A Review of Radio Observations of the Giant Planets: Probing the Composition, Structure, and Dynamics of Their Deep Atmospheres
Abstract
:1. Introduction
2. Radio Telescopes and Analysis Techniques
2.1. Mapping the Giant Planets with Radio Interferometers
2.2. Atmospheric Composition, Structure, Clouds, and Radiative Transfer Models
3. Radio Observations of Jupiter
3.1. Jupiter’s Synchrotron Radiation
3.2. Disk-Averaged Radio Spectrum of Jupiter
3.3. Radio Maps of Jupiter: Latitudinal Structure
3.4. Radio Maps of Jupiter: Longitude-Resolved Structure
3.5. Remote Sensing at Jupiter: Juno
4. Radio Observations of Saturn
4.1. Disk-Averaged Radio Spectrum of Saturn
4.2. Radio Maps of Saturn: Latitudinal Structure
4.3. Radio Maps of Saturn: Longitude-Resolved Structure
4.4. Saturn’s Rings
5. Radio Observations of Uranus
5.1. Disk-Averaged Radio Spectrum of Uranus
5.2. Radio Maps of Uranus
5.3. Radio Detection of Uranus’s Rings
6. Radio Observations of Neptune
6.1. Disk-Averaged Radio Spectrum of Neptune
6.2. Radio Maps of Neptune
7. Discussion
7.1. Atmospheric Circulation Models
7.1.1. Jupiter and Saturn
7.1.2. Uranus and Neptune
7.2. Composition and Planet Formation Models
7.3. Constraints on the Water Abundance from CO Observations
8. Conclusions
- The approximately uniform enrichment of all elements heavier than hydrogen and helium (the astronomical “metals“) by a factor of ∼2–5 in Jupiter compared with the Sun;
- The increasing level of enrichment of volatile elements over the proto-solar value with increasing heliocentric distance from Jupiter to Neptune (although only the carbon and sulfur enrichments have been measured accurately in the ice giants);
- The increasing sulfur-to-nitrogen ratio with increasing heliocentric distance from Jupiter to Neptune.
Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simon, A.A.; Wong, M.H.; Sromovsky, L.A.; Fletcher, L.N.; Fry, P.M. Giant Planet Atmospheres: Dynamics and Variability from UV to Near-IR Hubble and Adaptive Optics Imaging. Remote Sens. 2022, 14, 1518. [Google Scholar] [CrossRef]
- Roman, M.T.; Fletcher, L.N.; Orton, G.S.; Greathouse, T.K.; Moses, J.I.; Rowe-Gurney, N.; Irwin, P.G.J.; Antunano, A.; Sinclair, J.; Kasaba, Y.; et al. Sub-Seasonal Variation in Neptune’s Mid-Infrared Emission. arXiv 2021, arXiv:2112.00033. [Google Scholar]
- Bjoraker, G.L.; Wong, M.H.; de Pater, I.; Ádámkovics, M. Jupiter’s Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes. Astrophys. J. 2015, 810, 122. [Google Scholar] [CrossRef]
- Bjoraker, G.L.; Wong, M.H.; de Pater, I.; Hewagama, T.; Ádámkovics, M.; Orton, G.S. The Gas Composition and Deep Cloud Structure of Jupiter’s Great Red Spot. Astron. J. 2018, 156, 101. [Google Scholar] [CrossRef]
- Bjoraker, G.L.; Wong, M.H.; de Pater, I.; Hewagama, T.; Ádámkovics, M. The Spatial Variation of Water Clouds, NH3, and H2O on Jupiter Using Keck Data at 5 Microns. Remote Sens. 2022, 14, 4567. [Google Scholar] [CrossRef]
- Noll, K.S.; Larson, H.P. The spectrum of Saturn from 1990 to 2230 cm−1: Abundances of AsH3, CH 3D, CO, GeH4, NH3, and PH3. Icarus 1991, 89, 168–189. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Baines, K.H.; Momary, T.W.; Showman, A.P.; Irwin, P.G.J.; Orton, G.S.; Roos-Serote, M.; Merlet, C. Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 μm nightside spectroscopy. Icarus 2011, 214, 510–533. [Google Scholar] [CrossRef]
- de Pater, I. The significance of microwave observations for the planets. Phys. Rep. 1991, 200, 1–50. [Google Scholar] [CrossRef]
- de Pater, I.; Romani, P.N.; Atreya, S.K. Possible microwave absorption by H2S gas in Uranus’ and Neptune’s atmospheres. Icarus 1991, 91, 220–233. [Google Scholar] [CrossRef]
- Butler, B.J.; Campbell, D.B.; de Pater, I.; Gary, D.E. Solar system science with SKA. New Astron. Rev. 2004, 48, 1511–1535. [Google Scholar] [CrossRef]
- de Pater, I.; Kurth, W.S. The Solar System at Radio Wavelengths. In Encyclopedia of the Solar System; Spohn, T., Breuer, D., Johnson, T.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1107–1132. [Google Scholar]
- de Pater, I.; Butler, B.; Sault, R.J.; Moullet, A.; Moeckel, C.; Tollefson, J.; de Kleer, K.; Gurwell, M.; Milam, S. Potential for Solar System Science with the ngVLA. In Science with a Next Generation Very Large Array; Murphy, E., Ed.; Astronomical Society of the Pacific Conference Series: San Francisco, CA, USA, 2018; Volume 517, p. 49. [Google Scholar]
- de Pater, I.; Sault, R.J.; Wong, M.H.; Fletcher, L.N.; DeBoer, D.; Butler, B. Jupiter’s ammonia distribution derived from VLA maps at 3–37 GHz. Icarus 2019, 322, 168–191. [Google Scholar] [CrossRef]
- Akins, A.; Hofstadter, M.; Butler, B.; Molter, E.; de Pater, I. Seasonal Change in the Deep Atmosphere of Uranus, 1981 to 2021. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–27 May 2022; p. EGU22-6614. [Google Scholar] [CrossRef]
- Akins, A.; Hofstadter, M.; Butler, B.; Friedson, A.J.; Molter, E.; Parisi, M.; de Pater, I. Evidence of a polar cyclone on Uranus from VLA observations. GRL, 2023; submitted. [Google Scholar]
- Tollefson, J.; de Pater, I.; Molter, E.M.; Sault, R.J.; Butler, B.J.; Luszcz-Cook, S.; DeBoer, D. Neptune’s Spatial Brightness Temperature Variations from the VLA and ALMA. Planet. Sci. J. 2021, 2, 105. [Google Scholar] [CrossRef]
- Lewis, J.S. The clouds of Jupiter and the NH3H2O and NH3H2S systems. Icarus 1969, 10, 365–378. [Google Scholar] [CrossRef]
- Weidenschilling, S.J.; Lewis, J.S. Atmospheric and cloud structures of the Jovian planets. Icarus 1973, 20, 465–476. [Google Scholar] [CrossRef]
- Cornwell, T.J.; Perley, R.A. IAC Volume 131: Radio Interferometry: Theory, Techniques, and Applications. Int. Astron. Union Colloq. 1991, 131, f1–f11. [Google Scholar] [CrossRef]
- Synthesis Imaging in Radio Astronomy: A Collection of Lectures from the third NRAO Synthesis Imaging Summer School; Astronomical Society of the Pacific Conference Series: San Francisco, CA, USA, 1989; Volume 6.
- Synthesis Imaging in Radio Astronomy II; Astronomical Society of the Pacific Conference Series: San Francisco, CA, USA, 1999; Volume 180.
