Mid-Infrared Observations of the Giant Planets
Abstract
:1. Introduction
1.1. The Mid-Infrared
1.2. Atmospheric Transmission, Emission, and Mid-Infrared Sub-Bands
1.3. Why We Observe in the Mid-Infrared
2. A Historical Overview: Observing the Giant Planets in the Mid-Infrared
2.1. Beyond the Visible: Measuring Heat from the Giant Planets
“Prof. Langley devised a Bolometer. It’s really a sort of Thermometer. It’ll detect the heat Of a Polar Bear’s feet At a distance of Half-a Kilometer.” [103,104]). |
2.2. A New Window into the Giant Planets’ Atmospheric Composition
2.3. Remote Sensing Up Close: Missions to the Giant Planets
2.4. From High above the Atmosphere: Observations from Space Telescopes
2.5. Matured Mid-Infrared Observing from the Ground
3. What We Have Learned
3.1. Chemistry and Temperature from Mid-IR Spectra
3.1.1. 5–6 m
3.1.2. 6–15 m
3.1.3. 15–30 m
3.2. Structure and Dynamics from Spatially Resolved Mid-IR Spectra and Imaging
3.2.1. Spatial Structure of Jupiter and Saturn
3.2.2. Uranus and Neptune
3.3. Temporal Variability
3.3.1. Jupiter Variability
3.3.2. Saturn Variability
3.3.3. Uranus Variability
3.3.4. Neptune Variability
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norwood, J.; Moses, J.; Fletcher, L.N.; Orton, G.; Irwin, P.G.; Atreya, S.; Rages, K.; Cavalié, T.; Sánchez-Lavega, A.; Hueso, R.; et al. Giant planet observations with the james webb space telescope. Publ. Astron. Soc. Pac. 2016, 128, 018005. [Google Scholar] [CrossRef] [Green Version]
- CIE S 017:2020; ILV: International Lighting Vocabulary. 2nd ed. Commission Internationale de L’Eclairage: Vienna, Austria, 2020.
- ISO 20473:2007; Optics and Photonics—Spectral Bands. ISO: Geneva, Switzerland, 2007.
- Guan, X.; Yu, X.; Periyanagounder, D.; Benzigar, M.R.; Huang, J.K.; Lin, C.H.; Kim, J.; Singh, S.; Hu, L.; Liu, G.; et al. Recent progress in short-to long-wave infrared photodetection using 2D materials and heterostructures. Adv. Opt. Mater. 2021, 9, 2001708. [Google Scholar] [CrossRef]
- Noll, S.; Kausch, W.; Barden, M.; Jones, A.; Szyszka, C.; Kimeswenger, S.; Vinther, J. An atmospheric radiation model for Cerro Paranal-I. The optical spectral range. Astron. Astrophys. 2012, 543, A92. [Google Scholar] [CrossRef]
- Jones, A.; Noll, S.; Kausch, W.; Szyszka, C.; Kimeswenger, S. An advanced scattered moonlight model for Cerro Paranal. Astron. Astrophys. 2013, 560, A91. [Google Scholar] [CrossRef] [Green Version]
- Fazio, G. Infrared array detectors in astrophysics. Infrared Phys. Technol. 1994, 35, 107–117. [Google Scholar] [CrossRef]
- Haller, E. Advanced far-infrared detectors. Infrared Phys. Technol. 1994, 35, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Glass, I.S.; Glass, I. Handbook of Infrared Astronomy; Cambridge University Press: Cambridge, UK, 1999; Number 1. [Google Scholar]
- Tokunaga, A. Infrared astronomy. In Allen’s Astrophysical Quantities; Springer: Berlin/Heidelberg, Germany, 2002; pp. 143–167. [Google Scholar]
- Rieke, G. Detection of Light: From the Ultraviolet to the Submillimeter; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- McLean, I.S. Infrared Astronomy with Arrays: The Next Generation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 190. [Google Scholar]
- Ives, D.; Finger, G.; Jakob, G.; Beckmann, U. AQUARIUS: The next generation mid-IR detector for ground-based astronomy, an update. In High Energy, Optical, and Infrared Detectors for Astronomy VI; SPIE: Bellingham, WA, USA, 2014; Volume 9154, pp. 489–499. [Google Scholar]
- Larson, H.P. Infrared spectroscopic observations of the outer planets, their satellites, and the asteroids. Annu. Rev. Astron. Astrophys. 1980, 18, 43–75. [Google Scholar] [CrossRef]
- Mampaso, A.; Prieto, M.; Sánchez, F. Infrared Astronomy; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Rieke, M.J.; Kelly, D.M.; Horner, S.D. Overview of James Webb Space Telescope and NIRCam’s Role. In Cryogenic Optical Systems and Instruments XI; SPIE: Bellingham, WA, USA, 2005; Volume 5904, p. 590401. [Google Scholar]
- Wells, M.; Lee, D.; Oudenhuysen, A.; Hastings, P.; Pel, J.W.; Glasse, A. The MIRI medium resolution spectrometer for the James Webb Space Telescope. In Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter; SPIE: Bellingham, WA, USA, 2006; Volume 6265, pp. 358–369. [Google Scholar]
- Rieke, G.H.; Wright, G.; Böker, T.; Bouwman, J.; Colina, L.; Glasse, A.; Gordon, K.; Greene, T.; Güdel, M.; Henning, T.; et al. The mid-infrared instrument for the james webb space telescope, i: Introduction. Publ. Astron. Soc. Pac. 2015, 127, 584–594. [Google Scholar] [CrossRef] [Green Version]
- Encrenaz, T. Infrared spectroscopy of exoplanets: Observational constraints. Philos. Trans. R. Soc. Lond. 2014, 372, 20130083. [Google Scholar] [CrossRef] [PubMed]
- Pluriel, W. Hot Exoplanetary Atmospheres in 3D. Remote Sens. 2023, 15, 635. [Google Scholar] [CrossRef]
- Naylor, D.A.; Clark, T.A.; Schultz, A.A.; Davis, G.R. Atmospheric transmission at submillimetre wavelengths from Mauna Kea. Mon. Not. R. Astron. Soc. 1991, 251, 199–202. [Google Scholar] [CrossRef] [Green Version]
- De Pater, I. The significance of microwave observations for the planets. Phys. Rep. 1991, 200, 1–50. [Google Scholar] [CrossRef]
- Encrenaz, T.; Moreno, R. The microwave spectra of planets. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2002; Volume 616, pp. 330–337. [Google Scholar]
- de Pater, I.; Romani, P.N.; Atreya, S.K. Possible microwave absorption by H2S gas in Uranus’ and Neptune’s atmospheres. Icarus 1991, 91, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Gebbie, H.; Harding, W.; Hilsum, C.; Pryce, A.; Roberts, V. Atmospheric transmission in the 1 to 14 μ region. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1951, 206, 87–107. [Google Scholar]
- Taylor, J.H.; Yates, H.W. Atmospheric transmission in the infrared. JOSA 1957, 47, 223–226. [Google Scholar] [CrossRef]
- Smette, A.; Sana, H.; Noll, S.; Horst, H.; Kausch, W.; Kimeswenger, S.; Barden, M.; Szyszka, C.; Jones, A.M.; Gallenne, A.; et al. Molecfit: A general tool for telluric absorption correction-I. Method and application to ESO instruments. Astron. Astrophys. 2015, 576, A77. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.; Robinson, G.; Hyland, A. Intermediate Bandwidth Spectrometry in the 10-Micron Region and its Interpretation. Mon. Not. R. Astron. Soc. 1976, 174, 711–723. [Google Scholar] [CrossRef] [Green Version]
- Kendrew, S.; Jolissaint, L.; Brandl, B.; Lenzen, R.; Pantin, E.; Glasse, A.; Blommaert, J.; Venema, L.; Siebenmorgen, R.; Molster, F. Mid-infrared astronomy with the E-ELT: Performance of METIS. In Ground-Based and Airborne Instrumentation for Astronomy III; SPIE: Bellingham, WA, USA, 2010; Volume 7735, pp. 2017–2029. [Google Scholar]
- Noll, S.; Kausch, W.; Barden, M.; Jones, A.M.; Szyszka, C.; Kimeswenger, S. The Cerro Paranal Advanced Sky Model; VLT-MAN-ESO-19550-5339; European Southern Observatory: München, Germany, 2013; Issue 1.1.1; p. 50. [Google Scholar]
- Holzlohner, R.; Kimeswenger, S.; Kausch, W.; Noll, S. Bolometric night sky temperature and subcooling of telescope structures. Astron. Astrophys. 2021, 645, A32. [Google Scholar] [CrossRef]
- Papoular, R. The processing of infrared sky noise by chopping, nodding and filtering. Astron. Astrophys. 1983, 117, 46–52. [Google Scholar]
- Roman, M.T.; Fletcher, L.N.; Orton, G.S.; Rowe-Gurney, N.; Irwin, P.G. Uranus in northern midspring: Persistent atmospheric temperatures and circulations inferred from thermal imaging. Astron. J. 2020, 159, 45. [Google Scholar] [CrossRef]
- Wiedemann, G. Science with the VLT: High-resolution infrared spectroscopy. Messenger 1996, 86, 24–30. [Google Scholar]
- Kasper, M.; Arsenault, R.; Käufl, H.U.; Jakob, G.; Fuenteseca, E.; Riquelme, M.; Siebenmorgen, R.; Sterzik, M.; Zins, G.; Ageorges, N.; et al. NEAR: Low-mass planets in Cen with VISIR. Messenger 2017, 169, 16–20. [Google Scholar]
- Moses, J.I.; Fouchet, T.; Yelle, R.V.; Friedson, A.J.; Orton, G.S.; Bézard, B.; Drossart, P.; Gladstone, G.R.; Kostiuk, T.; Livengood, T.A. The stratosphere of Jupiter. In Jupiter: Planet, Satellites and Magnetosphere; Cambrdige University Press: Cambridge, UK, 2004; pp. 129–157. [Google Scholar]
- Moses, J.; Fouchet, T.; Bézard, B.; Gladstone, G.; Lellouch, E.; Feuchtgruber, H. Photochemistry and diffusion in Jupiter’s stratosphere: Constraints from ISO observations and comparisons with other giant planets. J. Geophys. Res. Planets 2005, 110. [Google Scholar] [CrossRef]
- Fouchet, T.; Moses, J.I.; Conrath, B.J. Saturn: Composition and chemistry. In Saturn from Cassini-Huygens; Springer: Dordrecht, The Netherlands, 2009; pp. 83–112. [Google Scholar]
- Moses, J.; Cavalié, T.; Fletcher, L.; Roman, M. Atmospheric chemistry on Uranus and Neptune. Philos. Trans. R. Soc. A 2020, 378, 20190477. [Google Scholar] [CrossRef] [PubMed]
- Irwin, P.; Teanby, N.; De Kok, R.; Fletcher, L.; Howett, C.; Tsang, C.; Wilson, C.; Calcutt, S.; Nixon, C.; Parrish, P. The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 1136–1150. [Google Scholar] [CrossRef]
- Kuiper, G.P. New absorptions in the uranian atmosphere. Astrophys. J. 1949, 109, 540–541. [Google Scholar] [CrossRef]
- Weidenschilling, S.; Lewis, J. Atmospheric and cloud structures of the Jovian planets. Icarus 1973, 20, 465–476. [Google Scholar] [CrossRef]
- Orton, G.S.; Ingersoll, A.P. Saturn’s atmospheric temperature structure and heat budget. J. Geophys. Res. Space Phys. 1980, 85, 5871–5881. [Google Scholar] [CrossRef] [Green Version]
- Conrath, B.; Pirraglia, J. Thermal structure of Saturn from Voyager infrared measurements: Implications for atmospheric dynamics. Icarus 1983, 53, 286–292. [Google Scholar] [CrossRef]
- Fletcher, L.; Orton, G.; Teanby, N.; Irwin, P.; Bjoraker, G. Methane and its isotopologues on Saturn from Cassini/CIRS observations. Icarus 2009, 199, 351–367. [Google Scholar] [CrossRef]
- Fletcher, L.N.; de Pater, I.; Reach, W.; Wong, M.; Orton, G.; Irwin, P.; Gehrz, R. Jupiter’s para-H2 distribution from SOFIA/FORCAST and Voyager/IRIS 17–37 μm spectroscopy. Icarus 2017, 286, 223–240. [Google Scholar] [CrossRef] [Green Version]
- Burgdorf, M.; Orton, G.; van Cleve, J.; Meadows, V.; Houck, J. Detection of new hydrocarbons in Uranus’ atmosphere by infrared spectroscopy. Icarus 2006, 184, 634–637. [Google Scholar] [CrossRef]
- Feuchtgruber, H.; Lellouch, E.; de Graauw, T.; Bézard, B.; Encrenaz, T.; Griffin, M. External supply of oxygen to the atmospheres of the giant planets. Nature 1997, 389, 159–162. [Google Scholar] [CrossRef]
- Orton, G.S. The thermal structure of Jupiter II. Observations and analysis of 8–14 micron radiation. Icarus 1975, 26, 142–158. [Google Scholar] [CrossRef]
- Orton, G.S.; Friedson, A.J.; Baines, K.H.; Martin, T.Z.; West, R.A.; Caldwell, J.; Hammel, H.B.; Bergstralh, J.T.; Malcom, M.E.; Golisch, W.F.; et al. Thermal maps of Jupiter: Spatial organization and time dependence of stratospheric temperatures, 1980 to 1990. Science 1991, 252, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, L.N.; Orton, G.; Mousis, O.; Yanamandra-Fisher, P.; Parrish, P.; Irwin, P.; Fisher, B.; Vanzi, L.; Fujiyoshi, T.; Fuse, T.; et al. Thermal structure and composition of Jupiter’s Great Red Spot from high-resolution thermal imaging. Icarus 2010, 208, 306–328. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Greathouse, T.; Orton, G.; Sinclair, J.; Giles, R.; Irwin, P.; Encrenaz, T. Mid-infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus 2016, 278, 128–161. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N.; Orton, G.; Rogers, J.; Giles, R.; Payne, A.; Irwin, P.; Vedovato, M. Moist convection and the 2010–2011 revival of Jupiter’s South Equatorial Belt. Icarus 2017, 286, 94–117. [Google Scholar] [CrossRef]
