Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Preparation of Forest Fire Inventory Map
2.3. Forest Fire Responsible Variables
2.4. Multicollinearity
2.5. Model Description
2.5.1. Frequency Ratio (FR)
2.5.2. Certainty Factor (CF)
2.5.3. Bivariate Statistical Method ( and )
2.5.4. Natural Risk Factor (NRF)
2.5.5. Analytical Hierarchy Process (AHP)
2.5.6. Logistic Regression (LR)
2.6. Validation and Accuracy Assessment
3. Results
4. Discussion
Recommending Forest Fire Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feurdean, A.; Veski, S.; Florescu, G.; Vannière, B.; Pfeiffer, M.; O’Hara, R.B.; Stivrins, N.; Amon, L.; Heinsalu, A.; Vassiljev, J.; et al. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe). Quat. Sci. Rev. 2017, 169, 378–390. [Google Scholar] [CrossRef]
- Naderpour, M.; Rizeei, H.M.; Khakzad, N.; Pradhan, B. Forest fire induced Natech risk assessment: A survey of geospatial technologies. Reliab. Eng. Syst. Saf. 2019, 191, 106558. [Google Scholar] [CrossRef]
- Eskandari, S.; Chuvieco, E. Fire danger assessment in Iran based on geospatial information. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 57–64. [Google Scholar] [CrossRef]
- Tien Bui, D.T.; Bui, Q.T.; Nguyen, Q.P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric. For. Meteorol. 2017, 233, 32–44. [Google Scholar] [CrossRef]
- Chitale, V.; Behera, M.D. How will forest fires impact the distribution of endemic plants in the Himalayan biodiversity hotspot? Biodivers. Conserv. 2019, 28, 2259–2273. [Google Scholar] [CrossRef]
- Eskandari, S.; Miesel, J.R. Comparison of the fuzzy AHP method, the spatial correlation method, and the Dong model to predict the fire high-risk areas in Hyrcanian forests of Iran. Geomat. Nat. Hazards Risk 2017, 8, 933–949. [Google Scholar] [CrossRef] [Green Version]
- Tien Bui, D.T.; Le, K.T.T.; Nguyen, V.C.; Le, H.D.; Revhaug, I. Tropical forest fire susceptibility mapping at the Cat Ba National Park area, Hai Phong City, Vietnam, using GIS-based Kernel logistic regression. Remote Sens. 2016, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Nami, M.H.; Jaafari, A.; Fallah, M.; Nabiuni, S. Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. Int. J. Environ. Sci. Technol. 2018, 15, 373–384. [Google Scholar] [CrossRef]
- Mutthulakshmi, K.; Rui, M.; Wee, E.; Chong, Y.; Wong, K.; Cheong, K.H. Simulating forest fire spread and fire-fighting using cellular automata. Chin. J. Phys. 2020, 65, 642–650. [Google Scholar] [CrossRef]
- Murthy, K.K.; Sinha, S.K.; Kaul, R.; Vaidyanathan, S. A fine-scale state-space model to understand drivers of forest fires in the Himalayan foothills. For. Ecol. Manag. 2019, 432, 902–911. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Aryal, J. Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables. Fire 2019, 2, 50. [Google Scholar] [CrossRef] [Green Version]
- Boubeta, M.; Lombardía, M.J.; Marey-Pérez, M.F.; Morales, D. Prediction of forest fires occurrences with area-level Poisson mixed models. J. Environ. Manag. 2015, 154, 151–158. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-miguel-ayanz, J.; Camia, A.; Pereira, J.M.C. Forest Ecology and Management Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Duarte, L.; Teododo, A.C. An easy, accurate and efficient procedure to create forest fire risk maps using the SEXTANTE plugin Modeler. J. For. Res. 2016, 27, 1361–1372. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Ager, A.A.; Salis, M.; Day, M.A.; Vega-Garcia, C. Optimizing prescribed fire allocation for managing fire risk in central Catalonia. Sci. Total Environ. 2018, 621, 872–885. [Google Scholar] [CrossRef] [Green Version]
- Pourghasemi, H.R.; Beheshtirad, M.; Pradhan, B. A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomat. Nat. Hazards Risk 2016, 7, 861–885. [Google Scholar] [CrossRef] [Green Version]
- Adab, H.; Kanniah, K.D.; Solaimani, K. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat. Hazards 2013, 65, 1723–1743. [Google Scholar] [CrossRef]