- Thompson, A.R.; Moran, J.M.; Swenson, G.W. Interferometry and Synthesis in Radio Astronomy; Springer Nature: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Gibson, J.; Welch, W.J.; de Pater, I. Accurate jovian radio flux density measurements show ammonia to be subsaturated in the upper troposphere. Icarus 2005, 173, 439–446. [Google Scholar] [CrossRef]
- Sault, R.J.; Engel, C.; de Pater, I. Longitude-resolved imaging of Jupiter at λ = 2 cm. Icarus 2004, 168, 336–343. [Google Scholar] [CrossRef]
- de Pater, I.; Massie, S.T. Models of the millimeter-centimeter spectra of the giant planets. Icarus 1985, 62, 143–171. [Google Scholar] [CrossRef]
- DeBoer, D.R.; Steffes, P.G. Estimates of the Tropospheric Vertical Structure of Neptune Based on Microwave Radiative Transfer Studies. Icarus 1996, 123, 324–335. [Google Scholar] [CrossRef]
- de Pater, I.; Fletcher, L.N.; Luszcz-Cook, S.; DeBoer, D.; Butler, B.; Hammel, H.B.; Sitko, M.L.; Orton, G.; Marcus, P.S. Neptune’s global circulation deduced from multi-wavelength observations. Icarus 2014, 237, 211–238. [Google Scholar] [CrossRef]
- Janssen, M.A.; Oswald, J.E.; Brown, S.T.; Gulkis, S.; Levin, S.M.; Bolton, S.J.; Allison, M.D.; Atreya, S.K.; Gautier, D.; Ingersoll, A.P.; et al. MWR: Microwave Radiometer for the Juno Mission to Jupiter. Space Sci. Rev. 2017, 213, 139–185. [Google Scholar] [CrossRef]
- Hofstadter, M.D. Microwave Observations of Uranus. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1992. [Google Scholar]
- Atreya, S.K.; Romani, P.N. Photochemistry and clouds of Jupiter, Saturn and Uranus. In Recent Advances in Planetary Meteorology; Hunt, G.E., Ed.; Cambridge University Press: Cambridge, MA, USA, 1985; pp. 17–68. [Google Scholar]
- Atreya, S.K. Atmospheres and Ionospheres of the Outer Planets and their Satellites; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- de Pater, I.; DeBoer, D.; Marley, M.; Freedman, R.; Young, R. Retrieval of water in Jupiter’s deep atmosphere using microwave spectra of its brightness temperature. Icarus 2005, 173, 425–438. [Google Scholar] [CrossRef]
- Moeckel, C.; de Pater, I.; DeBoer, D. Ammonia Abundance Derived from Juno MWR and VLA Observations of Jupiter. Planet. Sci. J. 2023, 4, 25. [Google Scholar] [CrossRef]
- Lindal, G.F.; Wood, G.E.; Levy, G.S.; Anderson, J.D.; Sweetnam, D.N.; Hotz, H.B.; Buckles, B.J.; Holmes, D.P.; Doms, P.E.; Eshleman, V.R.; et al. The atmosphere of Jupiter: An analysis of the Voyager radio occulation measurements. J. Geophys. Res. 1981, 86, 8721–8727. [Google Scholar] [CrossRef]
- Lindal, G.F.; Sweetnam, D.N.; Eshleman, V.R. The atmosphere of Saturn - an analysis of the Voyager radio occultation measurements. Astron. J. 1985, 90, 1136–1146. [Google Scholar] [CrossRef]
- Lindal, G.F.; Lyons, J.R.; Sweetnam, D.N.; Eshleman, V.R.; Hinson, D.P.; Tyler, G.L. The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2. J. Geophys. Res. 1987, 92, 14987–15001. [Google Scholar] [CrossRef]
- Lindal, G.F. The Atmosphere of Neptune: An Analysis of Radio Occultation Data Acquired with Voyager 2. Astron. J. 1992, 103, 967. [Google Scholar] [CrossRef]
- Seiff, A.; Kirk, D.B.; Knight, T.C.D.; Young, R.E.; Mihalov, J.D.; Young, L.A.; Milos, F.S.; Schubert, G.; Blanchard, R.C.; Atkinson, D. Thermal structure of Jupiter’s atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. J. Geophys. Res. 1998, 103, 22857–22890. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Orton, G.S.; Yanamandra-Fisher, P.; Fisher, B.M.; Parrish, P.D.; Irwin, P.G.J. Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging. Icarus 2009, 200, 154–175. [Google Scholar] [CrossRef]
- Fletcher, L.N.; de Pater, I.; Orton, G.S.; Hammel, H.B.; Sitko, M.L.; Irwin, P.G.J. Neptune at summer solstice: Zonal mean temperatures from ground-based observations, 2003–2007. Icarus 2014, 231, 146–167. [Google Scholar] [CrossRef]
- Orton, G.S.; Fletcher, L.N.; Encrenaz, T.; Leyrat, C.; Roe, H.G.; Fujiyoshi, T.; Pantin, E. Thermal imaging of Uranus: Upper-tropospheric temperatures one season after Voyager. Icarus 2015, 260, 94–102. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Greathouse, T.K.; Orton, G.S.; Sinclair, J.A.; Giles, R.S.; Irwin, P.G.J.; Encrenaz, T. Mid-infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus 2016, 278, 128–161. [Google Scholar] [CrossRef]
- Orton, G.S.; Gustafsson, M.; Burgdorf, M.; Meadows, V. Revised ab initio models for H 2-H 2 collision-induced absorption at low temperatures. Icarus 2007, 189, 544–549. [Google Scholar] [CrossRef]
- Devaraj, K.; Steffes, P.G.; Duong, D. The centimeter-wavelength opacity of ammonia under deep jovian conditions. Icarus 2014, 241, 165–179. [Google Scholar] [CrossRef]
- Deboer, D.R.; Steffes, P.G. Laboratory Measurements of the Microwave Properties of H 2S under Simulated Jovian Conditions with an Application to Neptune. Icarus 1994, 109, 352–366. [Google Scholar] [CrossRef]
- Hanley, T.R.; Steffes, P.G.; Karpowicz, B.M. A new model of the hydrogen and helium-broadened microwave opacity of ammonia based on extensive laboratory measurements. Icarus 2009, 202, 316–335. [Google Scholar] [CrossRef]
- Karpowicz, B.M.; Steffes, P.G. In search of water vapor on Jupiter: Laboratory measurements of the microwave properties of water vapor under simulated jovian conditions. Icarus 2011, 212, 210–223. [Google Scholar] [CrossRef]
- Bellotti, A.; Steffes, P.G.; Chinsomboom, G. Laboratory measurements of the 5–20 cm wavelength opacity of ammonia, water vapor, and methane under simulated conditions for the deep jovian atmosphere. Icarus 2016, 280, 255–267. [Google Scholar] [CrossRef]
- Bellotti, A.; Steffes, P.G.; Chinsomboon, G. Corrigendum to “Laboratory measurements of the 5–20 cm wavelength opacity of ammonia, water vapor, and methane under simulated conditions for the deep jovian atmosphere” [Icarus 280 (2016) 255-267]. Icarus 2017, 284, 491–492. [Google Scholar] [CrossRef]
- Briggs, F.H.; Sackett, P.D. Radio observations of Saturn as a probe of its atmosphere and cloud structure. Icarus 1989, 80, 77–103. [Google Scholar] [CrossRef]
- de Pater, I.; Mitchell, D.L. Radio Observations of the planets: The importance of laboratory measurements. J. Geophys. Res. 1993, 98, 5471–5490. [Google Scholar] [CrossRef]