- Antuñano, A.; Fletcher, L.N.; Orton, G.S.; Toledo, D.; Melin, H.; Roman, M.T.; Sinclair, J.A.; Donnelly, P.T.; Morton, E.K.; Selves, P. Characterizing temperature and aerosol variability during Jupiter’s 2006–2007 Equatorial Zone disturbance. J. Geophys. Res. Planets 2020, 125, e2020JE006413. [Google Scholar] [CrossRef]
- Courtin, R.; Gautier, D.; Marten, A.; Bézard, B.; Hanel, R. The composition of Saturn’s atmosphere at northern temperate latitudes from Voyager IRIS spectra-NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio. Astrophys. J. 1984, 287, 899–916. [Google Scholar] [CrossRef]
- Noll, K.; Knacke, R.; Tokunaga, A.; Lacy, J.; Beck, S.; Serabyn, E. The abundances of ethane and acetylene in the atmospheres of Jupiter and Saturn. Icarus 1986, 65, 257–263. [Google Scholar] [CrossRef]
- Sada, P.V.; McCabe, G.H.; Bjoraker, G.L.; Jennings, D.E.; Reuter, D.C. 13C-ethane in the atmospheres of Jupiter and Saturn. Astrophys. J. 1996, 472, 903. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.; Irwin, P.; Teanby, N.; Orton, G.; Parrish, P.; Calcutt, S.; Bowles, N.; de Kok, R.; Howett, C.; Taylor, F. The meridional phosphine distribution in Saturn’s upper troposphere from Cassini/CIRS observations. Icarus 2007, 188, 72–88. [Google Scholar] [CrossRef]
- Fletcher, L.; Irwin, P.; Orton, G.; Teanby, N.; Achterberg, R.; Bjoraker, G.; Read, P.; Simon-Miller, A.; Howett, C.; de Kok, R.; et al. Temperature and composition of Saturn’s polar hot spots and hexagon. Science 2008, 319, 79–81. [Google Scholar] [CrossRef] [Green Version]
- Hesman, B.E.; Jennings, D.E.; Sada, P.V.; Bjoraker, G.L.; Achterberg, R.K.; Simon-Miller, A.A.; Anderson, C.M.; Boyle, R.J.; Nixon, C.A.; Fletcher, L.N.; et al. Saturn’s latitudinal C2H2 and C2H6 abundance profiles from Cassini/CIRS and ground-based observations. Icarus 2009, 202, 249–259. [Google Scholar] [CrossRef]
- Fletcher, L.; Orton, G.; Yanamandra-Fisher, P.; Fisher, B.; Parrish, P.; Irwin, P. Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging. Icarus 2009, 200, 154–175. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Hesman, B.; Achterberg, R.; Irwin, P.; Bjoraker, G.; Gorius, N.; Hurley, J.; Sinclair, J.; Orton, G.; Legarreta, J.; et al. The origin and evolution of Saturn’s 2011–2012 stratospheric vortex. Icarus 2012, 221, 560–586. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Greathouse, T.K.; Guerlet, S.; Moses, J.I.; West, R.A. Saturn’s Seasonally Changing Atmosphere. In Saturn in the 21st Century; Cambridge University Press: Cambridge, UK, 2018; Volume 20, p. 251. [Google Scholar]
- Blake, J.S.; Fletcher, L.N.; Greathouse, T.K.; Orton, G.S.; Melin, H.; Roman, M.T.; Antuñano, A.; Donnelly, P.T.; Rowe-Gurney, N.; King, O. Refining Saturn’s deuterium-hydrogen ratio via IRTF/TEXES spectroscopy. Astron. Astrophys. 2021, 653, A66. [Google Scholar] [CrossRef]
- Blake, J.S.; Fletcher, L.N.; Orton, G.S.; Antuñano, A.; Roman, M.T.; Kasaba, Y.; Fujiyoshi, T.; Melin, H.; Bardet, D.; Sinclair, J.A.; et al. Saturn’s seasonal variability from four decades of ground-based mid-infrared observations. Icarus 2023, 392, 115347. [Google Scholar] [CrossRef]
- Tokunaga, A.; Orton, G.; Caldwell, J. New observational constraints on the temperature inversions of Uranus and Neptune. Icarus 1983, 53, 141–146. [Google Scholar] [CrossRef]
- Orton, G.S.; Tokunaga, A.T.; Caldwell, J. Observational constraints on the atmospheres of Uranus and Neptune from new measurements near 10 μm. Icarus 1983, 56, 147–164. [Google Scholar] [CrossRef]
- Orton, G.S.; Lacy, J.H.; Achtermann, J.M.; Parmar, P.; Blass, W.E. Thermal spectroscopy of Neptune: The stratospheric temperature, hydrocarbon abundances, and isotopic ratios. Icarus 1992, 100, 541–555. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Drossart, P.; Burgdorf, M.; Orton, G.; Encrenaz, T. Neptune’s atmospheric composition from AKARI infrared spectroscopy. Astron. Astrophys. 2010, 514, A17. [Google Scholar] [CrossRef] [Green Version]
- Greathouse, T.K.; Richter, M.; Lacy, J.; Moses, J.; Orton, G.; Encrenaz, T.; Hammel, H.; Jaffe, D. A spatially resolved high spectral resolution study of Neptune’s stratosphere. Icarus 2011, 214, 606–621. [Google Scholar] [CrossRef]
- Orton, G.S.; Moses, J.I.; Fletcher, L.N.; Mainzer, A.K.; Hines, D.; Hammel, H.B.; Martin-Torres, J.; Burgdorf, M.; Merlet, C.; Line, M.R. Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 2. Determination of the mean composition of the upper troposphere and stratosphere. Icarus 2014, 243, 471–493. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N.; de Pater, I.; Orton, G.S.; Hammel, H.B.; Sitko, M.L.; Irwin, P.G. Neptune at summer solstice: Zonal mean temperatures from ground-based observations, 2003–2007. Icarus 2014, 231, 146–167. [Google Scholar] [CrossRef] [Green Version]
- de Pater, I.; Fletcher, L.N.; Luszcz-Cook, S.; DeBoer, D.; Butler, B.; Hammel, H.B.; Sitko, M.L.; Orton, G.; Marcus, P.S. Neptune’s global circulation deduced from multi-wavelength observations. Icarus 2014, 237, 211–238. [Google Scholar] [CrossRef]
- Roman, M.T.; Fletcher, L.N.; Orton, G.S.; Greathouse, T.K.; Moses, J.I.; Rowe-Gurney, N.; Irwin, P.G.; Antuñano, A.; Sinclair, J.; Kasaba, Y.; et al. Subseasonal Variation in Neptune’s Mid-infrared Emission. Planet. Sci. J. 2022, 3, 78. [Google Scholar] [CrossRef]
- de Pater, I.; Fletcher, L.N.; Pérez-Hoyos, S.; Hammel, H.B.; Orton, G.S.; Wong, M.H.; Luszcz-Cook, S.; Sánchez-Lavega, A.; Boslough, M. A multi-wavelength study of the 2009 impact on Jupiter: Comparison of high resolution images from Gemini, Keck and HST. Icarus 2010, 210, 722–741. [Google Scholar] [CrossRef]
- Orton, G.S.; Fletcher, L.N.; Moses, J.I.; Mainzer, A.K.; Hines, D.; Hammel, H.B.; Martin-Torres, F.J.; Burgdorf, M.; Merlet, C.; Line, M.R. Mid-infrared spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere. Icarus 2014, 243, 494–513. [Google Scholar] [CrossRef] [Green Version]
- Orton, G.S.; Fletcher, L.N.; Encrenaz, T.; Leyrat, C.; Roe, H.G.; Fujiyoshi, T.; Pantin, E. Thermal imaging of Uranus: Upper-tropospheric temperatures one season after Voyager. Icarus 2015, 260, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.; Orton, G.; Sinclair, J.; Guerlet, S.; Read, P.; Antuñano, A.; Achterberg, R.; Flasar, F.; Irwin, P.; Bjoraker, G.; et al. A hexagon in Saturn’s northern stratosphere surrounding the emerging summertime polar vortex. Nat. Commun. 2018, 9, 3564. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N.; Orton, G.S.; Greathouse, T.K.; Rogers, J.H.; Zhang, Z.; Oyafuso, F.A.; Eichstädt, G.; Melin, H.; Li, C.; Levin, S.M.; et al. Jupiter’s equatorial plumes and hot spots: Spectral mapping from Gemini/TEXES and Juno/MWR. J. Geophys. Res. Planets 2020, 125, e2020JE006399. [Google Scholar] [CrossRef]
- Gillett, F.; Low, F.; Stein, W. The 2.8–14-micron spectrum of Jupiter. Astrophys. J. 1969, 157, 925–934. [Google Scholar] [CrossRef]
- Westphal, J. Observations of localised 5-micron radiation from Jupiter. Astrophys. J. 1969, 157, L63–L64. [Google Scholar] [CrossRef] [Green Version]
- Keay, C.; Low, F.; Rieke, G.; Minton, R. High-resolution maps of Jupiter at 5 microns. Astrophys. J. 1973, 183, 1063–1074. [Google Scholar] [CrossRef]
- Westphal, J.; Matthews, K.; Terrile, R.J. Five-micron pictures of Jupiter. Astrophys. J. 1974, 188, L111–L112. [Google Scholar] [CrossRef] [Green Version]
- Fink, U.; Larson, H.P.; Treffers, R.R. Germane in the atmosphere of Jupiter. Icarus 1978, 34, 344–354. [Google Scholar] [CrossRef]
- Bjoraker, G.L.; Larson, H.P.; Kunde, V.G. The gas composition of Jupiter derived from 5-μm airborne spectroscopic observations. Icarus 1986, 66, 579–609. [Google Scholar] [CrossRef]
- Bjoraker, G.; Wong, M.; De Pater, I.; Ádámkovics, M. Jupiter’s deep cloud structure revealed using Keck observations of spectrally resolved line shapes. Astrophys. J. 2015, 810, 122. [Google Scholar] [CrossRef] [Green Version]
- Bjoraker, G.L.; Wong, M.H.; de Pater, I.; Hewagama, T.; Ádámkovics, M.; Orton, G.S. The gas composition and deep cloud structure of Jupiter’s Great Red Spot. Astron. J. 2018, 156, 101. [Google Scholar] [CrossRef]
- Bjoraker, G.L. Jupiter’s elusive water. Nat. Astron. 2020, 4, 558–559. [Google Scholar] [CrossRef]
- Bjoraker, G.L.; Wong, M.H.; de Pater, I.; Hewagama, T.; Ádámkovics, M. The Spatial Variation of Water Clouds, NH3, and H2O on Jupiter Using Keck Data at 5 Microns. Remote Sens. 2022, 14, 4567. [Google Scholar] [CrossRef]
- Wong, M.H.; Bjoraker, G.L.; Goullaud, C.; Stephens, A.W.; Luszcz-Cook, S.H.; Atreya, S.K.; de Pater, I.; Brown, S.T. Deep Clouds on Jupiter. Remote Sens. 2023, 15, 702. [Google Scholar] [CrossRef]
- Momary, T.W.; Baines, K.; Cassini/VIMS Science Team. The zoology of Saturn: The bizarre features unveiled by the 5 micron eyes of Cassini/VIMS. In AAS/Division for Planetary Sciences Meeting Abstracts# 38; AAS: Washington, DC, USA, 2006; Volume 38, pp. 11–21. [Google Scholar]
- Bjoraker, G.; Chanover, N.; Glenar, D.; Hewagama, T. Ammonia, phosphine, and cloud structure on Saturn derived from 5-micron spectra. In AAS/Division for Planetary Sciences Meeting Abstracts# 38; AAS: Washington, DC, USA, 2006; Volume 38, p. 488. [Google Scholar]
- Bjoraker, G.; Chanover, N.; Glenar, D.; Hewagama, T. Saturn’s deep cloud structure derived from 5-micron spectra. In AGU Fall Meeting Abstracts; AGU: Washington, DC, USA, 2007; Volume 2007, p. P31A-0184. [Google Scholar]
- Fletcher, L.N.; Baines, K.H.; Momary, T.W.; Showman, A.P.; Irwin, P.G.; Orton, G.S.; Roos-Serote, M.; Merlet, C. Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 μm nightside spectroscopy. Icarus 2011, 214, 510–533. [Google Scholar] [CrossRef]
- Barstow, J.K.; Irwin, P.G.; Fletcher, L.N.; Giles, R.S.; Merlet, C. Probing Saturn’s tropospheric cloud with Cassini/VIMS. Icarus 2016, 271, 400–417. [Google Scholar] [CrossRef] [Green Version]
- Yanamandra-Fisher, P.A.; Gutierrez, S.M.; Payne, A.; Orton, G.S.; Sinclair, J. Probing the Depths of Jupiter and Saturn at Five-Microns. In AAS/Division for Planetary Sciences Meeting Abstracts# 47; AAS: Washington, DC, USA, 2015; Volume 47, pp. 311–335. [Google Scholar]
- Encrenaz, T.; Lellouch, E.; Drossart, P.; Feuchtgruber, H.; Orton, G.S.; Atreya, S.K. First detection of CO in Uranus. Astron. Astrophys. 2004, 413, L5–L9. [Google Scholar] [CrossRef] [Green Version]
- Hodapp, K.W.; Jensen, J.B.; Irwin, E.M.; Yamada, H.; Chung, R.; Fletcher, K.; Robertson, L.; Hora, J.L.; Simons, D.A.; Mays, W.; et al. The Gemini Near-Infrared Imager (NIRI). Publ. Astron. Soc. Pac. 2003, 115, 1388–1406. [Google Scholar] [CrossRef]
- International Gemini Observatory/NOIRLab/NSF/AURA, M.H. Wong, (UC Berkeley) et al. Available online: https://noirlab.edu/public/images/noirlab2116a/ (accessed on 21 December 2022).
