Exploratory Mapping of Blue Ice Regions in Antarctica Using Very High-Resolution Satellite Remote Sensing Data
Abstract
:1. Introduction
2. Study Area and Geospatial Data
2.1. Extent of the Study Area
2.2. Spatial Data Used in This Study
2.2.1. Usage of Satellite Data
2.2.2. Ground Truthing and Supplementary Data
3. Methods and Analyses
3.1. Pre-Processing of Satellite Data
3.2. Blue Ice Detection and Mapping Using Feature Extraction
3.2.1. Customized NDBI Approach
3.2.2. Spectral Processing (SP) or Matching–Based Extraction Approach
3.2.3. Target Detection (TD) Approach
3.2.4. Pixel-Wise Supervised Classification Approach
3.2.5. Practical Execution of Image Processing Routines and Post Processing Corrections
3.3. Accuracy Assessment
4. Results
4.1. Comparing Tile-Wise Accuracy for 12 Manually-Digitized and Ground-Surveyed Tiles
4.1.1. Approaches for Semi-Automatic Extraction of BIRs
- (i)
- Performance of the customized NDBI approach
- (ii)
- Performance of the target detection (TD) approach
- (iii)
- Performance of the spectral processing (SP) approach
- (iv)
- Performance of the pixel-wise supervised classification (PSC) approach
- (v)
- Overall performance of semi-automatic extraction methods
4.1.2. Topographical Influences on the Extraction of BIRs
- (i)
- Comparative analysis of errors for various tiles in different elevation settings
- (ii)
- Comparative analysis of errors for shadow-covered against non-shadow covered tiles.
- (iii)
- Comparative analysis of errors based on amount of blue ice area present in various tiles
4.2. Comparing Areas of Extracted BIRs against Reference BIRs for the Entire Study Region
4.3. Comparison of the Extracted BIRs with Existing BIR Map
4.4. Errors Associated with Manually Digitized Reference Data
5. Discussion
5.1. Testing the Performance of Supervised Information Extraction Methods in the Antarctic Environment
5.2. Effect of New Spectral Bands of the WV-2 Used in NDBI for Blue Ice Mapping
5.3. Comparison with Previous Blue Ice Mapping in Antarctica
5.4. Statistical Significance and Generalization of Performance of Methods
5.5. Beyond Quantitative Analysis and Evaluation of Accuracies
- (1)
- Consistency: customized NDBI-based blue-ice mapping was less sensitive to the background noise (topography, shadows, snow/ice cover) and could consistently extract blue ice from the study area by optimizing the target against the noise using green, yellow, NIR-1 and NIR-2 bands;
- (2)
- Flexibility: the slight variation of the input approximations (threshold values in the case of customized NDBI and ROIs in cases of SP, PSC or TD approaches) should not affect the extraction results significantly. The threshold values used for customized NDBI can be adjusted to suppress the noise with no effect on the extraction of targeted blue ice;
- (3)
- Minimizing of manual editing: a semi-automatic method should eventually minimize manual editing of the extracted BIRs. A visual interpretation of the extracted blue ice showed that the dimensions of BIRs (shape, geometry and size) were well-preserved and manual editing was effectively minimized;
- (4)
- Efficiency: the extraction should be executed, and the results should be available rapidly. The total time required for the extraction should be much less than that by manual digitization. Efficiency is also dependent on reliability, accuracy, and interactivity factors. The average time for extracting the blue ice was the lowest for the customized NDBI, moderate for SP and PSC, and maximal for TD approaches;
- (5)
- Interactivity: the semi-automatic extraction strategy should be an interactive process between the machine learning algorithms and the human operator. This should allow the operator to correct erroneous results immediately after extraction. The customized NDBI approach is highly interactive in terms of threshold definition, and in band selection to rectify wrongly classified pixels;
- (6)
- Robustness: the semi-automatic blue ice mapping method should work well for different types of BIRs in the cryospheric environment. Most of the BIRs in the study area here were influenced by local topography. The customized NDBI method could effectively identify BIRs in various topographical settings in this typical Antarctic coastal oasis environment;
- (7)
- Complexity: any semi-automatic method should ideally be simple to implement on satellite images. The customized NDBI approach is simpler to implement than either the TD or SP algorithms;
- (8)
- Accuracy: extracted information should be correct and geometric errors should be minimized, giving results that are at least comparable to those achieved by manual digitization. The RMSE values obtained from the customized NDBI confirmed that the approach could extract blue ice accurately w.r.t. the manually digitized reference;