- de Pater, I.; Dunn, D.; Romani, P.; Zahnle, K. Reconciling Galileo Probe Data and Ground-Based Radio Observations of Ammonia on Jupiter. Icarus 2001, 149, 66–78. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Marley, M.S. Precipitating Condensation Clouds in Substellar Atmospheres. Astrophys. J. 2001, 556, 872–884. [Google Scholar] [CrossRef]
- Wong, M.H.; Atreya, S.K.; Kuhn, W.R.; Romani, P.N.; Mihalka, K.M. Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models. Icarus 2015, 245, 273–281. [Google Scholar] [CrossRef]
- Irwin, P.G.J.; Teanby, N.A.; de Kok, R.; Fletcher, L.N.; Howett, C.J.A.; Tsang, C.C.C.; Wilson, C.F.; Calcutt, S.B.; Nixon, C.A.; Parrish, P.D. The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 1136–1150. [Google Scholar] [CrossRef]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306. [Google Scholar] [CrossRef]
- Molter, E.M.; de Pater, I.; Luszcz-Cook, S.; Tollefson, J.; Sault, R.J.; Butler, B.; de Boer, D. Tropospheric Composition and Circulation of Uranus with ALMA and the VLA. Planet. Sci. J. 2021, 2, 3. [Google Scholar] [CrossRef]
- Li, C.; de Pater, I.; Moeckel, C.; Sault, R.; Butler, B.; deBoer, D.; Zhang, Z. Long-lasting, deep effect of Saturn’s Giant Storms. Sci. Adv. 2023. [Google Scholar]
- Burke, B.F.; Franklin, K.L. Observations of a Variable Radio Source Associated with the Planet Jupiter. J. Geophys. Res. 1955, 60, 213–217. [Google Scholar] [CrossRef]
- Carr, T.D.; Desch, M.D. Recent decametric and hectometric observations of Jupiter. In Jupiter; University of Arizona Press: Tucson, AZ, USA, 1976; pp. 693–737. [Google Scholar]
- Carr, T.D.; Desch, M.D.; Alexander, J.K. Physics of the Jovian magnetosphere. 7. Phenomenology of magnetospheric radio emissions. In Physics of the Jovian Magnetosphere; Cambridge University Press: Cambridge, MA, USA, 1983; pp. 226–284. [Google Scholar]
- Mayer, C.H.; McCullough, T.P.; Sloanaker, R.M. Observation of Mar and Jupiter at a Wave Legth of 3.15 cm. Astrophys. J. 1958, 127, 11. [Google Scholar] [CrossRef]
- Radhakrishnan, V.; Roberts, J.A. Polarization and Angular Extent of the 960-Megacycle Radiation from Jupiter. Astron. J. 1960, 65, 498. [Google Scholar] [CrossRef]
- Morris, D.; Berge, G.L. Measurements of the polarization and angular extent of the decimetric radiation of Jupiter. Astrophys. J. 1962, 136, 276–282. [Google Scholar] [CrossRef]
- Berge, G.L.; Gulkis, S. Earth-based radio observations of Jupiter: Millimeter to meter wavelengths. In Jupiter; University of Arizona Press: Tucson, AZ, USA, 1976; pp. 621–692. [Google Scholar]
- de Pater, I. A comparison of the radio data and model calculations of Jupiter’s synchrotron radiation 1. The high energy electron distribution in Jupiter’s inner magnetosphere. J. Geophys. Res. 1981, 86, 3397–3422. [Google Scholar] [CrossRef]
- de Pater, I.; Schulz, M.; Brecht, S.H. Synchrotron evidence for Amalthea’s influence on Jupiter’s electron radiation belt. J. Geophys. Res. 1997, 102, 22043–22064. [Google Scholar] [CrossRef]
- Santos-Costa, D.; Bolton, S.J. Discussing the processes constraining the Jovian synchrotron radio emission’s features. Planet. Space Sci. 2008, 56, 326–345. [Google Scholar] [CrossRef]
- Roberts, J.A. The pitch angles of electrons in Jupiter’s radiation belt. PASA 1976, 3, 53–55. [Google Scholar] [CrossRef]
- Fillius, W.; McIlwain, C.; Mogro-Campero, A.; Steinberg, G. Evidence that pitch angle scattering is an important loss mechanism for energetic electrons in the inner radiation belt of Jupiter. Geophys. Res. Lett. 1976, 3, 33–36. [Google Scholar] [CrossRef]
- Santos-Costa, D.; Bourdarie, S.A. Modeling the inner Jovian electron radiation belt including non-equatorial particles. Planet. Space Sci. 2001, 49, 303–312. [Google Scholar] [CrossRef]
- de Pater, I.; Showalter, M.R.; Macintosh, B. Keck observations of the 2002 2003 jovian ring plane crossing. Icarus 2008, 195, 348–360. [Google Scholar] [CrossRef]
- de Pater, I. 21 CM maps of Jupiter’s radiation belts from all rotational aspects. Astron. Astrophys. 1980, 88, 175–183. [Google Scholar]
- Sault, R.J.; Oosterloo, T.; Dulk, G.A.; Leblanc, Y. The first three-dimensional reconstruction of a celestial object at radio wavelengths: Jupiter’s radiation belts. Astron. Astrophys. 1997, 324, 1190–1196. [Google Scholar]
- de Pater, I.; Sault, R.J. An intercomparison of three-dimensional reconstruction techniques using data and models of Jupiter’s synchrotron radiation. J. Geophys. Res. 1998, 103, 19973–19984. [Google Scholar] [CrossRef]
- Kloosterman, J.L.; Dunn, D.E.; de Pater, I. Jupiter’s Synchrotron Radiation Mapped with the Very Large Array from 1981 to 1998. Astrophys. J. Suppl. Ser. 2005, 161, 520–550. [Google Scholar] [CrossRef]
- Dunn, D.E.; de Pater, I.; Sault, R.J. Search for secular changes in the 3D profile of the synchrotron radiation around Jupiter. Icarus 2003, 165, 121–136. [Google Scholar] [CrossRef]
- Moore, K.M.; Yadav, R.K.; Kulowski, L.; Cao, H.; Bloxham, J.; Connerney, J.E.P.; Kotsiaros, S.; Jørgensen, J.L.; Merayo, J.M.G.; Stevenson, D.J.; et al. A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field. Nature 2018, 561, 76–78. [Google Scholar] [CrossRef]
- Klein, M.J.; Janssen, M.A.; Gulkis, S.; Olsen, E.T. Saturn’s microwave spectrum: Implications for the atmosphere and the rings. In NASA Conference Publication; National Aeronautics and Space Administration, Scientific and Technical Information Office: Washington, DC, USA, 1978; Volume 2068, pp. 195–216. [Google Scholar]
- Harrington, J.; de Pater, I.; Brecht, S.H.; Deming, D.; Meadows, V.; Zahnle, K.; Nicholson, P.D. Lessons from Shoemaker-Levy 9 about Jupiter and planetary impacts. In Jupiter. The Planet, Satellites and Magnetosphere; Bagenal, F., Dowling, T.E., McKinnon, W.B., Eds.; Cambridge University Press: Cambridge, MA, USA, 2004; Volume 1, pp. 159–184. [Google Scholar]
- Perley, R.A.; Chandler, C.J.; Butler, B.J.; Wrobel, J.M. The Expanded Very Large Array: A New Telescope for New Science. Astrophys. J. Lett. 2011, 739, L1. [Google Scholar] [CrossRef]
- Wrixon, G.T.; Welch, W.J.; Thornton, D.D. The Spectrum of Jupiter at Millimeter Wavelengths. Astrophys. J. 1971, 169, 171. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron. Astrophys. 2009, 47, 481–522. [Google Scholar] [CrossRef]