- Herschel, W. XIV. Experiments on the refrangibility of the invisible rays of the sun. Philos. Trans. R. Soc. Lond. 1800, 90, 284–292. [Google Scholar]
- Coblentz, W.W. Early History of Infrared Spectroradiometry. Sci. Mon. 1949, 68, 102–107. [Google Scholar] [PubMed]
- Langley, S.P. The bolometer and radiant energy. In Proceedings of the American Academy of Arts and Sciences; JSTOR: Cambridge, MA, USA, 1880; Volume 16, pp. 342–358. [Google Scholar]
- Pasachoff, J.M. Contemporary Astronomy; Saunders College Pub: Philadelphia, PA, USA, 1985. [Google Scholar]
- Walker, H.J. A brief history of infrared astronomy. Astron. Geophys. 2000, 41, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Holland, W.; Duncan, W.; Griffin, M. Bolometers for submillimeter and millimeter astronomy. In Single-Dish Radio Astronomy: Techniques and Applications; Astronomical Society of the Pacific: San Francisco, CA, USA, 2002; Volume 278, pp. 463–491. [Google Scholar]
- Balog, Z.; Müller, T.; Nielbock, M.; Altieri, B.; Klaas, U.; Blommaert, J.; Linz, H.; Lutz, D.; Moór, A.; Billot, N.; et al. The Herschel-PACS photometer calibration. Exp. Astron. 2014, 37, 129–160. [Google Scholar] [CrossRef] [Green Version]
- Stroke, G.W. Diffraction gratings. Handbuch Physik 1967, 29, 426–754. [Google Scholar]
- Palik, E. History of far-infrared research. I. The Rubens era. JOSA 1977, 67, 857–865. [Google Scholar] [CrossRef]
- Rosse, E.o. On the Radiation of Heat from the Moon.–No. II. Proc. R. Soc. Lond. 1870, 19, 9–14. [Google Scholar]
- Langley, S.P. The Temperature of the Moon: From Studies at the Allegheny Observatory by SP Langley, With the Assistance of FW Very; National Acadamey of Sciences: Washington, DC, USA, 1889; Volume 7. [Google Scholar]
- Boys, C.V. III. On the heat of the Moon and stars. Proc. R. Soc. Lond. 1890, 47, 480–499. [Google Scholar]
- Very, F.W. The Probable Range of Temperature on the Moon. I. Astrophys. J. 1898, 8, 199–217. [Google Scholar] [CrossRef]
- Very, F.W. The Probable Range of Temperature on the Moon. II. Astrophys. J. 1898, 8, 265–286. [Google Scholar] [CrossRef]
- Coblentz, W. Further Measurements of Stellar Temperatures and Planetary Radiation. Proc. Natl. Acad. Sci. USA 1922, 8, 330–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coblentz, W.W.; Lampland, C.O. Measurments of planetary radiation. Lowell Obs. Bull. 1923, 3, 91–134. [Google Scholar]
- Coblentz, W.W.; Lampland, C. New measurements of planetary radiation. Science 1924, 60, 295. [Google Scholar] [CrossRef] [PubMed]
- Coblentz, W.W.; Lampland, C. Some measurements of the spectral components of planetary radiation and planetary temperatures. J. Frankl. Inst. 1925, 199, 785–841. [Google Scholar] [CrossRef]
- Coblentz, W.W.; Lampland, C.; Menzel, D. Temperatures of Mars, 1926, as derived from the Water-Cell Transmissions. Publ. Astron. Soc. Pac. 1927, 39, 97–100. [Google Scholar] [CrossRef]
- Pettit, E.; Nicholson, S.B. Measurements of the Radiation from the Planet Mercury. Publ. Astron. Soc. Pac. 1923, 35, 194–198. [Google Scholar] [CrossRef]
- Pettit, E.; Nicholson, S.B. Radiation measures on the planet Mars. Publ. Astron. Soc. Pac. 1924, 36, 269–272. [Google Scholar]
- Menzel, D.; Coblentz, W.; Lampland, C. Planetary temperatures derived from water-cell transmissions. Astrophys. J. 1926, 63, 177–187. [Google Scholar] [CrossRef]
- Menzel, D.H. Water-cell transmissions and planetary temperatures. Astrophys. J. 1923, 58, 65–74. [Google Scholar] [CrossRef]
- Tholen, D.J.; Tejfel, V.G.; Cox, A.N. Planets and Satellites. In Allen’s Astrophysical Quantities; Cox, A.N., Ed.; Springer: New York, NY, USA, 2002; pp. 293–313. [Google Scholar] [CrossRef]
- Menzel, D.H. Hydrogen abundance and the constitution of the giant planets. Publ. Astron. Soc. Pac. 1930, 42, 228–232. [Google Scholar] [CrossRef]
- Sinton, W.M.; Strong, J. Radiometric Observations of Venus. Astrophys. J. 1960, 131, 470–490. [Google Scholar] [CrossRef]
- Pfund, A. Resonance radiometry. Science 1929, 69, 71–72. [Google Scholar] [CrossRef]
- Kivenson, G.; Steinback, R.T.; Rider, M. An Infra-Red Chopped-Radiation Analyzer. JOSA 1948, 38, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Westphal, J.A.; Murray, B.C.; Martz, D.E. An 8–14 micron infrared astronomical photometer. Appl. Opt. 1963, 2, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.C.; Wildey, R.L.; Westphal, J.A. Observations of Jupiter and the Galilean Satellites at 10 Microns. Astrophys. J. 1964, 139, 986–993. [Google Scholar] [CrossRef]
- Low, F. Infrared Brightness Temperature of Saturn. Astron. J. 1964, 69, 550–551. [Google Scholar] [CrossRef]
- Low, F.J. Observations of Venus, Jupiter, and Saturn at λ20 μ. Astron. J. 1966, 71, 391. [Google Scholar] [CrossRef]
- Low, F.J. The infrared brightness temperature of Uranus. Astrophys. J. 1966, 146, 326–328. [Google Scholar] [CrossRef]
- Harwit, M.; Munutt, D.; Shivanandan, K.; Zajac, B. Results of the first infrared astronomical rocket flight. Astron. J. 1966, 71, 1026–1029. [Google Scholar] [CrossRef]
- Houck, J.R.; Pollack, J.B.; Schaack, D.; Reed, R.A.; Summers, A. Jupiter: Its infrared spectrum from 16 to 40 micrometers. Science 1975, 189, 720–722. [Google Scholar] [CrossRef] [PubMed]
- Danielson, R.E. The infrared spectrum of Jupiter. Astrophys. J. 1966, 143, 949–960. [Google Scholar] [CrossRef]
- Strong, J. Infrared astronomy by balloon. Sci. Am. 1965, 212, 28–37. [Google Scholar] [CrossRef]
- Aumann, H.; Gillespie, C., Jr.; Low, F. The internal powers and effective temperatures of Jupiter and Saturn. Astrophys. J. 1969, 157, L69. [Google Scholar] [CrossRef]
- Armstrong, K.; Harper, D., Jr.; Low, F. Far-infrared brightness temperatures of the planets. Astrophys. J. 1972, 178, L89–L92. [Google Scholar] [CrossRef]
- Pearl, J.; Conrath, B. The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data. J. Geophys. Res. Space Phys. 1991, 96, 18921–18930. [Google Scholar] [CrossRef]
- Li, L.; Jiang, X.; West, R.; Gierasch, P.; Perez-Hoyos, S.; Sanchez-Lavega, A.; Fletcher, L.; Fortney, J.; Knowles, B.; Porco, C.; et al. Less absorbed solar energy and more internal heat for Jupiter. Nat. Commun. 2018, 9, 3709. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Conrath, B.J.; Gierasch, P.J.; Achterberg, R.K.; Nixon, C.A.; Simon-Miller, A.A.; Flasar, F.M.; Banfield, D.; Baines, K.H.; West, R.A.; et al. Saturn’s emitted power. J. Geophys. Res. Planets 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Simon, T.; Morrison, D.; Cruikshank, D.P. Twenty-micron fluxes of bright stellar standards. Astrophys. J. 1972, 177, L17. [Google Scholar] [CrossRef]
- Morrison, D.; Cruikshank, D.P. Temperatures of Uranus and Neptune at 24 microns. Astrophys. J. 1973, 179, 329–332. [Google Scholar] [CrossRef]
- Rieke, G.; Low, F. Infrared measurements of Uranus and Neptune. Astrophys. J. 1974, 193, L147. [Google Scholar] [CrossRef]
- Macy, W., Jr.; Sinton, W. Detection of methane and ethane emission on Neptune but not on Uranus. Astrophys. J. 1977, 218, L79–L81. [Google Scholar] [CrossRef]
- Murphy, R.; Trafton, L. Evidence for an internal heat source in Neptune. Astrophys. J. 1974, 193, 253–255. [Google Scholar] [CrossRef]
- Wright, E. Recalibration of the far-infrared brightness temperatures of the planets. Astrophys. J. 1976, 210, 250–253. [Google Scholar] [CrossRef]
- Loewenstein, R.; Harper, D.; Moseley, H. The effective temperature of Neptune. Astrophys. J. 1977, 218, L145–L146. [Google Scholar] [CrossRef]
- Whitcomb, S.; Hildebrand, R.; Keene, J.; Stiening, R.; Harper, D. Submillimeter brightness temperatures of Venus, Jupiter, Uranus, and Neptune. Icarus 1979, 38, 75–80. [Google Scholar] [CrossRef]
- Epstein, E.E.; Dworetsky, M.M.; Montgomery, J.W.; Fogarty, W.G.; Schorn, R.A. Mars, Jupiter, Saturn, and Uranus: 3.3-mm brightness temperatures and a search for variations with time or phase angle. Icarus 1970, 13, 276–281. [Google Scholar] [CrossRef]
- Ulich, B.; Cogdell, J.; Davis, J. Planetary brightness temperature measurements at 8.6 mm and 3.1 mm wavelengths. Icarus 1973, 19, 59–82. [Google Scholar] [CrossRef]
- Werner, M.; Neugebauer, G.; Houck, J.; Hauser, M. New values for the 1-mm brightness temperatures of Mercury, Venus, Jupiter, Saturn, Uranus, and Neptune have been determined using Mars as the absolute photometric standard. Icarus 1978, 35, 289–296. [Google Scholar] [CrossRef]
- Kellermann, K. Thermal radio emission from the major planets. Radio Sci. 1970, 5, 487–493. [Google Scholar] [CrossRef]
- Mayer, C.; McCullough, T. Microwave radiation of Uranus and Neptune. Icarus 1971, 14, 187–191. [Google Scholar] [CrossRef]
- Connes, J.; Connes, P. Near-infrared planetary spectra by Fourier spectroscopy. I. Instruments and results. JOSA 1966, 56, 896–910. [Google Scholar] [CrossRef]
- Huggins, W.; Huggins, M.L. VII. Note on the photographic spectra of Uranus and Saturn. Proc. R. Soc. Lond. 1890, 46, 231–233. [Google Scholar]
- Draper, H. On photographing the spectra of the stars and planets. Am. J. Sci. 1879, 3, 419–425. [Google Scholar] [CrossRef]
- Slipher, V.M. The spectra of the major planets. Lowell Obs. Bull. 1909, 1, 231–238. [Google Scholar]
- Adel, A.; Slipher, V. The constitution of the atmospheres of the giant planets. Phys. Rev. 1934, 46, 902. [Google Scholar] [CrossRef]
- Wildt, R. Absorptionsspektren und atmosphären der gros; en planeten. Veroeffentlichungen Universitaets-Sternwarte Goettingen 1932, 2, 171–180. [Google Scholar]
- Dunham, T. Note on the spectra of Jupiter and Saturn. Publ. Astron. Soc. Pac. 1933, 45, 42–44. [Google Scholar] [CrossRef] [Green Version]
- Kiess, C.; Corliss, C.; Kiess, H.K. High-Dispersion Spectra of Jupiter. Astrophys. J. 1960, 132, 221–231. [Google Scholar] [CrossRef]
- Lewis, J.S. Observability of spectroscopically active compounds in the atmosphere of Jupiter. Icarus 1969, 10, 393–409. [Google Scholar] [CrossRef]
- Wildt, R. Photochemistry of planetary atmospheres. Astrophys. J. 1937, 86, 321. [Google Scholar] [CrossRef]