- (9)
- Visual comparison: the semi-automatic method should provide extraction results which can be compared visually against the manual reference data. Visual comparison here demonstrated that blue-ice polygons from all 12 tiles were detected in the NDBI images, and that the boundaries of the extracted blue ice polygons matched the actual boundaries of the blue ice in the images or reference digitized data closely;
- (10)
- Error: variation in error should be minimized. A box plot (Supplementary Figures S6 and S7) shows that the customized NDBI had superior performance over the other three approaches tested for extracting BIRs;
5.6. Factors Affecting the Performance of NDBI
5.7. Factors Affecting Blue Ice Mapping in Cryospheric Environments
5.8. Accuracy Analysis and the Measures of Uncertainties
5.9. Future Directions
5.10. Transferability of Methods
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bintanja, R. On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Rev. Geophys. 1999, 37, 337–359. [Google Scholar] [CrossRef]
- Winther, J.; Jespersen, M.; Liston, G. Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data. J. Glaciol. 2001, 47, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Schytt, V. Blue Ice- Fields Moraine Features and Glacier Fluctuations; Scientific results, IV(E); Norwegian-British-Swedish Antarctic Expedition (1949–1952): UK, 1961; pp. 182–204. [Google Scholar]
- Warren, S.; Brandt, R. Comment on “Snowball Earth: A thin-ice solution with flowing sea glaciers” by David Pollard and James F. Kasting. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Rasmus, K.; Beckmann, A. The impact of global change on low-elevation blue-ice areas in Antarctica: A thermo-hydrodynamic modelling study. Ann. Glaciol. 2007, 46, 50–54. [Google Scholar] [CrossRef]
- Ligtenberg, S.; Lenaerts, J.; Van Den Broeke, M.; Scambos, T. On the formation of blue ice on Byrd Glacier, Antarctica. J. Glaciol. 2014, 60, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Markov, A.; Polyakov, S.; Sun, B.; Lukin, V.; Popov, S.; Yang, H.; Zhang, T.; Cui, X.; Guo, J.; Cui, P.; et al. The conditions of the formation and existence of “Blue Ice Areas” in the ice flow transition region from the Antarctic ice sheet to the Amery Ice Shelf in the Larsemann Hills area. Polar Sci. 2019, 22, 100478. [Google Scholar] [CrossRef]
- Sinisalo, A.; Moore, J. Antarctic blue ice areas-towards extracting palaeoclimate information. Antarct. Sci. 2010, 22, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Mellor, M.; Swithinbank, C. Airfields on Antarctic glacier ice. In Technical Report; CCRREL Report; Cold Regions Research and Engineering Laboratory (CRREL): Hanover, NH, USA, 1989; pp. 21–89. [Google Scholar]
- Yoshida, M.; Omoto, K.; Naruse, R.; Ageta, Y. Discovery of meteorites near Yamato mountains, East Antarctica. Antarct. Rec. 1971, 39, 62–65. [Google Scholar]
- Crary, A.; Charles, R. Formation of “Blue” Glacier Ice by Horizontal Compressive Forces. J. Glaciol. 1961, 3, 1045–1050. [Google Scholar] [CrossRef] [Green Version]
- Folco, L.; Welten, K.; Jull, A.; Nishiizumi, K.; Zeoli, A. Meteorites constrain the age of Antarctic ice at the Frontier Mountain blue ice field (northern Victoria Land). Earth Planet. Sci. Lett. 2006, 248, 209–216. [Google Scholar] [CrossRef]
- Tollenaar, V.; Zekollari, H.; Lhermitte, S.; Tax, D.M.; Debaille, V.; Goderis, S.; Claeys, P.; Pattyn, F. Unexplored antarctic meteorite collection sites revealed through machine learning. Sci. Adv. 2022, 8, eabj8138. [Google Scholar] [CrossRef]
- Harvey, R. The Origin and Significance of Antarctic Meteorites. Geochemistry 2003, 63, 93–147. [Google Scholar] [CrossRef]
- Brown, I.; Scambos, T. Satellite monitoring of blue-ice extent near Byrd Glacier, Antarctica. Ann. Glaciol. 2004, 39, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Scambos, T.; Haran, T.; Fahnestock, M.; Painter, T.; Bohlander, J. MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size. Remote Sens. Environ. 2007, 111, 242–257. [Google Scholar] [CrossRef]
- Gorodetskaya, I.; Van Lipzig, N.; Van den Broeke, M.; Mangold, A.; Boot, W.; Reijmer, C. Meteorological regimes and accumulation patterns at Utsteinen, Dronning Maud Land, East Antarctica: Analysis of two contrasting years. J. Geophys. Res. Atmos. 2013, 118, 1700–1715. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.S.; Meunier, T.K.; Ferrigno, J.G. Delineation of blue-ice areas in Antarctica from satellite imagery. In Workshop on Antarctic Glaciology and Meteorites; Bull, C., Lipschutz, M., Eds.; LPI Technical Report 82-03; Lunar and Planetary Institute: Houston, TX, USA, 1982; p. 49. Available online: https://www.lpi.usra.edu/lpi/contribution_docs/TR/TR_8203.pdf (accessed on 20 January 2022).