- Weiland, J.L.; Odegard, N.; Hill, R.S.; Wollack, E.; Hinshaw, G.; Greason, M.R.; Jarosik, N.; Page, L.; Bennett, C.L.; Dunkley, J.; et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources. Astrophys. J. Suppl. Ser. 2011, 192, 19. [Google Scholar] [CrossRef]
- Karim, R.L.; DeBoer, D.; de Pater, I.; Keating, G.K. A Wideband Self-consistent Disk-averaged Spectrum of Jupiter Near 30 GHz and Its Implications for NH3 Saturation in the Upper Troposphere. Astron. J. 2018, 155, 129. [Google Scholar] [CrossRef]
- Moeckel, C.; Janssen, M.; de Pater, I. A re-analysis of the Jovian radio emission as seen by Cassini-RADAR and evidence for time variability. Icarus 2019, 321, 994–1012. [Google Scholar] [CrossRef]
- Planck Collaboration; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck intermediate results. LII. Planet flux densities. Astron. Astrophys. 2017, 607, A122. [Google Scholar] [CrossRef]
- Maris, M.; Romelli, E.; Tomasi, M.; Gregorio, A.; Sandri, M.; Galeotta, S.; Tavagnacco, D.; Frailis, M.; Maggio, G.; Zacchei, A. Revised planet brightness temperatures using the Planck/LFI 2018 data release. Astron. Astrophys. 2021, 647, A104. [Google Scholar] [CrossRef]
- Li, C.; Ingersoll, A.; Janssen, M.; Levin, S.; Bolton, S.; Adumitroaie, V.; Allison, M.; Arballo, J.; Bellotti, A.; Brown, S.; et al. The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophys. Res. Lett. 2017, 44, 5317–5325. [Google Scholar] [CrossRef]
- Folkner, W.M.; Woo, R.; Nandi, S. Ammonia abundance in Jupiter’s atmosphere derived from the attenuation of the Galileo probe’s radio signal. J. Geophys. Res. 1998, 103, 22847–22856. [Google Scholar] [CrossRef]
- Niemann, H.B.; Atreya, S.K.; Carignan, G.R.; Donahue, T.M.; Haberman, J.A.; Harpold, D.N.; Hartle, R.E.; Hunten, D.M.; Kasprzak, W.T.; Mahaffy, P.R.; et al. The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res. 1998, 103, 22831–22846. [Google Scholar] [CrossRef]
- Wong, M.H.; Mahaffy, P.R.; Atreya, S.K.; Niemann, H.B.; Owen, T.C. Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 2004, 171, 153–170. [Google Scholar] [CrossRef]
- Showman, A.P.; de Pater, I. Dynamical implications of Jupiter’s tropospheric ammonia abundance. Icarus 2005, 174, 192–204. [Google Scholar] [CrossRef]
- de Pater, I.; Jaffe, W.J. Very large array observations of Jupiter’s nonthermal radiation. Astrophys. J. Suppl. Ser. 1984, 54, 405–419. [Google Scholar] [CrossRef]
- de Pater, I.; Dickel, J.R. Jupiter’s Zone-Belt Structure of Radio Wavelengths. I. Observations. Astrophys. J. 1986, 308, 459. [Google Scholar] [CrossRef]
- de Pater, I. Jupiter’s zone-belt structure at radio wavelengths. II. Comparison of observations with model atmosphere calculations. Icarus 1986, 68, 344–365. [Google Scholar] [CrossRef]
- de Pater, I.; Sault, R.J.; Butler, B.; DeBoer, D.; Wong, M.H. Peering through Jupiter’s clouds with radio spectral imaging. Science 2016, 352, 1198–1201. [Google Scholar] [CrossRef] [PubMed]
- de Pater, I.; Sault, R.J.; Moeckel, C.; Moullet, A.; Wong, M.H.; Goullaud, C.; DeBoer, D.; Butler, B.J.; Bjoraker, G.; Ádámkovics, M.; et al. First ALMA Millimeter-wavelength Maps of Jupiter, with a Multiwavelength Study of Convection. Astron. J. 2019, 158, 139. [Google Scholar] [CrossRef]
- Allison, M. Planetary waves in Jupiter’s equatorial atmosphere. Icarus 1990, 83, 282–307. [Google Scholar] [CrossRef]
- Ortiz, J.L.; Orton, G.S.; Friedson, A.J.; Stewart, S.T.; Fisher, B.M.; Spencer, J.R. Evolution and persistence of 5-μm hot spots at the Galileo probe entry latitude. J. Geophys. Res. 1998, 103, 23051–23069. [Google Scholar] [CrossRef]
- Showman, A.P.; Dowling, T.E. Nonlinear Simulations of Jupiter’s 5-Micron Hot Spots. Science 2000, 289, 1737–1740. [Google Scholar] [CrossRef]
- Friedson, A.J. Water, ammonia, and H 2S mixing ratios in Jupiter’s five-micron hot spots: A dynamical model. Icarus 2005, 177, 1–17. [Google Scholar] [CrossRef]
- Cook, J.J.; Cross, L.G.; Bair, M.E.; Arnold, C.B. Radio Detection of the Planet Saturn. Nature 1960, 188, 393–394. [Google Scholar] [CrossRef]
- Drake, F.D. Microwave Spectrum of Saturn. Nature 1962, 195, 893–894. [Google Scholar] [CrossRef]
- Wrixon, G.T.; Welch, W.J. The Millimeter Wave Spectrum of Saturn. Icarus 1970, 13, 163–172. [Google Scholar] [CrossRef]
- de Pater, I.; Dickel, J.R. Multifrequency radio observations of Saturn at ring inclination angles between 5 and 26 degrees. Icarus 1991, 94, 474–492. [Google Scholar] [CrossRef]
- van der Tak, F.; de Pater, I.; Silva, A.; Millan, R. Time Variability in the Radio Brightness Distribution of Saturn. Icarus 1999, 142, 125–147. [Google Scholar] [CrossRef]
- Dunn, D.E.; Molnar, L.A.; Fix, J.D. More Microwave Observations of Saturn: Modeling the Ring with a Monte Carlo Radiative Transfer Code. Icarus 2002, 160, 132–160. [Google Scholar] [CrossRef]
- Zhang, Z.; Hayes, A.G.; de Pater, I.; Dunn, D.E.; Janssen, M.A.; Nicholson, P.D.; Cuzzi, J.N.; Butler, B.J.; Sault, R.J.; Chatterjee, S. VLA multi-wavelength microwave observations of Saturn’s C and B rings. Icarus 2019, 317, 518–548. [Google Scholar] [CrossRef]
- Schloerb, F.P.; Muhleman, D.O.; Berge, G.L. Interferometric observations of Saturn and its rings at a wavelength of 3 3.71 cm. Icarus 1979, 39, 214–231. [Google Scholar] [CrossRef]
- de Pater, I.; Dickel, J.R. VLA observations of Saturn at 1.3, 2, and 6 cm. Icarus 1982, 50, 88–102. [Google Scholar] [CrossRef]
- Grossman, A.W.; Muhleman, D.O.; Berge, G.L. High-Resolution Microwave Images of Saturn. Science 1989, 245, 1211–1215. [Google Scholar] [CrossRef]
- Dunn, D.E.; de Pater, I.; Molnar, L.A. Examining the wake structure in Saturn’s rings from microwave observations over varying ring opening angles and wavelengths. Icarus 2007, 192, 56–76. [Google Scholar] [CrossRef]
- de Pater, I.; Dickel, J.R. New information on Saturn and its rings from multi-frequency VLA data. Adv. Space Res. 1983, 3, 39–41. [Google Scholar] [CrossRef]