- Strobel, D.F. The photochemistry of methane in the jovian atmosphere. J. Atmos. Sci. 1969, 26, 906–911. [Google Scholar] [CrossRef]
- Ridgway, S. Jupiter: Identification of ethane and acetylene. Astrophys. J. 1974, 187, L41–L43. [Google Scholar] [CrossRef]
- Tokunaga, A.; Knacke, R.; Owen, T. Ethane and acetylene abundances in the Jovian atmosphere. Astrophys. J. 1976, 209, 294–301. [Google Scholar] [CrossRef]
- Gillett, F.; Forrest, W. The 7.5-to 13.5-micron spectrum of Saturn. Astrophys. J. 1974, 187, L37–L39. [Google Scholar] [CrossRef]
- Wark, D.; Hilleary, D. Atmospheric temperature: Successful test of remote probing. Science 1969, 165, 1256–1258. [Google Scholar] [CrossRef] [PubMed]
- Ohring, G. The temperature and ammonia profiles in the jovian atmospheres from inversion of the jovian emission spectrum. Astrophys. J. 1973, 184, 1027–1040. [Google Scholar] [CrossRef]
- Taylor, F. Temperature sounding experiments for the Jovian planets. J. Atmos. Sci. 1972, 29, 950–958. [Google Scholar] [CrossRef]
- Rodgers, C.D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. 1976, 14, 609–624. [Google Scholar] [CrossRef]
- Conrath, B.J.; Gierasch, P.J.; Ustinov, E.A. Thermal Structure and Para Hydrogen Fraction on the Outer Planets fromVoyagerIRIS Measurements. Icarus 1998, 135, 501–517. [Google Scholar] [CrossRef]
- Connes, P.; Connes, J.; Kaplan, L.; Benedict, W. Carbon monoxide in the Venus atmosphere. Astrophys. J. 1968, 152, 731–743. [Google Scholar] [CrossRef]
- Connes, J.; Connes, P.; Maillard, J.P. Atlas des Spectres dans le Proche Infrarouge de Venus, Mars, Jupiter et Saturn; Centre National de la Recherche Scientifique: Paris, France, 1969. [Google Scholar]
- Beer, R.; Taylor, F.W. The abundance of CH3D and the D/H ratio in Jupiter. Astrophys. J. 1973, 179, 309–328. [Google Scholar] [CrossRef]
- Encrenaz, T.; Combes, M.; Zeau, Y. The Spectrum of Jupiter between 10 and 13 μ. Astron. Astrophys. 1978, 70, 29–36. [Google Scholar]
- Larson, H.; Fink, U.; Treffers, R.; Gautier, T., III. Detection of water vapor on Jupiter. Astrophys. J. 1975, 197, L137–L140. [Google Scholar] [CrossRef]
- Ridgway, S.; Wallace, L.; Smith, G. The 800-1200 inverse centimeter absorption spectrum of Jupiter. Astrophys. J. 1976, 207, 1002–1006. [Google Scholar] [CrossRef]
- Larson, H.; Treffers, R.; Fink, U. Phosphine in Jupiter’s atmosphere-The evidence from high-altitude observations at 5 micrometers. Astrophys. J. 1977, 211, 972–979. [Google Scholar] [CrossRef]
- Beer, R. Detection of carbon monoxide in Jupiter. Astrophys. J. 1975, 200, L167–L169. [Google Scholar] [CrossRef]
- Larson, H.; Fink, U.; Treffers, R. Evidence for CO in Jupiter’s atmosphere from airborne spectroscopic observations at 5 microns. Astrophys. J. 1978, 219, 1084–1092. [Google Scholar] [CrossRef]
- Prinn, R.G.; Lewis, J.S. Phosphine on Jupiter and implications for the Great Red Spot. Science 1975, 190, 274–276. [Google Scholar] [CrossRef]
- Prinn, R.G.; Barshay, S.S. Carbon monoxide on Jupiter and implications for atmospheric convection. Science 1977, 198, 1031–1034. [Google Scholar] [CrossRef]
- Fink, U.; Larson, H.P. Deuterated methane observed on Saturn. Science 1978, 201, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Bregman, J.; Lester, D.; Rank, D. Observation of the nu-squared band of PH3 in the atmosphere of Saturn. Astrophys. J. 1975, 202, L55–L56. [Google Scholar] [CrossRef]
- Larson, H.; Fink, U.; Smith, H.; Davis, D. The middle-infrared spectrum of Saturn-Evidence for phosphine and upper limits to other trace atmospheric constituents. Astrophys. J. 1980, 240, 327–337. [Google Scholar] [CrossRef]
- Tokunaga, A.; Knacke, R.; Owen, T. The detection of ethane on Saturn. Astrophys. J. 1975, 197, L77–L78. [Google Scholar] [CrossRef]
- Encrenaz, T.; Combes, M.; Zeau, Y.; Vapillon, L.; Berezne, J. A tentative identification of C2H4 in the spectrum of Saturn. Astron. Astrophys. 1975, 42, 355–356. [Google Scholar]
- Encrenaz, T.; Owen, T.; Woodman, J. The abundance of ammonia on Jupiter, Saturn and Titan. Astron. Astrophys. 1974, 37, 49–55. [Google Scholar]
- Noll, K.S.; Knacke, R.; Geballe, T.; Tokunaga, A. Evidence for germane in Saturn. Icarus 1988, 75, 409–422. [Google Scholar] [CrossRef]
- Chase, S.; Ruiz, R.; Mnch, G.; Neugebauer, G.; Schroeder, M.; Trafton, L. Pioneer 10 infrared radiometer experiment: Preliminary results. Science 1974, 183, 315–317. [Google Scholar] [CrossRef]
- Ingersoll, A.; Münch, G.; Neugebauer, G.; Diner, D.; Orton, G.; Schupler, B.; Schroeder, M.; Chase, S.; Ruiz, R.; Trafton, L. Pioneer 11 infrared radiometer experiment: The global heat balance of Jupiter. Science 1975, 188, 472–473. [Google Scholar] [CrossRef]
- Ingersoll, A.; Münch, G.; Neugebauer, G.; Orton, G. Results of the infrared radiometer experiment on Pioneers 10 and 11. In IAU Colloq. 30: Jupiter: Studies of the Interior, Atmosphere, Magnetosphere and Satellites; University of Arizona Press: Tucson, AZ, USA, 1976; pp. 197–205. [Google Scholar]
- Ingersoll, A.; Orton, G.; Münch, G.; Neugebauer, G.; Chase, S. Pioneer Saturn infrared radiometer: Preliminary results. Science 1980, 207, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Hanel, R.; Conrath, B.; Herath, L.; Kunde, V.; Pirraglia, J. Albedo, internal heat, and energy balance of Jupiter: Preliminary results of the Voyager infrared investigation. J. Geophys. Res. Space Phys. 1981, 86, 8705–8712. [Google Scholar] [CrossRef] [Green Version]
- Hanel, R.; Conrath, B.; Flasar, M.; Kunde, V.; Lowman, P.; Maguire, W.; Pearl, J.; Pirraglia, J.; Samuelson, R.; Gautier, D.; et al. Infrared observations of the Jovian system from Voyager 1. Science 1979, 204, 972–976. [Google Scholar] [CrossRef]
- Kim, S.J.; Caldwell, J.; Rivolo, A.; Wagener, R.; Orton, G.S. Infrared polar brightening on Jupiter: III. Spectrometry from the Voyager 1 IRIS experiment. Icarus 1985, 64, 233–248. [Google Scholar] [CrossRef]
- Marten, A.; Rouan, D.; Baluteau, J.P.; Gautier, D.; Conrath, B.J.; Hanel, R.A.; Kunde, V.; Samuelson, R.; Chedin, A.; Scott, N. Study of the ammonia ice cloud layer in the equatorial region of Jupiter from the infrared interferometric experiment on Voyager. Icarus 1981, 46, 233–248. [Google Scholar] [CrossRef]
- Gautier, D.; Conrath, B.; Flasar, M.; Hanel, R.; Kunde, V.; Chedin, A.; Scott, N. The helium abundance of Jupiter from Voyager. J. Geophys. Res. Space Phys. 1981, 86, 8713–8720. [Google Scholar] [CrossRef] [Green Version]
- Pirraglia, J.; Conrath, B.; Allison, M.; Gierasch, P. Thermal structure and dynamics of Saturn and Jupiter. Nature 1981, 292, 677–679. [Google Scholar] [CrossRef]
- Conrath, B.; Gautier, D.; Hanel, R.; Hornstein, J. The helium abundance of Saturn from Voyager measurements. Astrophys. J. 1984, 282, 807–815. [Google Scholar] [CrossRef]
- Hanel, R.; Conrath, B.; Kunde, V.; Pearl, J.; Pirraglia, J. Albedo, internal heat flux, and energy balance of Saturn. Icarus 1983, 53, 262–285. [Google Scholar] [CrossRef]
- Bézard, B.; Gautier, D.; Conrath, B. A seasonal model of the Saturnian upper troposphere: Comparison with Voyager infrared measurements. Icarus 1984, 60, 274–288. [Google Scholar] [CrossRef]
- Conrath, B.J.; Gautier, D. Saturn helium abundance: A reanalysis of Voyager measurements. Icarus 2000, 144, 124–134. [Google Scholar] [CrossRef]
- Pearl, J.; Conrath, B.; Hanel, R.; Pirraglia, J.; Coustenis, A. The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data. Icarus 1990, 84, 12–28. [Google Scholar] [CrossRef]
- Conrath, B.; Gautier, D.; Hanel, R.; Lindal, G.; Marten, A. The helium abundance of Uranus from Voyager measurements. J. Geophys. Res. Space Phys. 1987, 92, 15003–15010. [Google Scholar] [CrossRef]
- Conrath, B.; Gautier, D.; Lindal, G.; Samuelson, R.; Shaffer, W. The helium abundance of Neptune from Voyager measurements. J. Geophys. Res. Space Phys. 1991, 96, 18907–18919. [Google Scholar] [CrossRef]
- Smith, B.A.; Soderblom, L.A.; Banfield, D.; Basilevsky, A.; Beebe, R.; Bollinger, K.; Boyce, J.; Brahic, A.; Briggs, G.; Brown, R.; et al. Voyager 2 at Neptune: Imaging science results. Science 1989, 246, 1422–1449. [Google Scholar] [CrossRef] [Green Version]
- Conrath, B.; Flasar, F.; Hanel, R.; Kunde, V.; Maguire, W.; Pearl, J.; Pirraglia, J.; Samuelson, R.; Gierasch, P.; Weir, A.; et al. Infrared observations of the Neptunian system. Science 1989, 246, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- Conrath, B.J.; Gierasch, P.J.; Leroy, S.S. Temperature and circulation in the stratosphere of the outer planets. Icarus 1990, 83, 255–281. [Google Scholar] [CrossRef]
- Smith, W.H. On the ortho-para equilibrium of H2 in the atmospheres of the Jovian planets. Icarus 1978, 33, 210–216. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Gustafsson, M.; Orton, G.S. Hydrogen dimers in giant-planet infrared spectra. Astrophys. J. Suppl. Ser. 2018, 235, 24. [Google Scholar] [CrossRef] [Green Version]
- Conrath, B.J.; Gierasch, P.J. Evidence for disequilibrium of ortho and para hydrogen on Jupiter from Voyager IRIS measurements. Nature 1983, 306, 571–572. [Google Scholar] [CrossRef]
- Gierasch, P.J.; Conrath, B.J.; Magalha, J.A. Zonal mean properties of Jupiter’s upper troposphere from Voyager infrared observations. Icarus 1986, 67, 456–483. [Google Scholar] [CrossRef]
- Bagenal, F.; Dowling, T.E.; McKinnon, W.B.; McKinnon, W. Jupiter: The Planet, Satellites and Magnetosphere; Cambridge University Press: Cambridge, UK, 2007; Volume 1. [Google Scholar]
- Fischer, D. Mission Jupiter: The Spectacular Journey of the Galileo Spacecraft; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Hunten, D.; Colin, L.; Hansen, J. Atmospheric science on the Galileo mission. Space Sci. Rev. 1986, 44, 191–240. [Google Scholar] [CrossRef]
- Russell, C.T. The Galileo Mission; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Carlson, R.; Weissman, P.; Smythe, W.; Mahoney, J. Near-infrared mapping spectrometer experiment on Galileo. In The Galileo Mission; Springer Science+Business Media: Dordrecht, The Netherlands, 1992; pp. 457–502. [Google Scholar]