- Sun, J.; Huo, D.; Zhou, J.; Sun, C. The digital mapping of satellite images by free of ground control and the analysis of landform, blue ice and meteorite distribution in the Grove Mountains. Chin. J. Polar Sci. 2001, 13, 21–31. [Google Scholar]
- Orheim, O.; Lucchitta, B.K. Numerical analysis of landsat thematic mapper images of Antarctica: Surface temperatures and physical properties. Ann. Glaciol. 1988, 11, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Orheim, O.; Lucchitta, B. Investigating Climate Change by Digital Analysis of Blue Ice Extent on Satellite Images of Antarctica. Ann. Glaciol. 1990, 14, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Hui, F.M.; Ci, T.Y.; Cheng, X.; Scambos, T.A.; Liu, Y.; Zhang, Y.M.; Chi, Z.H.; Huang, H.B.; Wang, X.W.; Wang, F.; et al. Mapping blue ice areas in Antarctica using ETM+ and MODIS data. Ann. Glaciol. 2014, 55, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Bronge, L.; Bronge, C. Ice and snow-type classification in the Vestfold Hills, East Antarctica, using Landsat-TM data and ground radiometer measurements. Int. J. Remote Sens. 1999, 20, 225–240. [Google Scholar] [CrossRef]
- Zhou, C.; Ai, S.; Chen, N.; Wang, Z.; E, D. Grove Mountains meteorite recovery and relevant data distribution service. Comput. Geosci. 2011, 37, 1727–1734. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Jezek, K.C. Automated delineation of dry and melt snow zones in Antarctica using active and passive microwave observations from space. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2152–2163. [Google Scholar]
- Cheng, X.; Zhang, Y.; Li, Z.; Shao, Y. Blue-ice domain discrimination using interferometric coherence in antarctic grove mountains. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; pp. 2599–2601. [Google Scholar]
- Jezek, K.; Drinkwater, M.; Crawford, J.; Bindschadler, R.; Kwok, R. Analysis of synthetic aperture radar Data collected over the southwestern Greenland ice sheet. J. Glaciol. 1993, 39, 119–132. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, N. A Re-Assessment of the Mass Balance of the Lambert Glacier Drainage Basin, Antarctica. J. Glaciol. 1985, 31, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Swithinbank, C.W.M. Potential Airfield Sites in Antarctica for Wheeled Aircraft; CRREL Special Report; Cold Regions Research And Engineering Lab: Hanover, NH, USA, 1991; pp. 24–91. [Google Scholar]
- Yu, J.; Liu, H.; Wang, L.; Jezek, K.; Heo, J. Blue ice areas and their topographical properties in the Lambert glacier, Amery Iceshelf system using Landsat ETM+, ICESat laser altimetry and ASTER GDEM data. Antarct. Sci. 2011, 24, 95–110. [Google Scholar] [CrossRef]
- Nolin, A.; Fetterer, F.; Scambos, T. Surface roughness characterizations of sea ice and ice sheets: Case studies with MISR data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1605–1615. [Google Scholar] [CrossRef] [Green Version]
- Scambos, T.; Frezzotti, M.; Haran, T.; Bohlander, J.; Lenaerts, J.; Van Den Broeke, M.; Jezek, K.; Long, D.; Urbini, S.; Farness, K.; et al. Extent of low-accumulation ‘wind glaze’ areas on the East Antarctic plateau: Implications for continental ice mass balance. J. Glaciol. 2012, 58, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Ji, Y.; Kim, Y.; Lee, H. Development of Normalized Difference Blue-ice Index (NDBI) of Glaciers and Analysis of Its Variational Factors by using MODIS Images. Korean J. Remote Sens. 2014, 30, 481–491. [Google Scholar] [CrossRef]
- Rivera, A.; Cawkwell, F.; Wendt, A.; Zamora, R. Mapping Blue-Ice Areas and Crevasses in West Antarctica Using ASTER Images, GPS, and Radar Measurements. In Global Land Ice Measurements from Space; Springer: Berlin/Heidelberg, Germany, 2014; pp. 743–757. [Google Scholar]