- Janssen, M.A.; Ingersoll, A.P.; Allison, M.D.; Gulkis, S.; Laraia, A.L.; Baines, K.H.; Edgington, S.G.; Anderson, Y.Z.; Kelleher, K.; Oyafuso, F.A. Saturn’s thermal emission at 2.2-cm wavelength as imaged by the Cassini RADAR radiometer. Icarus 2013, 226, 522–535. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; del Río-Gaztelurrutia, T.; Hueso, R.; Gómez-Forrellad, J.M.; Sanz-Requena, J.F.; Legarreta, J.; García-Melendo, E.; Colas, F.; Lecacheux, J.; Fletcher, L.N.; et al. Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature 2011, 475, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, L.N.; Hesman, B.E.; Irwin, P.G.J.; Baines, K.H.; Momary, T.W.; Sanchez-Lavega, A.; Flasar, F.M.; Read, P.L.; Orton, G.S.; Simon-Miller, A.; et al. Thermal Structure and Dynamics of Saturn’s Northern Springtime Disturbance. Science 2011, 332, 1413. [Google Scholar] [CrossRef] [PubMed]
- Laraia, A.L.; Ingersoll, A.P.; Janssen, M.A.; Gulkis, S.; Oyafuso, F.; Allison, M. Analysis of Saturn’s thermal emission at 2.2-cm wavelength: Spatial distribution of ammonia vapor. Icarus 2013, 226, 641–654. [Google Scholar] [CrossRef]
- Sanchez-Lavega, A.; Colas, F.; Lecacheux, J.; Laques, P.; Miyazaki, I.; Parker, D. The Great White Spot and disturbances in Saturn’s equatorial atmosphere during 1990. Nature 1991, 353, 397–401. [Google Scholar] [CrossRef]
- Beebe, R.F.; Barnet, C.; Sada, P.V.; Murrell, A.S. The onset and growth of the 1990 equatorial disturbance on Saturn. Icarus 1992, 95, 163–172. [Google Scholar] [CrossRef]
- Li, C.; Ingersoll, A.P. Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms. Nat. Geosci. 2015, 8, 398–403. [Google Scholar] [CrossRef]
- Allison, M.; Godfrey, D.A.; Beebe, R.F. A Wave Dynamical Interpretation of Saturn’s Polar Hexagon. Science 1990, 247, 1061–1063. [Google Scholar] [CrossRef]
- Dunn, D.E.; Molnar, L.A.; Fix, J.D. VLA Observations of Saturn’s Rings at Saturnian Equinox. In Proceedings of the AAS/Division for Planetary Sciences Meeting Abstracts #28, Tucson, AZ, USA, 23–26 October 1996; Volume 28, p. 18.04. [Google Scholar]
- Julian, W.H.; Toomre, A. Non-Axisymmetric Responses of Differentially Rotating Disks of Stars. Astrophys. J. 1966, 146, 810. [Google Scholar] [CrossRef]
- Salo, H. Gravitational wakes in Saturn’s rings. Nature 1992, 359, 619–621. [Google Scholar] [CrossRef]
- Salo, H. Simulations of dense planetary rings. III. Self-gravitating identical particles. Icarus 1995, 117, 287–312. [Google Scholar] [CrossRef]
- Zhang, Z.; Hayes, A.G.; Janssen, M.A.; Nicholson, P.D.; Cuzzi, J.N.; de Pater, I.; Dunn, D.E. Exposure age of Saturn’s A and B rings, and the Cassini Division as suggested by their non-icy material content. Icarus 2017, 294, 14–42. [Google Scholar] [CrossRef]
- Zhang, Z.; Hayes, A.G.; Janssen, M.A.; Nicholson, P.D.; Cuzzi, J.N.; de Pater, I.; Dunn, D.E.; Estrada, P.R.; Hedman, M.M. Cassini microwave observations provide clues to the origin of Saturn’s C ring. Icarus 2017, 281, 297–321. [Google Scholar] [CrossRef]
- Kellermann, K.I. The thermal radio emission from Mercury, Venus, Mars, Saturn, and Uranus. Icarus 1966, 5, 478–490. [Google Scholar] [CrossRef]
- Gulkis, S.; Janssen, M.A.; Olsen, E.T. Evidence for the depletion of ammonia in the Uranus atmosphere. Icarus 1978, 34, 10–19. [Google Scholar] [CrossRef]
- Gulkis, S.; Olsen, E.T.; Klein, M.J.; Thompson, T.J. Uranus: Variability of the Microwave Spectrum. Science 1983, 221, 453–455. [Google Scholar] [CrossRef]
- Gulkis, S.; Depater, I. A review of the millimeter and centimeter observations of Uranus. In NASA Conference Publication; Bergstralh, J.T., Ed.; National Aeronautics and Space Administration, Scientific and Technical Information Office: Washington, DC, USA, 1984; Volume 2330, pp. 225–262. [Google Scholar]
- Jaffe, W.J.; Berge, G.L.; Owen, T.; Caldwell, J. Uranus: Microwave Images. Science 1984, 225, 619–621. [Google Scholar] [CrossRef]
- de Pater, I.; Gulkis, S. VLA observations of Uranus at 1.3-20 cm. Icarus 1988, 75, 306–323. [Google Scholar] [CrossRef]
- Klein, M.J.; Hofstadter, M.D. Long-term variations in the microwave brightness temperature of the Uranus atmosphere. Icarus 2006, 184, 170–180. [Google Scholar] [CrossRef]
- Lockwood, G.W. Final compilation of photometry of Uranus and Neptune, 1972-2016. Icarus 2019, 324, 77–85. [Google Scholar] [CrossRef]
- de Pater, I.; Romani, P.N.; Atreya, S.K. Uranus deep atmosphere revealed. Icarus 1989, 82, 288–313. [Google Scholar] [CrossRef]
- Irwin, P.G.J.; Toledo, D.; Garland, R.; Teanby, N.A.; Fletcher, L.N.; Orton, G.A.; Bézard, B. Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere. Nat. Astron. 2018, 2, 420–427. [Google Scholar] [CrossRef]
- Hofstadter, M.D.; Butler, B.J. Seasonal change in the deep atmosphere of Uranus. Icarus 2003, 165, 168–180. [Google Scholar] [CrossRef]
- Hofstadter, M.D.; Berge, G.L.; Muhleman, D.O. Vertical motions in the Uranian atmosphere: An analysis of radio observations. Icarus 1990, 84, 261–267. [Google Scholar] [CrossRef]
- Molter, E.; de Pater, I.; Luszcz-Cook, S.; Hueso, R.; Tollefson, J.; Alvarez, C.; Sánchez-Lavega, A.; Wong, M.H.; Hsu, A.I.; Sromovsky, L.A.; et al. Analysis of Neptune’s 2017 bright equatorial storm. Icarus 2019, 321, 324–345. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Pauliny-Toth, I.I.K. Observations of the Radio Emission of Uranus, Neptune, and Other Planets at 1.9 CM. Astrophys. J. 1966, 145, 954. [Google Scholar] [CrossRef]
- de Pater, I.; Richmond, M. Neptune’s microwave spectrum from 1 mm to 20 cm. Icarus 1989, 80, 1–13. [Google Scholar] [CrossRef]
- Hofstadter, M.D. Microwave Imaging of Neptune’s Troposphere. In Proceedings of the AAS/Division for Planetary Sciences Meeting Abstracts #25, Boulder, CO, USA, 18–22 October 1993; Volume 25, p. 18.05. [Google Scholar]
- Irwin, P.G.J.; Toledo, D.; Garland, R.; Teanby, N.A.; Fletcher, L.N.; Orton, G.S.; Bézard, B. Probable detection of hydrogen sulphide (H2S) in Neptune’s atmosphere. Icarus 2019, 321, 550–563. [Google Scholar] [CrossRef]
- Butler, B.J.; Hofstadter, M.; Gurwell, M.; Orton, G.; Norwood, J. The Deep Atmosphere of Neptune From EVLA Observations. In Proceedings of the AAS/Division for Planetary Sciences Meeting Abstracts #44, Reno, NV, USA, 14–19 October 2012; Volume 44, p. 504.06. [Google Scholar]
- Tollefson, J.; de Pater, I.; Luszcz-Cook, S.; DeBoer, D. Neptune’s Latitudinal Variations as Viewed with ALMA. Astron. J. 2019, 157, 251. [Google Scholar] [CrossRef]