- Russell, E.; Brown, F.; Chandos, R.; Fincher, W.; Kubel, L.; Lacis, A.; Travis, L. Galileo photopolarimeter/radiometer experiment. Space Sci. Rev. 1992, 60, 531–563. [Google Scholar] [CrossRef]
- Nixon, C.; Irwin, P.; Calcutt, S.; Taylor, F.; Carlson, R. Atmospheric composition and cloud structure in Jovian 5-μm hotspots from analysis of Galileo NIMS measurements. Icarus 2001, 150, 48–68. [Google Scholar] [CrossRef]
- Irwin, P.; Calcutt, S.; Taylor, F. Radiative transfer models for Galileo NIMS studies of the atmosphere of Jupiter. Adv. Space Res. 1997, 19, 1149–1158. [Google Scholar] [CrossRef]
- Dyudina, U.; Ingersoll, A.; Danielson, G.; Baines, K.; Carlson, R.; NIMS, T.G.; Teams, S. Interpretation of NIMS and SSI images on the Jovian cloud structure. Icarus 2001, 150, 219–233. [Google Scholar] [CrossRef]
- Irwin, P.; Dyudina, U. The retrieval of cloud structure maps in the equatorial region of Jupiter using a principal component analysis of Galileo/NIMS data. Icarus 2002, 156, 52–63. [Google Scholar] [CrossRef]
- Orton, G.; Spencer, J.; Travis, L.; Martin, T.; Tamppari, L. Galileo photopolarimeter-radiometer observations of Jupiter and the Galilean satellites. Science 1996, 274, 389–391. [Google Scholar] [CrossRef]
- Matson, D.L.; Spilker, L.J.; Lebreton, J.P. The Cassini/Huygens mission to the Saturnian system. Space Sci. Rev. 2002, 104, 1–58. [Google Scholar] [CrossRef]
- Dougherty, M.; Esposito, L.; Krimigis, S.M. Saturn from Cassini-Huygens; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hansen, C.J.; Bolton, S.J.; Matson, D.L.; Spilker, L.J.; Lebreton, J.P. The Cassini–Huygens flyby of jupiter. Icarus 2004, 172, 1–8. [Google Scholar] [CrossRef]
- Brown, R.H.; Baines, K.H.; Bellucci, G.; Bibring, J.P.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; et al. The Cassini visual and infrared mapping spectrometer (VIMS) investigation. In The Cassini-Huygens Mission: Orbiter Remote Sensing Investigations; Springer: Dordrecht, The Netherlands, 2004; pp. 111–168. [Google Scholar]
- Flasar, F.M.; Kunde, V.; Abbas, M.; Achterberg, R.; Ade, P.; Barucci, A.; Bézard, B.; Bjoraker, G.; Brasunas, J.; Calcutt, S.; et al. Exploring the Saturn system in the thermal infrared: The composite infrared spectrometer. In The Cassini-Huygens Mission; Springer: Dordrecht, The Netherlands, 2004; pp. 169–297. [Google Scholar]
- Jennings, D.E.; Flasar, F.; Kunde, V.; Nixon, C.; Segura, M.; Romani, P.; Gorius, N.; Albright, S.; Brasunas, J.; Carlson, R.; et al. Composite infrared spectrometer (CIRS) on Cassini. Appl. Opt. 2017, 56, 5274–5294. [Google Scholar] [CrossRef]
- Sromovsky, L.; Fry, P. The source of widespread 3-μm absorption in Jupiter’s clouds: Constraints from 2000 Cassini VIMS observations. Icarus 2010, 210, 230–257. [Google Scholar] [CrossRef] [Green Version]
- Sromovsky, L.; Baines, K.; Fry, P. Models of bright storm clouds and related dark ovals in Saturn’s Storm Alley as constrained by 2008 Cassini/VIMS spectra. Icarus 2018, 302, 360–385. [Google Scholar] [CrossRef]
- Sromovsky, L.; Baines, K.; Fry, P. Evolution of Saturn’s north polar color and cloud structure between 2012 and 2017 inferred from Cassini VIMS and ISS observations. Icarus 2021, 362, 114409. [Google Scholar] [CrossRef]
- Simon-Miller, A.A.; Conrath, B.J.; Gierasch, P.J.; Orton, G.S.; Achterberg, R.K.; Flasar, F.M.; Fisher, B.M. Jupiter’s atmospheric temperatures: From Voyager IRIS to Cassini CIRS. Icarus 2006, 180, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Baines, K.H.; Smith, M.A.; West, R.A.; Pérez-Hoyos, S.; Trammell, H.J.; Simon-Miller, A.A.; Conrath, B.J.; Gierasch, P.J.; Orton, G.S.; et al. Emitted power of Jupiter based on Cassini CIRS and VIMS observations. J. Geophys. Res. Planets 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Matcheva, K.I.; Conrath, B.J.; Gierasch, P.J.; Flasar, F.M. The cloud structure of the jovian atmosphere as seen by the Cassini/CIRS experiment. Icarus 2005, 179, 432–448. [Google Scholar] [CrossRef]
- Wong, M.H.; Bjoraker, G.L.; Smith, M.D.; Flasar, F.M.; Nixon, C.A. Identification of the 10-μm ammonia ice feature on Jupiter. Planet. Space Sci. 2004, 52, 385–395. [Google Scholar] [CrossRef]
- Achterberg, R.K.; Conrath, B.J.; Gierasch, P.J. Cassini CIRS retrievals of ammonia in Jupiter’s upper troposphere. Icarus 2006, 182, 169–180. [Google Scholar] [CrossRef]
- Irwin, P.; Parrish, P.; Fouchet, T.; Calcutt, S.; Taylor, F.; Simon-Miller, A.; Nixon, C. Retrievals of jovian tropospheric phosphine from Cassini/CIRS. Icarus 2004, 172, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.; Orton, G.; Teanby, N.; Irwin, P. Phosphine on jupiter and saturn from cassini/cirs. Icarus 2009, 202, 543–564. [Google Scholar] [CrossRef]
- Nixon, C.; Achterberg, R.; Conrath, B.; Irwin, P.; Teanby, N.; Fouchet, T.; Parrish, P.; Romani, P.; Abbas, M.; LeClair, A.; et al. Meridional variations of C2H2 and C2H6 in Jupiter’s atmosphere from Cassini CIRS infrared spectra. Icarus 2007, 188, 47–71. [Google Scholar] [CrossRef]
- Pierel, J.; Nixon, C.; Lellouch, E.; Fletcher, L.; Bjoraker, G.; Achterberg, R.; Bezard, B.; Hesman, B.; Irwin, P.; Flasar, F. D/H ratios on Saturn and Jupiter from Cassini CIRS. Astron. J. 2017, 154, 178. [Google Scholar] [CrossRef] [Green Version]
- Fouchet, T.; Orton, G.; Irwin, P.G.; Calcutt, S.B.; Nixon, C.A. Upper limits on hydrogen halides in Jupiter from Cassini/CIRS observations. Icarus 2004, 170, 237–241. [Google Scholar] [CrossRef]
- Nixon, C.A.; Achterberg, R.K.; Romani, P.N.; Allen, M.; Zhang, X.; Teanby, N.A.; Irwin, P.G.; Flasar, F.M. Abundances of Jupiter’s trace hydrocarbons from Voyager and Cassini. Planet. Space Sci. 2010, 58, 1667–1680. [Google Scholar] [CrossRef]
- Sinclair, J.; Moses, J.; Hue, V.; Greathouse, T.; Orton, G.; Fletcher, L.; Irwin, P. Jupiter’s auroral-related stratospheric heating and chemistry III: Abundances of C2H4, CH3C2H, C4H2 and C6H6 from Voyager-IRIS and Cassini-CIRS. Icarus 2019, 328, 176–193. [Google Scholar] [CrossRef]
- Fletcher, L.; Irwin, P.; Teanby, N.; Orton, G.; Parrish, P.; de Kok, R.; Howett, C.; Calcutt, S.; Bowles, N.; Taylor, F. Characterising Saturn’s vertical temperature structure from Cassini/CIRS. Icarus 2007, 189, 457–478. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Achterberg, R.K.; Greathouse, T.K.; Orton, G.S.; Conrath, B.J.; Simon-Miller, A.A.; Teanby, N.; Guerlet, S.; Irwin, P.G.; Flasar, F. Seasonal change on Saturn from Cassini/CIRS observations, 2004–2009. Icarus 2010, 208, 337–352. [Google Scholar] [CrossRef]
- Guerlet, S.; Fouchet, T.; Bézard, B.; Flasar, F.; Simon-Miller, A. Evolution of the equatorial oscillation in Saturn’s stratosphere between 2005 and 2010 from Cassini/CIRS limb data analysis. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, J.; Irwin, P.; Fletcher, L.; Moses, J.; Greathouse, T.; Friedson, A.; Hesman, B.; Hurley, J.; Merlet, C. Seasonal variations of temperature, acetylene and ethane in Saturn’s atmosphere from 2005 to 2010, as observed by Cassini-CIRS. Icarus 2013, 225, 257–271. [Google Scholar] [CrossRef]
- Sylvestre, M.; Guerlet, S.; Fouchet, T.; Spiga, A.; Flasar, F.; Hesman, B.; Bjoraker, G. Seasonal changes in Saturn’s stratosphere inferred from Cassini/CIRS limb observations. Icarus 2015, 258, 224–238. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N.; Irwin, P.G.; Achterberg, R.K.; Orton, G.S.; Flasar, F.M. Seasonal variability of Saturn’s tropospheric temperatures, winds and para-H2 from Cassini far-IR spectroscopy. Icarus 2016, 264, 137–159. [Google Scholar] [CrossRef] [Green Version]
- Guerlet, S.; Fouchet, T.; Bézard, B.; Moses, J.I.; Fletcher, L.N.; Simon-Miller, A.A.; Flasar, F.M. Meridional distribution of CH3C2H and C4H2 in Saturn’s stratosphere from CIRS/Cassini limb and nadir observations. Icarus 2010, 209, 682–695. [Google Scholar] [CrossRef]
- Guerlet, S.; Fouchet, T.; Bézard, B.; Simon-Miller, A.A.; Flasar, F.M. Vertical and meridional distribution of ethane, acetylene and propane in Saturn’s stratosphere from CIRS/Cassini limb observations. Icarus 2009, 203, 214–232. [Google Scholar] [CrossRef] [Green Version]
- Teanby, N.; Fletcher, L.; Irwin, P.; Fouchet, T.; Orton, G. New upper limits for hydrogen halides on Saturn derived from Cassini-CIRS data. Icarus 2006, 185, 466–475. [Google Scholar] [CrossRef]
- Howett, C.; Irwin, P.; Teanby, N.; Simon-Miller, A.; Calcutt, S.; Fletcher, L.; de Kok, R. Meridional variations in stratospheric acetylene and ethane in the southern hemisphere of the saturnian atmosphere as determined from Cassini/CIRS measurements. Icarus 2007, 190, 556–572. [Google Scholar] [CrossRef]
- Hesman, B.; Bjoraker, G.; Sada, P.; Achterberg, R.; Jennings, D.; Romani, P.; Lunsford, A.; Fletcher, L.; Boyle, R.; Simon-Miller, A.; et al. Elusive ethylene detected in Saturn’s northern storm region. Astrophys. J. 2012, 760, 24. [Google Scholar] [CrossRef] [Green Version]
- Hurley, J.; Fletcher, L.; Irwin, P.; Calcutt, S.; Sinclair, J.; Merlet, C. Latitudinal variation of upper tropospheric NH3 on Saturn derived from Cassini/CIRS far-infrared measurements. Planet. Space Sci. 2012, 73, 347–363. [Google Scholar] [CrossRef]
- Abbas, M.; LeClair, A.; Woodard, E.; Young, M.; Stanbro, M.; Flasar, F.; Kunde, V.; Achterberg, R.; Bjoraker, G.; Brasunas, J.; et al. Distribution of CO2 in Saturn’s atmosphere from Cassini/CIRS infrared observations. Astrophys. J. 2013, 776, 73. [Google Scholar] [CrossRef]
- Koskinen, T.; Moses, J.; West, R.; Guerlet, S.; Jouchoux, A. The detection of benzene in Saturn’s upper atmosphere. Geophys. Res. Lett. 2016, 43, 7895–7901. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, T.; Guerlet, S. Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations. Icarus 2018, 307, 161–171. [Google Scholar] [CrossRef]
- Ingersoll, A.P. Cassini exploration of the planet Saturn: A comprehensive review. Space Sci. Rev. 2020, 216, 122. [Google Scholar] [CrossRef]