- Hu, Z.; Munneke, P.K.; Lhermitte, S.; Dirscherl, M.; Ji, C.; van den Broeke, M. FABIAN: A daily product of Fractional Austral-summer Blue Ice over ANtarctica during 2000–2021 based on MODIS imagery using Google Earth Engine. Remote Sens. Environ. 2022, 280, 113202. [Google Scholar] [CrossRef]
- Lal, R.P. Short period climatology of Maitri, Schirmacher Oasis, East Antarctica. Mausam 2006, 57, 684–688. [Google Scholar] [CrossRef]
- Bintanja, R.; Van Den Broeke, M. The climate sensitivity of Antarctic blue-ice areas. Ann. Glaciol. 1995, 21, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.; Green, K. Assessing the Accuracy of Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Richter, R. Atmospheric/Topographic Correction for Satellite Imagery; DLR report; DLR-IB 565-01/05; DLR: Wessling, Germany, 2005. [Google Scholar]
- Jawak, S.; Luis, A. Synergetic merging of Cartosat-1 and RAMP to generate improved digital elevation model of Schirmacher oasis, east Antarctica. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-8, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Jawak, S.; Luis, A. A Comprehensive Evaluation of PAN-Sharpening Algorithms Coupled with Resampling Methods for Image Synthesis of Very High Resolution Remotely Sensed Satellite Data. Adv. Remote Sens. 2013, 2, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Luis, A.L.; Pandit, P.H.; Jawak, S.D. Extraction of Blue Ice Area Using Albedo Value Derived from Landsat-8 Satellite Data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, XLII-5, 549–552. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.; Foster, J.; Chien, J.; Riggs, G. Determination of actual snow-covered area using Landsat TM and digital elevation model data in Glacier National Park, Montana. Polar Rec. 1995, 31, 191–198. [Google Scholar] [CrossRef]
- Jin, X.; Paswaters, S.; Cline, H. A comparative study of target detection algorithms for hyperspectral imagery. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV; Society of Photo Optical: Bellingham, WA, USA, 2009. [Google Scholar]
- Jawak, S.; Luis, A. Very high-resolution satellite data for improved land cover extraction of Larsemann Hills, Eastern Antarctica. J. Appl. Remote Sens. 2013, 7, 073460. [Google Scholar] [CrossRef]
- Soille, P. Generalized Geodesic Distances Applied to Interpolation and Shape Description. In Computational Imaging and Vision; Springer: Berlin/Heidelberg, Germany, 1994; pp. 193–200. [Google Scholar]
- Harsanyi, J.; Chang, C. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Bourennane, S.; Fossati, C.; Cailly, A. Improvement of Target-Detection Algorithms Based on Adaptive Three-Dimensional Filtering. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1383–1395. [Google Scholar] [CrossRef]
- Chang, C.; Liu, J.; Chieu, B.; Wang, C.; Lo, C.; Chung, P.; Ren, H.; Yang, C.; Ma, D. Generalized constrained energy minimization approach to sub-pixel target detection for multispectral imagery. Opt. Eng. 2000, 39, 1275–1281. [Google Scholar]
- Boardman, J.W. Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: Mixture tuned matched filtering. Summ. Seventh JPL Airborne Geosci. 1998, 97, 21. [Google Scholar]
- Peterson, M.; Horner, T.; Moore, F. Evolving matched filter transform pairs for satellite image processing. In Evolutionary and Bio-Inspired Computation: Theory and Applications V; Society of Photo Optical: Bellingham, WA, USA, 2011. [Google Scholar]
- Parker Williams, A.; Hunt, E. Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering. Remote Sens. Environ. 2002, 82, 446–456. [Google Scholar] [CrossRef]
- Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Kruse, F.; Lefkoff, A.; Boardman, J.; Heidebrecht, K.; Shapiro, A.; Barloon, P.; Goetz, A. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Canty, M. Boosting a fast neural network for supervised land cover classification. Comput. Geosci. 2009, 35, 1280–1295. [Google Scholar] [CrossRef]
- Tso, B.; Mather, P. Classification Methods for Remotely Sensed Data; CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Jawak, S.D.; Wankhede, S.F.; Luis, A.J. Explorative Study on Mapping Surface Facies of Selected Glaciers from Chandra Basin, Himalaya Using WorldView-2 Data. Remote Sens. 2019, 11, 1207. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.; Justice, C. The topographic effect on spectral response from nadir-pointing. Photogrammetic Eng. Remote Sens. 1980, 46, 1191–1200. [Google Scholar]
- Verbyla, D.L.; Kasischke, E.S.; Hoy, E.E. Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+ data. Int. J. Wildland Fire 2008, 17, 527–534. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Illumination effects on the differenced Normalized Burn Ratio’s optimality for assessing fire severity. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hou, X.; Wang, M.; Wang, M.; Wu, L.; Ying, L.; Feng, Y. Topographic controls on vegetation index in a hilly landscape: A case study in the Jiaodong Peninsula, eastern China. Environ. Earth Sci. 2012, 70, 625–634. [Google Scholar] [CrossRef]
- Álvarez-Martínez, J.M.; Silió-Calzada, A.; Barquín, J. Can training data counteract topographic effects in supervised image classification? A sensitivity analysis in the Cantabrian Mountains (Spain). Int. J. Remote Sens. 2018, 39, 8646–8669. [Google Scholar] [CrossRef]
- Jawak, S.; Luis, A. A semiautomatic extraction of antarctic lake features using worldview-2 imagery. Photogramm. Eng. Remote Sens. 2014, 80, 939–952. [Google Scholar] [CrossRef]
- Lu, D.; Hetrick, S.; Moran, E. Impervious surface mapping with Quickbird imagery. Int. J. Remote Sens. 2011, 32, 2519–2533. [Google Scholar] [CrossRef] [Green Version]
- Myint, S.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Lantz, N.J.; Wang, J. Object-based classification of Worldview-2 imagery for mapping invasive common reed, Phragmites australis. Can. J. Remote Sens. 2013, 39, 328–340. [Google Scholar] [CrossRef]
- Maglione, P.; Parente, C.; Vallario, A. Coastline extraction using high resolution WorldView-2 satellite imagery. Eur. J. Remote Sens. 2014, 47, 685–699. [Google Scholar] [CrossRef]
- Nouri, H.; Beecham, S.; Anderson, S.; Nagler, P. High Spatial Resolution WorldView-2 Imagery for Mapping NDVI and Its Relationship to Temporal Urban Landscape Evapotranspiration Factors. Remote Sens. 2014, 6, 580–602. [Google Scholar] [CrossRef] [Green Version]
- Jawak, S.D.; Luis, A.J.; Panditrao, S.N.; Khopkar, P.S.; Jadhav, P.S. Advancement in landcover classification using very high resolution remotely sensed 8-band WorldView-2 satellite data. Int. J. Earth Sci. Eng. 2013, 6, 1742–1749. [Google Scholar]
- Jawak, S.D.; Luis, A.J. Improved land cover mapping using high resolution multiangle 8-band WorldView-2 satellite remote sensing data. J. Appl. Remote Sens. 2013, 7, 073573. [Google Scholar] [CrossRef]
- Hui, F.M.; Kang, J.; Liu, Y.; Cheng, X.; Gong, P.; Wang, F.; Li, Z.; Ye, Y.F.; Guo, Z.Q. AntarcticaLC2000: The new Antarctic land cover database for the year 2000. Sci. China Earth Sci. 2017, 60, 686–696. [Google Scholar] [CrossRef]
- Xin, Z.; Wang, Z.; Zhou, C. Satellite monitoring of blue-ice extent in Grove mountains, Antarctica. Geomat. Inform. Sci. Wuhan Univ. 2011, 36, 1009–1011, (In Chinese with English summary). [Google Scholar]