- Genio, A.D.D.; Achterberg, R.K.; Baines, K.H.; Flasar, F.M.; Read, P.L.; Sánchez-Lavega, A.; Showman, A.P. Saturn atmospheric structure and dynamics. In Saturn from Cassini-Huygens; Springer: Berlin/Heidelberg, Germany, 2009; pp. 113–159. [Google Scholar]
- Sromovsky, L.A.; Karkoschka, E.; Fry, P.M.; Hammel, H.B.; de Pater, I.; Rages, K. Methane depletion in both polar regions of Uranus inferred from HST/STIS and Keck/NIRC2 observations. Icarus 2014, 238, 137–155. [Google Scholar] [CrossRef]
- Showman, A.P.; Ingersoll, A.P.; Achterberg, R.; Kaspi, Y. The global atmospheric circulation of Saturn. In Saturn in the 21st Century; Cambridge University Press: Cambridge, UK, 2018; Volume 20, p. 295. [Google Scholar]
- Fletcher, L.N.; de Pater, I.; Orton, G.S.; Hofstadter, M.D.; Irwin, P.G.J.; Roman, M.T.; Toledo, D. Ice Giant Circulation Patterns: Implications for Atmospheric Probes. Space Sci. Rev. 2020, 216, 21. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, L.N.; Kaspi, Y.; Guillot, T.; Showman, A.P. How Well Do We Understand the Belt/Zone Circulation of Giant Planet Atmospheres? Space Sci. Rev. 2020, 216, 30. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, L.N.; Oyafuso, F.A.; Allison, M.; Ingersoll, A.; Li, L.; Kaspi, Y.; Galanti, E.; Wong, M.H.; Orton, G.S.; Duer, K.; et al. Jupiter’s Temperate Belt/Zone Contrasts Revealed at Depth by Juno Microwave Observations. J. Geophys. Res. (Planets) 2021, 126, e06858. [Google Scholar] [CrossRef]
- Conrath, B.J.; Gierasch, P.J. Global variation of the para hydrogen fraction in Jupiter’s atmosphere and implications for dynamics on the outer planets. Icarus 1984, 57, 184–204. [Google Scholar] [CrossRef]
- Wang, D.; Lunine, J.I.; Mousis, O. Modeling the disequilibrium species for Jupiter and Saturn: Implications for Juno and Saturn entry probe. Icarus 2016, 276, 21–38. [Google Scholar] [CrossRef]
- Marcus, P.S.; Tollefson, J.; Wong, M.H.; Pater, I.d. An equatorial thermal wind equation: Applications to Jupiter. Icarus 2019, 324, 198–223. [Google Scholar] [CrossRef]
- Tollefson, J.; Pater, I.d.; Marcus, P.S.; Luszcz-Cook, S.; Sromovsky, L.A.; Fry, P.M.; Fletcher, L.N.; Wong, M.H. Vertical wind shear in Neptune’s upper atmosphere explained with a modified thermal wind equation. Icarus 2018, 311, 317–339. [Google Scholar] [CrossRef]
- Gierasch, P.J.; Conrath, B.J.; Magalhães, J.A. Zonal mean properties of Jupiter’s upper troposphere from voyager infrared observations. Icarus 1986, 67, 456–483. [Google Scholar] [CrossRef]
- West, R.A.; Friedson, A.J.; Appleby, J.F. Jovian large-scale stratospheric circulation. Icarus 1992, 100, 245–259. [Google Scholar] [CrossRef]
- Moreno, F.; Sedano, J. Radiative Balance and Dynamics in the Stratosphere of Jupiter: Results from a Latitude-Dependent Aerosol Heating Model. Icarus 1997, 130, 36–48. [Google Scholar] [CrossRef]
- Ingersoll, A.P.; Gierasch, P.J.; Banfield, D.; Vasavada, A.R.; Galileo Imaging Team. Moist convection as an energy source for the large-scale motions in Jupiter’s atmosphere. Nature 2000, 403, 630–632. [Google Scholar] [CrossRef] [PubMed]
- Pirraglia, J.A.; Conrath, B.J.; Allison, M.D.; Gierasch, P.J. Thermal structure and dynamics of Saturn and Jupiter. Nature 1981, 292, 677–679. [Google Scholar] [CrossRef]
- Conrath, B.J.; Flasar, F.M.; Pirraglia, J.A.; Gierasch, P.J.; Hunt, G.E. Thermal structure and dynamics of the Jovian atmosphere 2. visible cloud features. J. Geophys. Res. 1981, 86, 8769–8775. [Google Scholar] [CrossRef]
- Conrath, B.J.; Gierasch, P.J.; Ustinov, E.A. Thermal Structure and Para Hydrogen Fraction on the Outer Planets from Voyager IRIS Measurements. Icarus 1998, 135, 501–517. [Google Scholar] [CrossRef]
- Atkinson, D.H.; Pollack, J.B.; Seiff, A. The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter. J. Geophys. Res. 1998, 103, 22911–22928. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; Hueso, R.; Pérez-Hoyos, S. The three-dimensional structure of Saturn’s equatorial jet at cloud level. Icarus 2007, 187, 510–519. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Orton, G.S.; Teanby, N.A.; Irwin, P.G.J. Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus 2009, 202, 543–564. [Google Scholar] [CrossRef]
- Conrath, B.J.; Gierasch, P.J.; Herter, T.; Wang, J. Temperature and para hydrogen gradients on Jupiter observed from the FORCAST camera on SOFIA. Icarus 2018, 315, 1–6. [Google Scholar] [CrossRef]
- Fletcher, L.N.; de Pater, I.; Reach, W.T.; Wong, M.; Orton, G.S.; Irwin, P.G.J.; Gehrz, R.D. Jupiter’s para-H2 distribution from SOFIA/FORCAST and Voyager/IRIS 17-37 μm spectroscopy. Icarus 2017, 286, 223–240. [Google Scholar] [CrossRef]
- de Pater, I.; Fletcher, L.N.; Reach, W.T.; Goullaud, C.; Orton, G.S.; Wong, M.H.; Gehrz, R.D. SOFIA Observations of Variability in Jupiter’s Para-H2 Distribution and Subsurface Emission Characteristics of the Galilean Satellites. Planet. Sci. J. 2021, 2, 226. [Google Scholar] [CrossRef]
- Massie, S.T.; Hunten, D.M. Conversion of para and ortho hydrogen in the Jovian planets. Icarus 1982, 49, 213–226. [Google Scholar] [CrossRef]
- Karkoschka, E.; Tomasko, M. Saturn’s vertical and latitudinal cloud structure 1991 2004 from HST imaging in 30 filters. Icarus 2005, 179, 195–221. [Google Scholar] [CrossRef]
- Giles, R.S.; Fletcher, L.N.; Irwin, P.G.J. Latitudinal variability in Jupiter’s tropospheric disequilibrium species: GeH4, AsH3 and PH3. Icarus 2017, 289, 254–269. [Google Scholar] [CrossRef]
- Duer, K.; Gavriel, N.; Galanti, E.; Kaspi, Y.; Fletcher, L.N.; Guillot, T.; Bolton, S.J.; Levin, S.M.; Atreya, S.K.; Grassi, D.; et al. Evidence for Multiple Ferrel-Like Cells on Jupiter. Geophys. Res. Lett. 2021, 48, e95651. [Google Scholar] [CrossRef]
- Borucki, W.J.; Williams, M.A. Lightning in the Jovian water cloud. J. Geophys. Res. 1986, 91, 9893–9903. [Google Scholar] [CrossRef]
- Little, B.; Anger, C.D.; Ingersoll, A.P.; Vasavada, A.R.; Senske, D.A.; Breneman, H.H.; Borucki, W.J.; Galileo SSI Team. Galileo Images of Lightning on Jupiter. Icarus 1999, 142, 306–323. [Google Scholar] [CrossRef]
- Dyudina, U.A.; Ingersoll, A.P.; Vasavada, A.R.; Ewald, S.P.; Galileo SSI Team. Monte Carlo Radiative Transfer Modeling of Lightning Observed in Galileo Images of Jupiter. Icarus 2002, 160, 336–349. [Google Scholar] [CrossRef]