- Leech, K.; Kester, D.; Shipman, R.; Beintema, D.; Feuchtgruber, H.; Heras, A.; Huygen, R.; Lahuis, F.; Lutz, D.; Morris, P.; et al. The ISO Handbook, Volume V-SWS-The Short Wavelength Spectrometer; ESA Special Publication: Noordwijk, The Netherlands, 2003. [Google Scholar]
- Sloan, G.; Kraemer, K.E.; Price, S.D.; Shipman, R.F. A uniform database of 2.4–45.4 micron spectra from the Infrared Space Observatory Short Wavelength Spectrometer. Astrophys. J. Suppl. Ser. 2003, 147, 379–401. [Google Scholar] [CrossRef] [Green Version]
- Encrenaz, T.; de Graauw, T.; Schaeidt, S.; Lellouch, E.; Feuchtgruber, H.; Beintema, D.; Bézard, B.; Drossart, P.; Griffin, M.; Heras, A.; et al. First results of ISO-SWS observations of Jupiter. Astron. Astrophys. 1996, 315, L397–L400. [Google Scholar]
- Bézard, B.; Feuchtgruber, H.; Moses, J.; Encrenaz, T. Detection of methyl radicals (CH3) on Saturn. Astron. Astrophys. 1998, 334, L41–L44. [Google Scholar]
- De Graauw, T.; Feuchtgruber, H.; Bezard, B.; Drossart, P.; Encrenaz, T.; Beintema, D.; Griffin, M.; Heras, A.; Kessler, M.; Leech, K.; et al. First results of ISO-SWS observations of Saturn: Detection of CO2, CH3C2H, C4H2 and tropospheric H2O. Astron. Astrophys. 1997, 321, L13–L16. [Google Scholar]
- Lellouch, E.; Feuchtgruber, H.; de Graauw, T.; Bezard, B.; Encrenaz, T.; Griffin, M. H2O and CO2 in the Upper Atmospheres of the Giant Planets. In AAS/Division for Planetary Sciences Meeting Abstracts# 29; AAS: Washington, DC, USA, 1997; Volume 29, p. 992. [Google Scholar]
- Bézard, B.; Romani, P.; Feuchtgruber, H.; Encrenaz, T. Detection of the methyl radical on Neptune. Astrophys. J. 1999, 515, 868. [Google Scholar] [CrossRef]
- Encrenaz, T.; Drossart, P.; Feuchtgruber, H.; Lellouch, E.; Bézard, B.; Fouchet, T.; Atreya, S. The atmospheric composition and structure of Jupiter and Saturn from ISO observations: A preliminary review. Planet. Space Sci. 1999, 47, 1225–1242. [Google Scholar] [CrossRef] [Green Version]
- Werner, M.W.; Roellig, T.; Low, F.; Rieke, G.H.; Rieke, M.; Hoffmann, W.; Young, E.; Houck, J.; Brandl, B.; Fazio, G.; et al. The Spitzer space telescope mission. Astrophys. J. Suppl. Ser. 2004, 154, 1. [Google Scholar] [CrossRef] [Green Version]
- Houck, J.R.; Roellig, T.L.; Van Cleve, J.; Forrest, W.J.; Herter, T.; Lawrence, C.R.; Matthews, K.; Reitsema, H.J.; Soifer, B.T.; Watson, D.M.; et al. The infrared spectrograph*(IRS) on the Spitzer space telescope. Astrophys. J. Suppl. Ser. 2004, 154, 18. [Google Scholar] [CrossRef] [Green Version]
- Meadows, V.S.; Orton, G.; Line, M.; Liang, M.C.; Yung, Y.L.; Van Cleve, J.; Burgdorf, M.J. First Spitzer observations of Neptune: Detection of new hydrocarbons. Icarus 2008, 197, 585–589. [Google Scholar] [CrossRef]
- Rowe-Gurney, N.; Fletcher, L.; Orton, G.; Roman, M.; Sinclair, J.; Moses, J.; Irwin, P. Neptune’s Atmospheric Structure from the Spitzer Infrared Spectrometer. Technical Report. In Proceedings of the 15th Europlanet Science Congress 2021, Online, 13–24 September 2021. [Google Scholar]
- Rowe-Gurney, N.; Fletcher, L.N.; Orton, G.S.; Roman, M.T.; Mainzer, A.; Moses, J.I.; De Pater, I.; Irwin, P.G. Longitudinal variations in the stratosphere of Uranus from the Spitzer infrared spectrometer. Icarus 2021, 365, 114506. [Google Scholar] [CrossRef]
- Gezari, D.Y.; Mumma, M.J.; Espenak, F.; Deming, D.; Bjoraker, G.; Woods, L.; Folz, W. New features in Saturn’s atmosphere revealed by high-resolution thermal infrared images. Nature 1989, 342, 777–780. [Google Scholar] [CrossRef]
- Hoffmann, W.F.; Fazio, G.G.; Shivanandan, K.; Hora, J.L.; Deutsch, L.K. MIRAC: A mid-infrared array camera for astronomy. In Infrared Detectors and Instrumentation; SPIE: Bellingham, WA, USA, 1993; Volume 1946, pp. 449–460. [Google Scholar]
- Hoffmann, W.F.; Fazio, G.G.; Shivanandan, K.; Hora, J.L.; Deutsch, L.K. Astronomical observations with the Mid-Infrared Array Camera, MIRAC. Infrared Phys. Technol. 1994, 35, 175–194. [Google Scholar] [CrossRef]
- Jones, B.; Puetter, R.C. Keck long-wavelength spectrometer. In Infrared Detectors and Instrumentation; International Society for Optics and Photonics: Bellingham, WA, USA, 1993; Volume 1946, pp. 610–621. [Google Scholar]
- Glasse, A.C.; Ettedgui-Atad, E.; Harris, J.W. Michelle midinfrared spectrometer and imager. In Optical Telescopes of Today and Tomorrow; International Society for Optics and Photonics: Bellingham, WA, USA, 1997; Volume 2871, pp. 1197–1203. [Google Scholar]
- Lagage, P.; Pel, J.; Authier, M.; Belorgey, J.; Claret, A.; Doucet, C.; Dubreuil, D.; Durand, G.; Elswijk, E.; Girardot, P.; et al. Successful Commissioning OF. Messenger 2004, 117, 12. [Google Scholar]
- De Buizer, J.M.; Fisher, R.S. T-ReCS and Michelle: The mid-infrared spectroscopic capabilities of the Gemini observatory. In High Resolution Infrared Spectroscopy in Astronomy; Springer: Berlin/Heidelberg, Germany, 2005; pp. 84–87. [Google Scholar]
- Kataza, H.; Okamoto, Y.; Takubo, S.; Onaka, T.; Sako, S.; Nakamura, K.; Miyata, T.; Yamashita, T. COMICS: The cooled mid-infrared camera and spectrometer for the Subaru telescope. In Optical and IR Telescope Instrumentation and Detectors; International Society for Optics and Photonics: Bellingham, WA, USA, 2000; Volume 4008, pp. 1144–1152. [Google Scholar]
- Fletcher, L.N.; Hesman, B.E.; Irwin, P.G.; Baines, K.H.; Momary, T.W.; Sanchez-Lavega, A.; Flasar, F.M.; Read, P.L.; Orton, G.S.; Simon-Miller, A.; et al. Thermal structure and dynamics of Saturn’s northern springtime disturbance. Science 2011, 332, 1413–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacy, J.; Richter, M.; Greathouse, T.; Jaffe, D.; Zhu, Q. TEXES: A sensitive high-resolution grating spectrograph for the mid-infrared. Publ. Astron. Soc. Pac. 2002, 114, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N.; Greathouse, T.K.; Orton, G.S.; Irwin, P.G.; Mousis, O.; Sinclair, J.A.; Giles, R.S. The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio. Icarus 2014, 238, 170–190. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, J.; Orton, G.; Greathouse, T.; Fletcher, L.N.; Moses, J.; Hue, V.; Irwin, P. Jupiter’s auroral-related stratospheric heating and chemistry II: Analysis of IRTF-TEXES spectra measured in December 2014. Icarus 2018, 300, 305–326. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N.; Melin, H.; Adriani, A.; Simon, A.; Sanchez-Lavega, A.; Donnelly, P.; Antuñano, A.; Orton, G.; Hueso, R.; Kraaikamp, E.; et al. Jupiter’s Mesoscale Waves Observed at 5 μm by Ground-based Observations and Juno JIRAM. Astron. J. 2018, 156, 67. [Google Scholar] [CrossRef]
- Melin, H.; Fletcher, L.; Donnelly, P.; Greathouse, T.; Lacy, J.; Orton, G.; Giles, R.; Sinclair, J.; Irwin, P. Assessing the long-term variability of acetylene and ethane in the stratosphere of Jupiter. Icarus 2018, 305, 301–313. [Google Scholar] [CrossRef]
- Blain, D.; Fouchet, T.; Greathouse, T.; Encrenaz, T.; Charnay, B.; Bézard, B.; Li, C.; Lellouch, E.; Orton, G.; Fletcher, L.N.; et al. Mapping of Jupiter’s tropospheric NH3 abundance using ground-based IRTF/TEXES observations at 5 μm. Icarus 2018, 314, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, J.A.; Greathouse, T.K.; Giles, R.S.; Antuñano, A.; Moses, J.I.; Fouchet, T.; Bézard, B.; Tao, C.; Martín-Torres, J.; Clark, G.B.; et al. Spatial Variations in the Altitude of the CH4 Homopause at Jupiter’s Mid-to-high Latitudes, as Constrained from IRTF-TEXES Spectra. Planet. Sci. J. 2020, 1, 85. [Google Scholar] [CrossRef]
- Greathouse, T.K.; Lacy, J.H.; Bézard, B.; Moses, J.I.; Griffith, C.A.; Richter, M.J. Meridional variations of temperature, C2H2 and C2H6 abundances in Saturn’s stratosphere at southern summer solstice. Icarus 2005, 177, 18–31. [Google Scholar] [CrossRef]
- Moses, J.; Greathouse, T. Latitudinal and seasonal models of stratospheric photochemistry on Saturn: Comparison with infrared data from IRTF/TEXES. J. Geophys. Res. Planets 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Greathouse, T.K.; Lacy, J.H.; Bézard, B.; Moses, J.I.; Richter, M.J.; Knez, C. The first detection of propane on Saturn. Icarus 2006, 181, 266–271. [Google Scholar] [CrossRef]
- Fouchet, T.; Greathouse, T.K.; Spiga, A.; Fletcher, L.N.; Guerlet, S.; Leconte, J.; Orton, G.S. Stratospheric aftermath of the 2010 Storm on Saturn as observed by the TEXES instrument. I. Temperature structure. Icarus 2016, 277, 196–214. [Google Scholar] [CrossRef] [Green Version]
- Trafton, L.M.; Orton, G.; Greathouse, T.; Lacy, J.; Encrenaz, T. Mid-IR Observations of Uranus’ H2 Quadrupole Emission Near Equinox. In AAS/Division for Planetary Sciences Meeting Abstracts# 44; AAS: Washington, DC, USA, 2012; Volume 44, p. 412.21. [Google Scholar]
- Orton, G.; Trafron, L.; Fletcher, L.; Encrenaz, T.; Roman, M.; Greathouse, T.; Lacy, J.; Sinclair, J.; Moses, J.; Leyrat, C.; et al. Spatial Variability in the Stratosphere of Uranus. Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
- Kamizuka, T.; Miyata, T.; Sako, S.; Nakamura, T.; Asano, K.; Uchiyama, M.; Okada, K.; Onaka, T.; Sakon, I.; Kataza, H.; et al. Development of MIMIZUKU: A mid-infrared multi-field imager for 6.5-m TAO telescope. In Ground-Based and Airborne Instrumentation for Astronomy IV; SPIE: Bellingham, WA, USA, 2012; Volume 8446, pp. 1982–1992. [Google Scholar]
- Miyata, T.; Yoshii, Y.; Doi, M.; Kohno, K.; Tanaka, M.; Motohara, K.; Minezaki, T.; Sako, S.; Morokuma, T.; Tanabe, T.; et al. The University of Tokyo Atacama Observatory 6.5 m telescope: Project status 2022. In Ground-Based and Airborne Telescopes IX; SPIE: Bellingham, WA, USA, 2022; Volume 12182, pp. 385–393. [Google Scholar]
- Kamizuka, T. Challenging the Difficulties in Ground-Based MIR Observations: The Case of TAO/MIMIZUKU. IR2022: An Infrared Bright Future for Ground-Based IR Observatories in the Era of JWST. 2022; p. 19. Available online: https://zenodo.org/communities/ir2022 (accessed on 27 December 2022).