- DigitalGlobe. The Benefits of the Eight Spectral Bands of WorldView-2. White Paper (WP-8SPEC) Rev 01/13 (2010). Available online: http://www.geoimage.com.au/CaseStudies/TheBenefits_8BandData.pdf (accessed on 20 January 2022).
- DigitalGlobe. Radiometric Use of WorldView-2 Imagery. 2012. Available online: www.digitalglobe.com/downloads/Radiometric_Use_of_WorldView-2_Imagery.pdf (accessed on 20 January 2022).
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Hoke, M.L.; Chetwynd, J.H.; Bernstein, L.S.; Shettle, E.P.; Matthew, M.W.; Adler-Golden, S.M. Modtran4 User’s Manual; Air Force Research Laboratory: Hanscom Air Force Base, MA, USA, 2003. [Google Scholar]
- Bindschadler, R.; Vornberger, P.; Fleming, A.; Fox, A.; Mullins, J.; Binnie, D.; Paulsen, S.J.; Granneman, B.; Gorodetzky, D. The Landsat Image Mosaic of Antarctica. Remote Sens. Environ. 2008, 112, 4214–4226. [Google Scholar] [CrossRef]
Dataset | Source | Temporal Range (dd/mm/yy) | Utilization of Datasets in the Present Study | ||||
---|---|---|---|---|---|---|---|
SE | VI | MD | SD | DEA | |||
Worldview-2 MSI and PAN | DigitalGlobe | 5 February 2012 | 🗴 | ✓ | 🗴 | ✓ | 🗴 |
Worldview-2 PAN-sharpened image (0.5 m) | Processed | 5 February 2012 | ✓ | ✓ | ✓ | ✓ | ✓ |
Google Earth Images (GE) | 31 December 1999 to 26 November 2013 | 🗴 | ✓ | 🗴 | ✓ | 🗴 | |
BIR map derived from MODIS and Landsat ETM+ | Hui et al. [22] | 1999–2004 | 🗴 | ✓ | 🗴 | ✓ | 🗴 |
DGPS Surveying | InSEA | 2008–2015 (September–March) | 🗴 | ✓ | ✓ | ✓ | ✓ |
Tile No. | Total Area (m2) | Reference BIRs | Reference Non-BIRs | ||
---|---|---|---|---|---|
(m2) | % | (m2) | % | ||
1 | 202,392.18 | 189,504.78 | 93.63 | 12,887.40 | 06.37 |
2 | 202,119.31 | 133,320.08 | 65.96 | 68,799.23 | 34.04 |
3 | 202,257.09 | 164,433.85 | 81.30 | 37,823.24 | 18.70 |
4 | 201,547.57 | 170,673.36 | 84.68 | 30,874.21 | 15.32 |
5 | 201,630.23 | 169,468.74 | 84.05 | 32,161.49 | 15.95 |
6 | 201,608.05 | 127,106.45 | 63.05 | 74,501.60 | 36.95 |
7 | 201,750.89 | 190,304.24 | 94.33 | 11,446.65 | 05.67 |
8 | 202,171.24 | 104,841.94 | 51.86 | 97,329.30 | 48.14 |
9 | 201,947.31 | 104,285.23 | 51.64 | 97,662.08 | 48.36 |
10 | 201,588.89 | 146,478.47 | 72.66 | 55,110.42 | 27.34 |
11 | 201,444.93 | 137,480.92 | 68.25 | 63,964.01 | 31.75 |
12 | 201,520.04 | 137,752.88 | 68.36 | 63,767.16 | 31.64 |
NDBI | NDBI Model | Mathematical Expression | Threshold Range |
---|---|---|---|
NDBI-1 | NDBI(3−7/3+7) | 0.83−0.95 | |
NDBI-2 | NDBI(3−8/3+8) | 0.87−0.92 | |
NDBI-3 | NDBI(4−7/4+7) | 0.84−0.93 | |
NDBI-4 | NDBI(4−8/4+8) | 0.85−0.96 |
NDBI-1 | NDBI-2 | NDBI-3 | NDBI-4 | |||||
---|---|---|---|---|---|---|---|---|
Tile No. | Extracted Area (m2) | Bias in Area (m2) | Extracted Area (m2) | Bias in Area (m2) | Extracted Area (m2) | Bias in Area (m2) | Extracted Area (m2) | Bias in Area (m2) |
1 | 189,540.73 | −35.95 | 189,741.59 | −236.81 | 189,913.57 | −408.79 | 189,969.43 | −464.65 |
2 | 132,971.17 | 348.91 | 133,071.89 | 248.19 | 133,193.03 | 127.05 | 133,293.27 | 26.81 |
3 | 164,849.04 | −415.19 | 164,901.71 | −467.86 | 164,831.11 | −397.26 | 164,801.11 | −367.26 |
4 | 170,279.86 | 393.50 | 170,079.25 | 594.11 | 170,411.25 | 262.11 | 170,411.25 | 262.11 |
5 | 169,810.47 | −341.73 | 169,972.57 | −503.83 | 170,802.57 | −1333.83 | 170,831.73 | −1362.99 |
6 | 126,907.83 | 198.62 | 126,986.98 | 119.47 | 127,031.04 | 75.41 | 126,931.04 | 175.41 |
7 | 189,928.71 | 375.53 | 190,011.38 | 292.86 | 189,901.83 | 402.41 | 190,621.57 | −317.33 |
8 | 103,984.90 | 857.04 | 103,289.61 | 1552.33 | 103,937.55 | 904.39 | 103,326.68 | 1515.26 * |
9 | 103,257.66 | 1027.57 | 103,097.47 | 1187.76 | 103,203.41 | 1081.82 | 103,089.41 | 1195.82 |
10 | 146,967.39 | −488.92 | 147,167.39 | −688.92 | 145,716.82 | 761.65 | 146,599.38 | −120.91 |
11 | 137,598.07 | −117.15 | 137,971.44 | −490.52 | 137,991.03 | −510.11 | 138,381.74 | −900.82 |
