yang, X.Y.; Braswell, R.H.; Curtis, P.S.; Davis, K.J.; Dragoni, D.; Goulden, M.L.; et al. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ. 2009, 113, 2476–2498. [Google Scholar] [CrossRef] [Green Version]
- Garrigues, S.; Allard, D.; Baret, F.; Morisette, J. Multivariate quantification of landscape spatial heterogeneity using variogram models. Remote Sens. Environ. 2008, 112, 216–230. [Google Scholar] [CrossRef]
- Garrigues, S.; Allard, D.; Baret, F.; Weiss, M. Quantifying spatial heterogeneity at the landscape scale using variograrn models. Remote Sens. Environ. 2006, 103, 81–96. [Google Scholar] [CrossRef]
- Cooper, S.D.; Barmuta, L.; Sarnelle, O.; Kratz, K.; Diehl, S. Quantifying spatial heterogeneity in streams. J. North Am. Benthol. Soc. 1997, 16, 174–188. [Google Scholar] [CrossRef]
- Xu, B.D.; Li, J.; Liu, Q.H.; Huete, A.R.; Yu, Q.; Zeng, Y.L.; Yin, G.F.; Zhao, J.; Yang, L. Evaluating Spatial Representativeness of Station Observations for Remotely Sensed Leaf Area Index Products. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 3267–3282. [Google Scholar] [CrossRef]
- Garrigues, S.; Allard, D.; Baret, F.; Weiss, M. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sens. Environ. 2006, 105, 286–298. [Google Scholar] [CrossRef]
- Liu, L. Simulation and correction of spatialscaling effects for leaf area index. J. Remote Sens. 2014, 18, 1158–1168. [Google Scholar]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Trishchenko, A.P.; Cihlar, J.; Li, Z.Q. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sens. Environ. 2002, 81, 1–18. [Google Scholar] [CrossRef]
- Zhong, B.; Yang, A.X.; Liu, Q.H.; Wu, S.L.; Shan, X.J.; Mu, X.H.; Hu, L.F.; Wu, J.J. Analysis Ready Data of the Chinese GaoFen Satellite Data. Remote Sens. 2021, 13, 1709. [Google Scholar] [CrossRef]
- Zhong, B.; Wu, S.L.; Yang, A.X.; Liu, Q.H. An Improved Aerosol Optical Depth Retrieval Algorithm for Moderate to High Spatial Resolution Optical Remotely Sensed Imagery. Remote Sens. 2017, 9, 555. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.H.; Wang, Y.J.; Zhang, Y.; Knyazikhin, Y.; Bogaert, J.; Myneni, R.B. Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions. Remote Sens. Environ. 2003, 84, 143–159. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, X.G.; Xi, X.H.; Li, C.R.; Li, Z.L. Comparison and analysis of two universal scaling methods. J. Remote Sens. 2009, 13, 183–189. [Google Scholar]
- Wen, J.G.; Wu, X.D.; Wang, J.P.; Tang, R.Q.; Ma, D.J.; Zeng, Q.C.; Gong, B.C.; Xiao, Q. Characterizing the Effect of Spatial Heterogeneity and the Deployment of Sampled Plots on the Uncertainty of Ground “Truth” on a Coarse Grid Scale: Case Study for Near-Infrared (NIR) Surface Reflectance. J. Geophys. Res.-Atmos. 2022, 127, 1–15. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, J.; Tang, S.H.; Li, G.C.; Guo, Z.D. Inter-comparison and validation of the FY-3A/MERSI LAI product over mainland China. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 458–468. [Google Scholar] [CrossRef]
- Hill, M.J.; Senarath, U.; Lee, A.; Zeppel, M.; Nightingale, J.M.; Williams, R.D.J.; McVicar, T.R. Assessment of the MODIS LAI product for Australian ecosystems. Remote Sens. Environ. 2006, 101, 495–518. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.Y.; Wu, C.S.; Chen, X.D.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Li, A.N.; Jiang, J.G.; Bian, J.H.; Deng, W. Combining the matter element model with the associated function of probability transformation for multi-source remote sensing data classification in mountainous regions. ISPRS J. Photogramm. Remote Sens. 2012, 67, 80–92. [Google Scholar] [CrossRef]
- Fang, H.; Li, W.; Myneni, R.B. The Impact of Potential Land Cover Misclassification on MODIS Leaf Area Index (LAI) Estimation: A Statistical Perspective. Remote Sens. 2013, 5, 830–844. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Baret, F.; Smith, G.J.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 2004, 121, 37–53. [Google Scholar] [CrossRef]
- Ariza-Carricondo, C.; Di Mauro, F.; de Beeck, M.O.; Roland, M.; Gielen, B.; Vitale, D.; Ceulemans, R.; Papale, D. A comparison of different methods for assessing leaf area index in four canopy types. Cent. Eur. For. J. 2019, 65, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Song, B.W.; Liu, L.Y.; Du, S.S.; Zhang, X.; Chen, X.D.; Zhang, H.L. ValLAI_Crop, a validation dataset for coarse-resolution satellite LAI products over Chinese cropland. Sci. Data 2021, 8, 1–16. [Google Scholar] [CrossRef]
Raw Data | Parameters | Time | Spatial Resolution/m |
---|---|---|---|
Field LAI measurements | LAI | 2020 DOY 292–296 | |
UAV images | DN | 2020 DOY 294–297 | 0.5 |
MuSyQ LAI | LAI | 2020 DOY 291–300 | 16 |
RMSE | Bias | R2 | |
---|---|---|---|
Grassland | 0.90 | −0.83 | 0.84 |
Cropland | 1.66 | −1.23 | 0.28 |
Shrubland | 1.68 | −1.38 | 0.14 |
EBF | 0.90 | −0.77 | 0.42 |
Standard Deviation | Mean_LAI_ Reference LAI | Mean_LAI_ UAV_LAI_16m | Scaling Difference | |
---|---|---|---|---|
Grassland | 0.75 | 1.98 | 1.79 | −0.19 |
Cropland | 1.22 | 2.22 | 1.72 | −0.50 |
Shrubland | 0.83 | 2.02 | 1.80 | −0.22 |
EBF | 0.83 | 1.86 | 1.62 | −0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Huang, Y.; Xiao, Y.; He, M.; Wen, J.; Li, Y.; Ma, M. Evaluation of the High-Resolution MuSyQ LAI Product over Heterogeneous Land Surfaces. Remote Sens. 2023, 15, 1238. https://doi.org/10.3390/rs15051238
Li D, Huang Y, Xiao Y, He M, Wen J, Li Y, Ma M. Evaluation of the High-Resolution MuSyQ LAI Product over Heterogeneous Land Surfaces. Remote Sensing. 2023; 15(5):1238. https://doi.org/10.3390/rs15051238
Chicago/Turabian StyleLi, Dandan, Yajun Huang, Yao Xiao, Min He, Jianguang Wen, Yuanqing Li, and Mingguo Ma. 2023. "Evaluation of the High-Resolution MuSyQ LAI Product over Heterogeneous Land Surfaces" Remote Sensing 15, no. 5: 1238. https://doi.org/10.3390/rs15051238
APA StyleLi, D., Huang, Y., Xiao, Y., He, M., Wen, J., Li, Y., & Ma, M. (2023). Evaluation of the High-Resolution MuSyQ LAI Product over Heterogeneous Land Surfaces. Remote Sensing, 15(5), 1238. https://doi.org/10.3390/rs15051238