- Kamizuka, T.; Miyata, T.; Sako, S.; Ohsawa, R.; Asano, K.; Uchiyama, M.S.; Mori, T.; Yoshida, Y.; Tachibana, K.; Michifuji, T.; et al. The University of Tokyo Atacama Observatory 6.5 m telescope: On-sky performance evaluations of the mid-infrared instrument MIMIZUKU on the Subaru telescope. In Ground-Based and Airborne Instrumentation for Astronomy VIII; SPIE: Bellingham, WA, USA, 2020; Volume 11447, pp. 1296–1314. [Google Scholar]
- Brandl, B.R.; Lenzen, R.; Pantin, E.; Glasse, A.; Blommaert, J.; Meyer, M.; Guedel, M.; Venema, L.; Molster, F.; Stuik, R.; et al. METIS: The thermal infrared instrument for the E-ELT. In Ground-Based and Airborne Instrumentation for Astronomy IV; SPIE: Bellingham, WA, USA, 2012; Volume 8446, pp. 554–566. [Google Scholar]
- Brandl, B.R.; Bettonvil, F.; van Boekel, R.; Glauser, A.; Quanz, S.P.; Absil, O.; Feldt, M.; Garcia, P.J.; Glasse, A.; Guedel, M.; et al. Status update on the development of METIS, the mid-infrared ELT imager and spectrograph. In Ground-Based and Airborne Instrumentation for Astronomy IX; SPIE: Bellingham, WA, USA, 2022; Volume 12184, pp. 690–705. [Google Scholar]
- Drossart, P. Saturn tropospheric water measured with ISO/SWS. In AAS/Division for Planetary Sciences Meeting Abstracts# 30; AAS: Washington, DC, USA, 1998; Volume 30, p. 1060. [Google Scholar]
- Öberg, K.I.; Murray-Clay, R.; Bergin, E.A. The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. Lett. 2011, 743, L16. [Google Scholar] [CrossRef] [Green Version]
- Mousis, O.; Lunine, J.I.; Madhusudhan, N.; Johnson, T.V. Nebular water depletion as the cause of Jupiter’s low oxygen abundance. Astrophys. J. Lett. 2012, 751, L7. [Google Scholar] [CrossRef] [Green Version]
- Lunine, J.I.; Hunten, D.M. Abundance of condensable species at planetary cold traps: The role of moist convection. Planet. Space Sci. 1989, 37, 151–166. [Google Scholar] [CrossRef]
- Taylor, F.; Atreya, S.; Encrenaz, T.; Hunten, D.; Irwin, P.; Owen, T. The composition of the atmosphere of Jupiter. In Jupiter: The Planet, Satellites and Magnetosphere; Cambridge University Press: Cambridge, UK, 2004; pp. 59–78. [Google Scholar]
- Giles, R.S.; Fletcher, L.N.; Irwin, P.G. Latitudinal variability in Jupiter’s tropospheric disequilibrium species: GeH4, AsH3 and PH3. Icarus 2017, 289, 254–269. [Google Scholar] [CrossRef] [Green Version]
- Moreno, R.; Marten, A.; Lellouch, E. Search for PH3 in the atmospheres of Uranus and Neptune at millimeter wavelength. In AAS/Division for Planetary Sciences Meeting Abstracts# 41; AAS: Washington, DC, USA, 2009; Volume 41, p. 28.02. [Google Scholar]
- Lecluse, C.; Robert, F.; Gautier, D.; Guiraud, M. Deuterium enrichment in giant planets. Planet. Space Sci. 1996, 44, 1579–1592. [Google Scholar] [CrossRef]
- Griffin, M.; Naylor, D.; Davis, G.; Ade, P.A.; Oldham, P.; Swinyard, B.; Gautier, D.; Lellouch, E.; Orton, G.; Encrenaz, T.; et al. First detection of the 56-mum rotational line of HD in Saturn’s atmosphere. Astron. Astrophys. 1996, 315, L389–L392. [Google Scholar]
- Feuchtgruber, H.; Lellouch, E.; Bézard, B.; Encrenaz, T.; de Graauw, T.; Davis, G. Detection of HD in the atmospheres of Uranus and Neptune: A new determination of the D/H ratio. Astron. Astrophys. 1999, 341, L17–L21. [Google Scholar]
- Lellouch, E.; Bézard, B.; Fouchet, T.; Feuchtgruber, H.; Encrenaz, T.; de Graauw, T. The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. Astron. Astrophys. 2001, 370, 610–622. [Google Scholar] [CrossRef] [Green Version]
- Moses, J.I.; Allen, M.; Yung, Y.L. Hydrocarbon nucleation and aerosol formation in Neptune’s atmosphere. Icarus 1992, 99, 318–346. [Google Scholar] [CrossRef] [PubMed]
- Moses, J.I.; Fletcher, L.N.; Greathouse, T.K.; Orton, G.S.; Hue, V. Seasonal stratospheric photochemistry on Uranus and Neptune. Icarus 2018, 307, 124–145. [Google Scholar] [CrossRef] [PubMed]
- Lellouch, E.; Moreno, R.; Orton, G.; Feuchtgruber, H.; Cavalié, T.; Moses, J.; Hartogh, P.; Jarchow, C.; Sagawa, H. New constraints on the CH4 vertical profile in Uranus and Neptune from Herschel observations. Astron. Astrophys. 2015, 579, A121. [Google Scholar] [CrossRef] [Green Version]
- Baines, K.H.; Smith, W.H. The atmospheric structure and dynamical properties of Neptune derived from ground-based and IUE spectrophotometry. Icarus 1990, 85, 65–108. [Google Scholar] [CrossRef]
- Baines, K.H.; Hammel, H.B. Clouds, hazes, and the stratospheric methane abundance in Neptune. Icarus 1994, 109, 20–39. [Google Scholar] [CrossRef] [PubMed]
- Stoker, C.R. Moist convection: A mechanism for producing the vertical structure of the Jovian equatorial plumes. Icarus 1986, 67, 106–125. [Google Scholar] [CrossRef]
- Orton, G.S.; Encrenaz, T.; Leyrat, C.; Puetter, R.; Friedson, A.J. Evidence for methane escape and strong seasonal and dynamical perturbations of Neptune’s atmospheric temperatures. Astron. Astrophys. 2007, 473, L5–L8. [Google Scholar] [CrossRef]
- Appleby, J.F. Radiative-convective equilibrium models of Uranus and Neptune. Icarus 1986, 65, 383–405. [Google Scholar] [CrossRef] [Green Version]
- Friedson, J.; Ingersoll, A.P. Seasonal meridional energy balance and thermal structure of the atmosphere of Uranus: A radiative-convective-dynamical model. Icarus 1987, 69, 135–156. [Google Scholar] [CrossRef]
- Marley, M.S.; McKay, C.P. Thermal structure of Uranus’ atmosphere. Icarus 1999, 138, 268–286. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Le, T.; Zhang, X.; Yung, Y.L. A high-performance atmospheric radiation package: With applications to the radiative energy budgets of giant planets. J. Quant. Spectrosc. Radiat. Transf. 2018, 217, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Melin, H.; Fletcher, L.N.; Irwin, P.G.; Edgington, S.G. Jupiter in the Ultraviolet: Acetylene and Ethane Abundances in the Stratosphere of Jupiter from Cassini Observations between 0.15 and 0.19 μm. Astron. J. 2020, 159, 291. [Google Scholar] [CrossRef]
- Lellouch, E.; Bézard, B.; Moses, J.; Davis, G.; Drossart, P.; Feuchtgruber, H.; Bergin, E.; Moreno, R.; Encrenaz, T. The origin of water vapor and carbon dioxide in Jupiter’s stratosphere. Icarus 2002, 159, 112–131. [Google Scholar] [CrossRef]
- Encrenaz, T.; Lellouch, E.; Feuchtgruber, H.; Altieri, B.; Bézard, B.; Davis, M.; de Graauw, T.; Drossart, P.; Griffin, M.; Kessler, M.; et al. The giant planets as seen by ISO. In The First ISO Workshop on Analytical Spectroscopy; ESA Publications Division: Noordwijk, The Netherlands, 1997; Volume 419, p. 125. [Google Scholar]
- Moses, J.I.; Poppe, A.R. Dust ablation on the giant planets: Consequences for stratospheric photochemistry. Icarus 2017, 297, 33–58. [Google Scholar] [CrossRef] [PubMed]
- Seager, S.; Deming, D. Exoplanet atmospheres. Annu. Rev. Astron. Astrophys. 2010, 48, 631–672. [Google Scholar] [CrossRef] [Green Version]
- Barstow, J.K.; Heng, K. Outstanding challenges of exoplanet atmospheric retrievals. Space Sci. Rev. 2020, 216, 82. [Google Scholar] [CrossRef]
- Antunano, A.; Fletcher, L.N.; Orton, G.S.; Melin, H.; Donnelly, P.T.; Roman, M.T.; Sinclair, J.A.; Kasaba, Y. Cycles of Variability in Jupiter’s Atmosphere from Ground-Based Mid-Infrared Observations. In Proceedings of the European Planetary Science Congress 2021, Online, 13–24 September 2021. [Google Scholar]
- Fletcher, L.N.; Kaspi, Y.; Guillot, T.; Showman, A.P. How well do we understand the belt/zone circulation of giant planet atmospheres? Space Sci. Rev. 2020, 216, 30. [Google Scholar] [CrossRef] [Green Version]
- Dowling, T. Emoticons for Teaching Jupiter’s Belts, Zones, and Spots. In AAS/Division for Planetary Sciences Meeting Abstracts; AAS: Washington, DC, USA, 2021; Volume 53, p. 410.10. [Google Scholar]
- Conrath, B.J.; Gierasch, P.J. Global variation of the para hydrogen fraction in Jupiter’s atmosphere and implications for dynamics on the outer planets. Icarus 1984, 57, 184–204. [Google Scholar] [CrossRef]
- de Pater, I.; Fletcher, L.N.; Reach, W.T.; Goullaud, C.; Orton, G.S.; Wong, M.H.; Gehrz, R.D. SOFIA Observations of Variability in Jupiter’s Para-H2 Distribution and Subsurface Emission Characteristics of the Galilean Satellites. Planet. Sci. J. 2021, 2, 226. [Google Scholar] [CrossRef]
- Porco, C.C.; West, R.A.; McEwen, A.; Del Genio, A.D.; Ingersoll, A.P.; Thomas, P.; Squyres, S.; Dones, L.; Murray, C.D.; Johnson, T.V.; et al. Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science 2003, 299, 1541–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Melendo, E.; Pérez-Hoyos, S.; Sánchez-Lavega, A.; Hueso, R. Saturn’s zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus 2011, 215, 62–74. [Google Scholar] [CrossRef]
- Tollefson, J.; Wong, M.H.; Pater, I.d.; Simon, A.A.; Orton, G.S.; Rogers, J.H.; Atreya, S.K.; Cosentino, R.G.; Januszewski, W.; Morales-Juberías, R.; et al. Changes in Jupiter’s Zonal Wind Profile preceding and during the Juno mission. Icarus 2017, 296, 163–178. [Google Scholar] [CrossRef]
- Sromovsky, L.; Fry, P.; Dowling, T.; Baines, K.; Limaye, S. Neptune’s atmospheric circulation and cloud morphology: Changes revealed by 1998 HST imaging. Icarus 2001, 150, 244–260. [Google Scholar] [CrossRef]
- Sromovsky, L.; Fry, P. Dynamics of cloud features on Uranus. Icarus 2005, 179, 459–484. [Google Scholar] [CrossRef]
- Liang, M.C.; Shia, R.L.; Lee, A.Y.T.; Allen, M.; Friedson, A.J.; Yung, Y.L. Meridional transport in the stratosphere of Jupiter. Astrophys. J. 2005, 635, L177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; West, R.; Banfield, D.; Yung, Y. Stratospheric aerosols on Jupiter from Cassini observations. Icarus 2013, 226, 159–171. [Google Scholar] [CrossRef]
- Orsolini, Y.; Leovy, C. A model of large-scale instabilities in the jovian troposphere: 1. Linear model. Icarus 1993, 106, 392–405. [Google Scholar] [CrossRef]
- Ingersoll, A.; Gierasch, P.; Banfield, D.; Vasavada, A.; Team, G.I. Moist convection as an energy source for the large-scale motions in Jupiter’s atmosphere. Nature 2000, 403, 630–632. [Google Scholar] [CrossRef]
- Ingersoll, A.P.; Atreya, S.; Bolton, S.J.; Brueshaber, S.; Fletcher, L.N.; Levin, S.M.; Li, C.; Li, L.; Lunine, J.I.; Orton, G.S.; et al. Jupiter’s overturning circulation: Breaking waves take the place of solid boundaries. Geophys. Res. Lett. 2021, 48, e2021GL095756. [Google Scholar] [CrossRef] [PubMed]
- Duer, K.; Gavriel, N.; Galanti, E.; Kaspi, Y.; Fletcher, L.N.; Guillot, T.; Bolton, S.J.; Levin, S.M.; Atreya, S.K.; Grassi, D.; et al. Evidence for multiple Ferrel-like cells on Jupiter. Geophys. Res. Lett. 2021, 48, e2021GL095651. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Oyafuso, F.A.; Allison, M.; Ingersoll, A.; Li, L.; Kaspi, Y.; Galanti, E.; Wong, M.H.; Orton, G.S.; Duer, K.; et al. Jupiter’s temperate belt/zone contrasts revealed at depth by Juno microwave observations. J. Geophys. Res. Planets 2021, 126, e2021JE006858. [Google Scholar] [CrossRef]