12 | 137,421.31 | 331.57 | 137,861.83 | −108.95 | 138,287.58 | −534.70 | 137,399.43 | 353.45 |
|Avg.| | 147,793.10 | 410.97 | 147,846.09 | 540.97 | 147,935.07 | 566.63 | 147,971.34 | 588.57 |
RMSE | 491.65 | 682.58 | 675.21 | 768.46 |
Total Bias (m2) | Total Bias (%) | Positive Bias (m2) | Positive Bias (%) | Negative Bias (m2) | Negative Bias (%) | RMSEt (m2) | ||
---|---|---|---|---|---|---|---|---|
NDBI-1 | Present work | 4931.68 * | 0.28 * | 3532.74 | 0.20 | −1398.94 | 0.08 | 491.65 * |
NDBI-2 | Present work | 6491.61 | 0.37 | 3994.72 * | 0.22 * | −2496.89 | 0.14 | 682.58 |
NDBI-3 | Present work | 6799.53 | 0.38 | 3614.84 | 0.20 | −3184.69 | 0.18 | 675.21 |
NDBI-4 | Present work | 7062.82 | 0.40 | 3528.86 | 0.20 | −3533.96 | 0.20 | 768.46 |
Average | 6321.41 | 0.36 | 3667.79 | 0.21 | −2653.62 | 0.15 | 654.48 | |
RMSEm | 6375.33 | 0.36 | 3672.80 | 0.21 | 2775.91 | 0.16 | 662.21 | |
MT-TCIMF | [48] | 9286.29 | 0.52 | 4423.17 | 0.25 | −4863.12 | 0.27 | 860.71 |
OSP | [49] | 11,063.73 | 0.62 | 5462.31 | 0.31 | −5601.42 | 0.32 | 1035.55 |
ACE | [50] | 10,167.08 | 0.57 | 5872.27 | 0.33 | −4294.81 | 0.24 | 941.54 |
CEM | [51] | 12,551.57 | 0.71 | 6837.42 | 0.39 | −5714.15 | 0.32 | 1113.45 |
Average | 10,767.17 | 0.61 | 5648.79 | 0.32 | −5118.38 | 0.29 | 987.81 | |
RMSEm | 10,834.58 | 0.61 | 5714.79 | 0.32 | 5150.79 | 0.29 | 992.40 | |
MTMF | [52] | 12,556.91 | 0.71 | 6064.41 | 0.34 | −6492.50 | 0.37 | 1119.16 |
MF/SAM | [53] | 12,899.18 | 0.73 | 6822.03 | 0.38 | −6077.15 | 0.34 | 1152.36 |
MF | [54] | 15,410.72 | 0.87 | 8701.81 | 0.49 | −6708.91 | 0.38 | 1361.74 |
PCA | [55] | 19,144.35 | 1.08 | 10,500.32 | 0.59 | −8644.03 * | 0.49 * | 1675.11 |
Average | 15,002.79 | 0.84 | 8022.14 | 0.45 | −6980.65 | 0.39 | 1327.09 | |
RMSEm | 15,232.05 | 0.86 | 8205.11 | 0.46 | 7050.05 | 0.40 | 1345.44 | |
SVM | [56] | 22,520.21 | 1.27 | 12,598.20 | 0.71 | −9922.01 | 0.56 | 1976.81 |
SAM | [57] | 25,156.87 | 1.42 | 12,910.34 | 0.73 | −12,246.53 | 0.69 | 2179.90 |
NNC | [46] | 27,370.25 | 1.54 | 17,488.27 * | 0.98 * | −9881.98 | 0.56 | 2503.42 |
MXL | [58] | 26,526.68 | 1.49 | 11,605.36 | 0.65 | −14,921.32 | 0.84 | 2377.57 |
Average | 25,393.50 | 1.43 | 13,650.54 | 0.77 | −11,742.96 | 0.66 | 2259.43 | |
RMSEm | 25,459.89 | 1.43 | 13,837.59 | 0.78 | 11,923.96 | 0.67 | 2268.24 | |
Total Avg. | 14,371.22 | 0.81 | 7747.32 | 0.44 | −6623.90 | 0.37 | 1307.20 | |
Total RMSEm | 16,110.98 | 0.91 | 8731.42 | 0.49 | 7518.65 | 0.42 | 1447.28 |
MP (#) | OP (#) | UP (#) | OP (%) | UP (%) | ||
---|---|---|---|---|---|---|
NDBI-1 | Present work | 19,727 * | 14,131 | 5596 | 71.63 ′ | 28.37 ′ |
NDBI-2 | Present work | 25,966 | 15,979 * | 9988 | 61.54 | 38.47 |
NDBI-3 | Present work | 27,198 | 14,459 | 12,739 | 53.16 | 46.84 |
NDBI-4 | Present work | 28,251 | 14,115 | 14,136 | 49.96 | 50.04 |
Average | 25,286 | 14,671 | 10,615 | 59.07 | 40.93 | |
RMSEm | 25,501.17 | 14,691.06 | 11,103.87 | 59.67 | 41.78 | |
MT-TCIMF | [48] | 37,145 | 17,693 | 19,452 | 47.63 | 52.37 |
OSP | [49] | 44,255 | 21,849 | 22,406 | 49.37 | 50.63 |
ACE | [50] | 40,668 | 23,489 | 17,179 | 57.76 | 42.24 * |
CEM | [51] | 50,206 | 27,350 | 22,857 | 54.48 | 45.53 |
Average | 43,069 | 22,595 | 20,474 | 52.31 | 47.69 | |
RMSEm | 43,338.16 | 22,859.23 | 20,603.21 | 52.46 | 47.86 | |
MTMF | [52] | 50,228 | 24,258 | 25,970 | 48.3 | 51.70 |
MF/SAM | [53] | 51,597 | 27,288 | 24,309 | 52.89 | 47.11 |
MF | [54] | 61,643 * | 34,807 | 26,836 | 56.47 | 43.53 |
PCA | [55] | 76,577 * | 42,001 | 34,576 | 54.85 | 45.15 |
Average | 60,011 | 32,089 | 27,923 | 53.12 | 46.88 | |
RMSEm | 60,928.23 | 32,820.33 | 28,200.35 | 53.22 | 46.97 | |
SVM | [56] | 90,081 | 50,393 | 39,688 | 55.94 | 44.06 |