- Porco, C.C.; West, R.A.; McEwen, A.; Del Genio, A.D.; Ingersoll, A.P.; Thomas, P.; Squyres, S.; Dones, L.; Murray, C.D.; Johnson, T.V.; et al. Cassini Imaging of Jupiter’s Atmosphere, Satellites, and Rings. Science 2003, 299, 1541–1547. [Google Scholar] [CrossRef]
- Brown, S.; Janssen, M.; Adumitroaie, V.; Atreya, S.; Bolton, S.; Gulkis, S.; Ingersoll, A.; Levin, S.; Li, C.; Li, L.; et al. Prevalent lightning sferics at 600 megahertz near Jupiter’s poles. Nature 2018, 558, 87–90. [Google Scholar] [CrossRef]
- Dyudina, U.A.; Ingersoll, A.P.; Ewald, S.P.; Porco, C.C.; Fischer, G.; Yair, Y. Saturn’s visible lightning, its radio emissions, and the structure of the 2009–2011 lightning storms. Icarus 2013, 226, 1020–1037. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Orton, G.S.; Rogers, J.H.; Giles, R.S.; Payne, A.V.; Irwin, P.G.J.; Vedovato, M. Moist convection and the 2010–2011 revival of Jupiter’s South Equatorial Belt. Icarus 2017, 286, 94–117. [Google Scholar] [CrossRef]
- Guillot, T.; Stevenson, D.J.; Atreya, S.K.; Bolton, S.J.; Becker, H.N. Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of “Mushballs”. J. Geophys. Res. (Planets) 2020, 125, e06403. [Google Scholar] [CrossRef]
- Guillot, T. Condensation of Methane, Ammonia, and Water and the Inhibition of Convection in Giant Planets. Science 1995, 269, 1697–1699. [Google Scholar] [CrossRef]
- Leconte, J.; Selsis, F.; Hersant, F.; Guillot, T. Condensation-inhibited convection in hydrogen-rich atmospheres. Stability against double-diffusive processes and thermal profiles for Jupiter, Saturn, Uranus, and Neptune. Astron. Astrophys. 2017, 598, A98. [Google Scholar] [CrossRef]
- Ge, H.; Li, C.; Zhang, X. Exploring the role of water in Jupiter’s weather layer: Implication to the evolution and interior of gas giants. In Proceedings of the AAS/Division for Planetary Sciences Meeting Abstracts, London, UK, 2–7 October 2022; Volume 54, p. 302.02. [Google Scholar]
- Fletcher, L.N. Cycles of activity in the Jovian atmosphere. Geophys. Res. Lett. 2017, 44, 4725–4729. [Google Scholar] [CrossRef]
- Conrath, B.J.; Flasar, F.M.; Gierasch, P.J. Thermal structure and dynamics of Neptune’s atmosphere from Voyager measurements. J. Geophys. Res. 1991, 96, 18931–18939. [Google Scholar] [CrossRef]
- Flasar, F.M.; Conrath, B.J.; Gierasch, P.J.; Pirraglia, J.A. Voyager infrared observations of Uranus’ atmosphere: Thermal structure and dynamics. J. Geophys. Res. 1987, 92, 15011–15018. [Google Scholar] [CrossRef]
- Sromovsky, L.A.; Fry, P.M.; Hammel, H.B.; de Pater, I.; Rages, K.A. Post-equinox dynamics and polar cloud structure on Uranus. Icarus 2012, 220, 694–712. [Google Scholar] [CrossRef]
- Luszcz-Cook, S.H.; de Pater, I.; Ádámkovics, M.; Hammel, H.B. Seeing double at Neptune’s south pole. Icarus 2010, 208, 938–944. [Google Scholar] [CrossRef]
- Mizuno, H. Formation of the Giant Planets. Prog. Theor. Phys. 1980, 64, 544–557. [Google Scholar] [CrossRef]
- Stevenson, D.J. Formation of the giant planets. Planet. Space Sci. 1982, 30, 755–764. [Google Scholar] [CrossRef]
- Pollack, J.B.; Hubickyj, O.; Bodenheimer, P.; Lissauer, J.J.; Podolak, M.; Greenzweig, Y. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas. Icarus 1996, 124, 62–85. [Google Scholar] [CrossRef]
- de Pater, I.; Lissauer, J.J. Planetary Sciences; Cambridge University Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Helled, R.; Stevenson, D.J.; Lunine, J.I.; Bolton, S.J.; Nettelmann, N.; Atreya, S.; Guillot, T.; Militzer, B.; Miguel, Y.; Hubbard, W.B. Revelations on Jupiter’s formation, evolution and interior: Challenges from Juno results. Icarus 2022, 378, 114937. [Google Scholar] [CrossRef]
- Wahl, S.M.; Hubbard, W.B.; Militzer, B.; Guillot, T.; Miguel, Y.; Movshovitz, N.; Kaspi, Y.; Helled, R.; Reese, D.; Galanti, E.; et al. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys. Res. Lett. 2017, 44, 4649–4659. [Google Scholar] [CrossRef]
- Movshovitz, N.; Fortney, J.J.; Mankovich, C.; Thorngren, D.; Helled, R. Saturn’s Probable Interior: An Exploration of Saturn’s Potential Interior Density Structures. Astrophys. J. 2020, 891, 109. [Google Scholar] [CrossRef]
- Mankovich, C.R.; Fuller, J. A diffuse core in Saturn revealed by ring seismology. Nat. Astron. 2021, 5, 1103–1109. [Google Scholar] [CrossRef]
- Shibata, S.; Helled, R. Enrichment of Jupiter’s Atmosphere by Late Planetesimal Bombardment. Astrophys. J. Lett. 2022, 926, L37. [Google Scholar] [CrossRef]
- Shibata, S.; Helled, R.; Kobayashi, H. Heavy-element accretion by proto-Jupiter in a massive planetesimal disc, revisited. Mon. Not. R. Astron. Soc. 2023, 519, 1713–1731. [Google Scholar] [CrossRef]
- Moll, R.; Garaud, P.; Mankovich, C.; Fortney, J.J. Double-diffusive Erosion of the Core of Jupiter. Astrophys. J. 2017, 849, 24. [Google Scholar] [CrossRef]
- Liu, S.F.; Hori, Y.; Müller, S.; Zheng, X.; Helled, R.; Lin, D.; Isella, A. The formation of Jupiter’s diluted core by a giant impact. Nature 2019, 572, 355–357. [Google Scholar] [CrossRef]
- Safronov, V.S. Sizes of the largest bodies falling onto the planets during their formation. Sov. Astron. 1966, 9, 987–991. [Google Scholar]
- Benz, W.; Cameron, A.G.W.; Melosh, H.J. The origin of the Moon and the single-impact hypothesis III. Icarus 1989, 81, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.G.W.; Benz, W. The origin of the moon and the single impact hypothesis IV. Icarus 1991, 92, 204–216. [Google Scholar] [CrossRef]
- Canup, R.M.; Esposito, L.W. Accretion of the Moon from an Impact-Generated Disk. Icarus 1996, 119, 427–446. [Google Scholar] [CrossRef]
- Morbidelli, A.; Tsiganis, K.; Batygin, K.; Crida, A.; Gomes, R. Explaining why the uranian satellites have equatorial prograde orbits despite the large planetary obliquity. Icarus 2012, 219, 737–740. [Google Scholar] [CrossRef]
- Li, C.; Ingersoll, A.; Bolton, S.; Levin, S.; Janssen, M.; Atreya, S.; Lunine, J.; Steffes, P.; Brown, S.; Guillot, T.; et al. The water abundance in Jupiter’s equatorial zone. Nat. Astron. 2020, 4, 609–616. [Google Scholar] [CrossRef]
- Owen, T.; Mahaffy, P.; Niemann, H.B.; Atreya, S.; Donahue, T.; Bar-Nun, A.; de Pater, I. A low-temperature origin for the planetesimals that formed Jupiter. Nature 1999, 402, 269–270. [Google Scholar] [CrossRef]