- Achterberg, R.; Flasar, F.; Bjoraker, G.; Hesman, B.; Gorius, N.; Mamoutkine, A.; Fletcher, L.; Segura, M.; Edgington, S.; Brooks, S. Thermal Emission From Saturn’s Polar Cyclones. Geophys. Res. Lett. 2018, 45, 5312–5319. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N.; Guerlet, S.; Orton, G.S.; Cosentino, R.G.; Fouchet, T.; Irwin, P.G.; Li, L.; Flasar, F.M.; Gorius, N.; Morales-Juberías, R. Disruption of Saturn’s quasi-periodic equatorial oscillation by the great northern storm. Nat. Astron. 2017, 1, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Flasar, F.; Conrath, B.; Gierasch, P.; Pirraglia, J. Voyager infrared observations of Uranus’ atmosphere: Thermal structure and dynamics. J. Geophys. Res. Space Phys. 1987, 92, 15011–15018. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; Sromovsky, L.; Showman, A.P.; Del Genio, A.; Young, R.; Hueso, R.; Garcia-Melendo, E.; Kaspi, Y.; Orton, G.S.; Barrado-Izagirre, N.; et al. Gas giants. In Zonal Jets; Technical Report; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Hammel, H.; de Pater, I.; Gibbard, S.; Lockwood, G.; Rages, K. New cloud activity on Uranus in 2004: First detection of a southern feature at 2.2 μm. Icarus 2005, 175, 284–288. [Google Scholar] [CrossRef]
- Hammel, H.; Lynch, D.; Russell, R.; Sitko, M.; Bernstein, L.; Hewagama, T. Mid-infrared ethane emission on Neptune and Uranus. Astrophys. J. 2006, 644, 1326. [Google Scholar] [CrossRef] [Green Version]
- Orton, G.S.; Fletcher, L.N.; Liu, J.; Schneider, T.; Yanamandra-Fisher, P.A.; de Pater, I.; Edwards, M.; Geballe, T.R.; Hammel, H.B.; Fujiyoshi, T.; et al. Recovery and characterization of Neptune’s near-polar stratospheric hot spot. Planet. Space Sci. 2012, 61, 161–167. [Google Scholar] [CrossRef]
- Orton, G.; Moses, J.; Encrenaz, T.; Fletcher, L.; Greathouse, T.; Leyrat, C.; Sinclair, J.; Trafton, L.; Lacy, J.; Pantin, E. Spatial Variability in the Stratosphere of Uranus. In Proceedings of the 42nd COSPAR Scientific Assembly, Pasadena, CA, USA, 14–22 July 2018; Volume 42. [Google Scholar]
- Peek, B.M.; Moore, P. The Planet Jupiter: The Observer’s Handbook; Faber and Faber: London, UK; Boston, MA, USA, 1981. [Google Scholar]
- Rogers, J.H. The Giant Planet Jupiter; Cambridge University Press: Cambridge, UK, 1995; Volume 6. [Google Scholar]
- Simon-Miller, A.A.; Gierasch, P.J. On the long-term variability of Jupiter’s winds and brightness as observed from Hubble. Icarus 2010, 210, 258–269. [Google Scholar] [CrossRef]
- Karkoschka, E.; Tomasko, M. Saturn’s vertical and latitudinal cloud structure 1991–2004 from HST imaging in 30 filters. Icarus 2005, 179, 195–221. [Google Scholar] [CrossRef]
- Lockwood, G.; Thompson, D. Photometric variability of Neptune, 1972–2000. Icarus 2002, 156, 37–51. [Google Scholar] [CrossRef]
- Lockwood, G.; Jerzykiewicz, M. Photometric variability of Uranus and Neptune, 1950–2004. Icarus 2006, 180, 442–452. [Google Scholar] [CrossRef]
- Sromovsky, L.A.; Fry, P.; Hammel, H.; Ahue, W.; de Pater, I.; Rages, K.; Showalter, M.; van Dam, M. Uranus at equinox: Cloud morphology and dynamics. Icarus 2009, 203, 265–286. [Google Scholar] [CrossRef] [Green Version]
- Roman, M.T.; Banfield, D.; Gierasch, P.J. Aerosols and methane in the ice giant atmospheres inferred from spatially resolved, near-infrared spectra: I. Uranus, 2001–2007. Icarus 2018, 310, 54–76. [Google Scholar] [CrossRef] [Green Version]
- Sromovsky, L.A.; Karkoschka, E.; Fry, P.M.; de Pater, I.; Hammel, H.B. The methane distribution and polar brightening on Uranus based on HST/STIS, Keck/NIRC2, and IRTF/SpeX observations through 2015. Icarus 2019, 317, 266–306. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, G. Final compilation of photometry of Uranus and Neptune, 1972–2016. Icarus 2019, 324, 77–85. [Google Scholar] [CrossRef]
- Karkoschka, E. Neptune’s cloud and haze variations 1994–2008 from 500 HST–WFPC2 images. Icarus 2011, 215, 759–773. [Google Scholar] [CrossRef]
- Hueso, R.; De Pater, I.; Simon, A.; Sánchez-Lavega, A.; Delcroix, M.; Wong, M.; Tollefson, J.; Baranec, C.; de Kleer, K.; Luszcz-Cook, S.; et al. Neptune long-lived atmospheric features in 2013–2015 from small (28-cm) to large (10-m) telescopes. Icarus 2017, 295, 89–109. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.H.; Tollefson, J.; Hsu, A.I.; de Pater, I.; Simon, A.A.; Hueso, R.; Sánchez-Lavega, A.; Sromovsky, L.; Fry, P.; Luszcz-Cook, S.; et al. A new dark vortex on Neptune. Astron. J. 2018, 155, 117. [Google Scholar] [CrossRef] [Green Version]
- Molter, E.; de Pater, I.; Luszcz-Cook, S.; Hueso, R.; Tollefson, J.; Alvarez, C.; Sánchez-Lavega, A.; Wong, M.H.; Hsu, A.I.; Sromovsky, L.A.; et al. Analysis of Neptune’s 2017 bright equatorial storm. Icarus 2019, 321, 324–345. [Google Scholar] [CrossRef] [Green Version]
- Hueso, R.; Sánchez-Lavega, A. Atmospheric dynamics and vertical structure of Uranus and Neptune’s weather layers. Space Sci. Rev. 2019, 215, 52. [Google Scholar] [CrossRef]
- Simon, A.A.; Wong, M.H.; Sromovsky, L.A.; Fletcher, L.N.; Fry, P.M. Giant Planet Atmospheres: Dynamics and Variability from UV to Near-IR Hubble and Adaptive Optics Imaging. Remote Sens. 2022, 14, 1518. [Google Scholar] [CrossRef]
- Mitchell, J.M. An overview of climatic variability and its causal mechanisms. Quat. Res. 1976, 6, 481–493. [Google Scholar] [CrossRef]
- Wallace, L. The seasonal variation of the thermal structure of the atmosphere of Uranus. Icarus 1983, 54, 110–132. [Google Scholar] [CrossRef]
- Greathouse, T.; Strong, S.; Moses, J.; Orton, G.; Fletcher, L.; Dowling, T. A General Radiative Seasonal Climate Model Applied to Saturn, Uranus, and Neptune. In AGU Fall Meeting Abstracts; AGU: Washington, DC, USA, 2008; Volume 2008, p. P21B-06. [Google Scholar]
- Seidelmann, P.K. Explanatory Supplement to the Astronomical Almanac; University Science Books: Melville, NY, USA, 1992. [Google Scholar]
- Meeus, J. Equinoxes and solstices on Uranus and Neptune. J. Br. Astron. Assoc. 1997, 107, 332. [Google Scholar]
- Fletcher, L.N.; Irwin, P.; Sinclair, J.; Orton, G.; Giles, R.; Hurley, J.; Gorius, N.; Achterberg, R.; Hesman, B.; Bjoraker, G. Seasonal evolution of Saturn’s polar temperatures and composition. Icarus 2015, 250, 131–153. [Google Scholar] [CrossRef] [Green Version]
- Kopp, G. SORCE Level 3 Total Solar Irradiance Daily Means, Version 018. 2019. Available online: https://disc.gsfc.nasa.gov/datasets/SOR3TSID_019/summary (accessed on 15 October 2022).
- Orton, G.S.; Gustafsson, M.; Burgdorf, M.; Meadows, V. Revised ab initio models for H2–H2 collision-induced absorption at low temperatures. Icarus 2007, 189, 544–549. [Google Scholar] [CrossRef]
- Cavalié, T.; Dobrijevic, M.; Fletcher, L.N.; Loison, J.C.; Hickson, K.; Hue, V.; Hartogh, P. Photochemical response to the variation of temperature in the 2011- 2012 stratospheric vortex of Saturn. Astron. Astrophys. 2015, 580, A55. [Google Scholar] [CrossRef] [Green Version]
- Hue, V.; Hersant, F.; Cavalié, T.; Dobrijevic, M.; Sinclair, J. Photochemistry, mixing and transport in Jupiter’s stratosphere constrained by Cassini. Icarus 2018, 307, 106–123. [Google Scholar] [CrossRef] [Green Version]
- Orton, G.S.; Friedson, A.J.; Yanamandra-Fisher, P.A.; Caldwell, J.; Hammel, H.B.; Baines, K.H.; Bergstralh, J.T.; Martin, T.Z.; West, R.A.; Veeder, G.J., Jr.; et al. Spatial organization and time dependence of Jupiter’s tropospheric temperatures, 1980-1993. Science 1994, 265, 625–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antuñano, A.; Fletcher, L.N.; Orton, G.S.; Melin, H.; Milan, S.; Rogers, J.; Greathouse, T.; Harrington, J.; Donnelly, P.T.; Giles, R. Jupiter’s atmospheric variability from long-term ground-based observations at 5 μm. Astron. J. 2019, 158, 130. [Google Scholar] [CrossRef] [Green Version]
- Friedson, A.J. New observations and modelling of a QBO-like oscillation in Jupiter’s stratosphere. Icarus 1999, 137, 34–55. [Google Scholar] [CrossRef]
- Antuñano, A.; Cosentino, R.G.; Fletcher, L.N.; Simon, A.A.; Greathouse, T.K.; Orton, G.S. Fluctuations in Jupiter’s equatorial stratospheric oscillation. Nat. Astron. 2021, 5, 71–77. [Google Scholar] [CrossRef]
- Ortiz, J.; Orton, G.; Friedson, A.; Stewart, S.; Fisher, B.; Spencer, J. Evolution and persistence of 5-μm hot spots at the Galileo probe entry latitude. J. Geophys. Res. Planets 1998, 103, 23051–23069. [Google Scholar] [CrossRef]
- Orton, G.S.; Antunano, A.; Fletcher, L.N.; Sinclair, J.A.; Momary, T.W.; Fujiyoshi, T.; Yanamandra-Fisher, P.; Donnelly, P.T.; Greco, J.J.; Payne, A.V.; et al. Unexpected Long-Term Variability in Jupiter’s Tropospheric Temperatures. arXiv 2022, arXiv:2211.04398. [Google Scholar] [CrossRef]
- Leovy, C.B.; Friedson, A.J.; Orton, G.S. The quasiquadrennial oscillation of Jupiter’s equatorial stratosphere. Nature 1991, 354, 380–382. [Google Scholar] [CrossRef]
- Greathouse, T.K.; Orton, G.S.; Cosentino, R.; Morales-Juberias, R.; Fletcher, L.N.; Giles, R.S.; Melin, H.; Encrenaz, T.A.; Fouchet, T.; DeWitt, C.N. Tracking Jupiter’s Quasi-Quadrennial Oscillation and Mid-Latitude Zonal Waves with High Spectral Resolution Mid-Infrared Observations. In AAS/Division for Planetary Sciences Meeting Abstracts# 48; AAS: Washington, DC, USA, 2016; Volume 48, p. 501.05. [Google Scholar]
- Hue, V.; Greathouse, T.; Cavalié, T.; Dobrijevic, M.; Hersant, F. 2D photochemical modeling of Saturn’s stratosphere. Part II: Feedback between composition and temperature. Icarus 2016, 267, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Bardet, D.; Spiga, A.; Guerlet, S. Joint evolution of equatorial oscillation and interhemispheric circulation in Saturn’s stratosphere. Nat. Astron. 2022, 6, 804–811. [Google Scholar] [CrossRef]
- Orton, G.; Yanamandra-Fisher, P. Saturn’s temperature field from high-resolution middle-infrared imaging. Science 2005, 307, 696–698. [Google Scholar] [CrossRef]
- Fischer, G.; Kurth, W.S.; Gurnett, D.A.; Zarka, P.; Dyudina, U.A.; Ingersoll, A.P.; Ewald, S.P.; Porco, C.C.; Wesley, A.; Go, C.; et al. A giant thunderstorm on Saturn. Nature 2011, 475, 75–77. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, M.T. Mid-Infrared Observations of the Giant Planets. Remote Sens. 2023, 15, 1811. https://doi.org/10.3390/rs15071811
Roman MT. Mid-Infrared Observations of the Giant Planets. Remote Sensing. 2023; 15(7):1811. https://doi.org/10.3390/rs15071811
Chicago/Turabian StyleRoman, Michael T. 2023. "Mid-Infrared Observations of the Giant Planets" Remote Sensing 15, no. 7: 1811. https://doi.org/10.3390/rs15071811
APA StyleRoman, M. T. (2023). Mid-Infrared Observations of the Giant Planets. Remote Sensing, 15(7), 1811. https://doi.org/10.3390/rs15071811