SAM | [57] | 100,627 | 51,641 | 48,986 | 51.32 | 48.68 |
NNC | [46] | 109,481 | 69,953 | 39,528 | 63.90 | 36.10 |
MXL | [58] | 106,107 | 46,421 | 59,685 | 43.75 | 56.25 |
Average | 101,574 | 54,602 | 46,972 | 53.73 | 46.27 | |
RMSEm | 101,839.54 | 55,350.20 | 47,695.72 | 54.22 | 46.85 | |
Total Average | 57,484.81 | 30,989.19 | 26,495.69 | 54.56 | 45.44 | |
Total RMSEm | 64,443.86 | 34,925.60 | 30,074.62 | 54.96 | 45.93 |
Reference Data | Reference Blue Ice Data | ||||
---|---|---|---|---|---|
Reference Map | Total Area (m2) | BIRs (m2) | Non-BIRs (m2) | % BIRs | % Non-BIRs |
Manually digitized BIRs | 173,530,259.00 | 106,875,250.60 | 66,655,008.40 | 61.59 | 38.41 |
MODIS–ETM+ BIRs | 173,530,259.00 | 140,281,789.02 | 33,248,469.98 | 80.84 | 19.16 |
Extracted Blue Ice Area | Total Bias (m2) | Total Bias (%) | Remark | ||
---|---|---|---|---|---|
NDBI-1 | Present work | 106,253,876.47 * | 621,374.13 * | 0.58 * | Underestimation |
NDBI-2 | Present work | 107,510,771.62 | −635,521.02 | −0.59 | Overestimation |
NDBI-3 | Present work | 107,493,642.98 | −618,392.38 | −0.58 | Overestimation |
NDBI-4 | Present work | 107,572,503.29 | −697,252.69 | −0.65 | Overestimation |
Average | 107,207,698.59 | 643,135.06 | 0.60 | ||
RMSEm | 107,209,116.94 | 643,926.09 | 0.60 | ||
MT-TCIMF | [48] | 108,050,194.52 | −1,174,943.92 | −1.10 | Overestimation |
OSP | [49] | 108,069,168.73 | −1,193,918.13 | −1.12 | Overestimation |
ACE | [50] | 105,606,034.11 | 1,269,216.49 | 1.19 | Underestimation |
CEM | [51] | 105,584,361.53 | 1,290,889.07 | 1.21 | Underestimation |
Average | 106,827,439.72 | 1,232,241.90 | 1.15 | ||
RMSEm | 106,834,546.85 | 1,233,211.13 | 1.16 | ||
MTMF | [52] | 108,595,298.82 | −1,720,048.22 | −1.61 | Overestimation |
MF/SAM | [53] | 108,639,032.38 | −1,763,781.78 | −1.65 | Overestimation |
MF | [54] | 105,082,210.18 | 1,793,040.42 | 1.68 | Underestimation |
PCA | [55] | 105,013,550.34 | 1,861,700.26 | 1.74 | Underestimation |
Average | 106,832,522.93 | 1,784,642.67 | 1.67 | ||
RMSEm | 106,847,432.04 | 1,785,386.08 | 1.67 | ||
SVM | [56] | 104,108,595.61 | 2,766,654.99 | 2.59 | Underestimation |
SAM | [57] | 104,041,038.89 | 2,834,211.71 | 2.65 | Underestimation |
NNC | [46] | 103,906,014.77 | 2,969,235.83 | 2.78 | Underestimation |
MXL | [58] | 109,840,008.48 * | −2,964,757.88 * | −2.77 * | Overestimation |
Average | 105,473,914.44 | 2,883,715.10 | 2.70 | ||
RMSEm | 105,504,057.77 | 2,885,016.75 | 2.70 | ||
Total Average | 106,585,393.92 | 1,635,933.68 | 1.53 | ||
Total RMSEm | 106,600,768.17 | 1,833,465.00 | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jawak, S.D.; Luis, A.J.; Pandit, P.H.; Wankhede, S.F.; Convey, P.; Fretwell, P.T. Exploratory Mapping of Blue Ice Regions in Antarctica Using Very High-Resolution Satellite Remote Sensing Data. Remote Sens. 2023, 15, 1287. https://doi.org/10.3390/rs15051287
Jawak SD, Luis AJ, Pandit PH, Wankhede SF, Convey P, Fretwell PT. Exploratory Mapping of Blue Ice Regions in Antarctica Using Very High-Resolution Satellite Remote Sensing Data. Remote Sensing. 2023; 15(5):1287. https://doi.org/10.3390/rs15051287
Chicago/Turabian StyleJawak, Shridhar D., Alvarinho J. Luis, Prashant H. Pandit, Sagar F. Wankhede, Peter Convey, and Peter T. Fretwell. 2023. "Exploratory Mapping of Blue Ice Regions in Antarctica Using Very High-Resolution Satellite Remote Sensing Data" Remote Sensing 15, no. 5: 1287. https://doi.org/10.3390/rs15051287
APA StyleJawak, S. D., Luis, A. J., Pandit, P. H., Wankhede, S. F., Convey, P., & Fretwell, P. T. (2023). Exploratory Mapping of Blue Ice Regions in Antarctica Using Very High-Resolution Satellite Remote Sensing Data. Remote Sensing, 15(5), 1287. https://doi.org/10.3390/rs15051287