- Atreya, S.K.; Crida, A.; Guillot, T.; Li, C.; Lunine, J.I.; Madhusudhan, N.; Mousis, O.; Wong, M.H. The Origin and Evolution of Saturn: A Post-Cassini Perspective. arXiv 2022, arXiv:2205.06914. [Google Scholar]
- Sromovsky, L.A.; Karkoschka, E.; Fry, P.M.; de Pater, I.; Hammel, H.B. The methane distribution and polar brightening on Uranus based on HST/STIS, Keck/NIRC2, and IRTF/SpeX observations through 2015. Icarus 2019, 317, 266–306. [Google Scholar] [CrossRef]
- Atreya, S.K.; Hofstadter, M.D.; Reh, K.R.; In, J.H. Icy giant planet exploration: Are entry probes essential? Acta Astronaut. 2019, 162, 266–274. [Google Scholar] [CrossRef]
- Gautier, D.; Hersant, F.; Mousis, O.; Lunine, J.I. Enrichments in Volatiles in Jupiter: A New Interpretation of the Galileo Measurements. Astrophys. J. Lett. 2001, 550, L227–L230. [Google Scholar] [CrossRef]
- Hersant, F.; Gautier, D.; Lunine, J.I. Enrichment in volatiles in the giant planets of the Solar System. Planet. Space Sci. 2004, 52, 623–641. [Google Scholar] [CrossRef]
- Sloan Jr, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Waals, J.v.d.; Platteeuw, J. Clathrate solutions. Adv. Chem. Phys. 1959, 2, 1–57. [Google Scholar]
- Lunine, J.I.; Stevenson, D.J. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system. Astrophys. J. Suppl. Ser. 1985, 58, 493–531. [Google Scholar] [CrossRef]
- Mousis, O.; Lunine, J.I.; Picaud, S.; Cordier, D. Volatile inventories in clathrate hydrates formed in the primordial nebula. Faraday Discuss. 2010, 147, 509. [Google Scholar] [CrossRef]
- Alibert, Y.; Mordasini, C.; Benz, W.; Winisdoerffer, C. Models of giant planet formation with migration and disc evolution. Astron. Astrophys. 2005, 434, 343–353. [Google Scholar] [CrossRef]
- Alibert, Y.; Mousis, O.; Mordasini, C.; Benz, W. New Jupiter and Saturn Formation Models Meet Observations. Astrophys. J. Lett. 2005, 626, L57–L60. [Google Scholar] [CrossRef]
- Mousis, O.; Aguichine, A.; Atkinson, D.H.; Atreya, S.K.; Cavalié, T.; Lunine, J.I.; Mandt, K.E.; Ronnet, T. Key Atmospheric Signatures for Identifying the Source Reservoirs of Volatiles in Uranus and Neptune. Space Sci. Rev. 2020, 216, 77. [Google Scholar] [CrossRef]
- Mousis, O.; Lunine, J.I.; Luspay-Kuti, A.; Guillot, T.; Marty, B.; Ali-Dib, M.; Wurz, P.; Altwegg, K.; Bieler, A.; Hässig, M.; et al. A Protosolar Nebula Origin for the Ices Agglomerated by Comet 67P/Churyumov-Gerasimenko. Astrophys. J. Lett. 2016, 819, L33. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032; The National Academies Press: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Prinn, R.G.; Barshay, S.S. Carbon Monoxide on Jupiter and Implications for Atmospheric Convection. Science 1977, 198, 1031–1034. [Google Scholar] [CrossRef]
- Bézard, B.; Lellouch, E.; Strobel, D.; Maillard, J.P.; Drossart, P. Carbon Monoxide on Jupiter: Evidence for Both Internal and External Sources. Icarus 2002, 159, 95–111. [Google Scholar] [CrossRef]
- Luszcz-Cook, S.H.; de Pater, I. Constraining the origins of Neptune’s carbon monoxide abundance with CARMA millimeter-wave observations. Icarus 2013, 222, 379–400. [Google Scholar] [CrossRef]
- Cavalié, T.; Moreno, R.; Lellouch, E.; Hartogh, P.; Venot, O.; Orton, G.S.; Jarchow, C.; Encrenaz, T.; Selsis, F.; Hersant, F.; et al. The first submillimeter observation of CO in the stratosphere of Uranus. Astron. Astrophys. 2014, 562, A33. [Google Scholar] [CrossRef]
- Cavalié, T.; Venot, O.; Selsis, F.; Hersant, F.; Hartogh, P.; Leconte, J. Thermochemistry and vertical mixing in the tropospheres of Uranus and Neptune: How convection inhibition can affect the derivation of deep oxygen abundances. Icarus 2017, 291, 1–16. [Google Scholar] [CrossRef]
- Carpenter, J.; Iono, D.; Kemper, F.; Wootten, A. The ALMA Development Program: Roadmap to 2030. arXiv 2020, arXiv:2001.11076. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Pathways to Discovery in Astronomy and Astrophysics for the 2020s; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Murphy, E.J.; Bolatto, A.; Chatterjee, S.; Casey, C.M.; Chomiuk, L.; Dale, D.; de Pater, I.; Dickinson, M.; Francesco, J.D.; Hallinan, G.; et al. The ngVLA Science Case and Associated Science Requirements. In Science with a Next Generation Very Large Array; Murphy, E., Ed.; Astronomical Society of the Pacific Conference Series: San Francisco, CA, USA, 2018; Volume 517, p. 3. [Google Scholar]
- de Pater, I.; Moeckel, C.; Tollefson, J.; Butler, B.; de Kleer, K.; Fletcher, L.; Gurwell, M.A.; Luszcz-Cook, S.; Milam, S.; Molter, E.; et al. Prospects to study the Ice Giants with the ngVLA. Bull. Am. Astron. Soc. 2021, 53, 063. [Google Scholar] [CrossRef]
- Bourke, T.; Braun, R.; Fender, R.; GOVONI, F.; Green, J.; Hoare, M.; Jarvis, M.; Johnston-Hollitt, M.; Keane, E.; Koopmans, L.; et al. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14). Giardini Naxos, Italy, 9–13 June 2014. [Google Scholar]
- Grasset, O.; Dougherty, M.K.; Coustenis, A.; Bunce, E.J.; Erd, C.; Titov, D.; Blanc, M.; Coates, A.; Drossart, P.; Fletcher, L.N.; et al. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 2013, 78, 1–21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Pater, I.; Molter, E.M.; Moeckel, C.M. A Review of Radio Observations of the Giant Planets: Probing the Composition, Structure, and Dynamics of Their Deep Atmospheres. Remote Sens. 2023, 15, 1313. https://doi.org/10.3390/rs15051313
de Pater I, Molter EM, Moeckel CM. A Review of Radio Observations of the Giant Planets: Probing the Composition, Structure, and Dynamics of Their Deep Atmospheres. Remote Sensing. 2023; 15(5):1313. https://doi.org/10.3390/rs15051313
Chicago/Turabian Stylede Pater, Imke, Edward M. Molter, and Chris M. Moeckel. 2023. "A Review of Radio Observations of the Giant Planets: Probing the Composition, Structure, and Dynamics of Their Deep Atmospheres" Remote Sensing 15, no. 5: 1313. https://doi.org/10.3390/rs15051313
APA Stylede Pater, I., Molter, E. M., & Moeckel, C. M. (2023). A Review of Radio Observations of the Giant Planets: Probing the Composition, Structure, and Dynamics of Their Deep Atmospheres. Remote Sensing, 15(5), 1313. https://doi.org/10.3390/rs15051313