- Eugenio, F.C.; dos Santos, A.R.; Fiedler, N.C.; Ribeiro, G.A.; da Silva, A.G.; dos Santos, Á.B.; Paneto, G.G.; Schettino, V.R. Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil. J. Environ. Manag. 2016, 173, 65–71. [Google Scholar] [CrossRef]
- Hong, H.; Tsangaratos, P.; Ilia, I.; Liu, J.; Zhu, A.X.; Xu, C. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Sci. Total Environ. 2018, 630, 1044–1056. [Google Scholar] [CrossRef]
- Gigović, L.; Pourghasemi, H.R.; Drobnjak, S.; Bai, S. Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara National Park. Forests 2019, 10, 408. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A review on early forest fire detection systems using optical remote sensing. Sensors 2020, 20, 6442. [Google Scholar] [CrossRef]
- Davis, R.; Yang, Z.; Yost, A.; Belongie, C.; Cohen, W. The normal fire environment—Modeling environmental suitability for large forest wildfires using past, present, and future climate normals. For. Ecol. Manag. 2017, 390, 173–186. [Google Scholar] [CrossRef]
- de Belém Costa Freitas, M.; Xavier, A.; Fragoso, R. Integration of fire risk in a sustainable forest management model. Forests 2017, 8, 270. [Google Scholar] [CrossRef] [Green Version]
- Kerr, G.H.; DeGaetano, A.T.; Stoof, C.R.; Ward, D. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble. Theor. Appl. Climatol. 2018, 131, 625–639. [Google Scholar] [CrossRef]
- Fox, D.M.; Martin, N.; Carrega, P.; Andrieu, J.; Adnès, C.; Emsellem, K.; Ganga, O.; Moebius, F.; Tortorollo, N.; Fox, E.A. Increases in fire risk due to warmer summer temperatures and wildland urban interface changes do not necessarily lead to more fires. Appl. Geogr. 2015, 56, 1–12. [Google Scholar] [CrossRef]
- ISFR. India State of Forest Report; Forest Survey of India, Ministry of Environment, Forest and Climate Change, Government of India: Dehradun, India, 2021. [Google Scholar]
- Champion, H.G.; Seth, S.K. A Revised Survey of the Forest Types of India; Manager of Publications, Government of India: Delhi, India, 1968. [Google Scholar]
- Pourtaghi, Z.S.; Pourghasemi, H.R.; Rossi, M. Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environ. Earth Sci. 2015, 73, 1515–1533. [Google Scholar] [CrossRef]
- Sachdeva, S.; Bhatia, T.; Verma, A.K. GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping. Nat. Hazards 2018, 92, 1399–1418. [Google Scholar] [CrossRef]
- Pourtaghi, Z.S.; Pourghasemi, H.R.; Aretano, R.; Semeraro, T. Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecol. Indic. 2016, 64, 72–84. [Google Scholar] [CrossRef]
- Tien Bui, D.; Tuan, T.A.; Hoang, N.D.; Thanh, N.Q.; Nguyen, D.B.; Van Liem, N.; Pradhan, B. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides 2017, 14, 447–458. [Google Scholar] [CrossRef]
- Hong, H.; Naghibi, S.A.; Moradi Dashtpagerdi, M.; Pourghasemi, H.R.; Chen, W. A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China. Arab. J. Geosci. 2017, 10, 167. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Lombardo, L. Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling. Catena 2019, 183, 104223. [Google Scholar] [CrossRef]
- Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 2011, 85, 274–287. [Google Scholar] [CrossRef]
- Azareh, A.; Rahmati, O.; Rafiei-Sardooi, E.; Sankey, J.B.; Lee, S.; Shahabi, H.; Ahmad, B.B. Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models. Sci. Total Environ. 2019, 655, 684–696. [Google Scholar] [CrossRef]
- Shortliffe, E.H.; Buchanan, B.G. A model of inexact reasoning in medicine. Math. Biosci. 1975, 23, 351–379. [Google Scholar] [CrossRef]
- Heckerman, D. Probabilistic interpretations for MYCIN’s certainty factors. Mach. Intell. Pattern Recognit. 1986, 4, 167–196. [Google Scholar]
- van Westen, C.J. Statistical landslide hazard analysis. Ilwis 1997, 2, 73–84. [Google Scholar]
- Cevik, E.; Topal, T. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ. Geol. 2003, 44, 949–962. [Google Scholar] [CrossRef]
- Gupta, R.P.; Joshi, B.C. Landslide hazard zoning using the GIS approach—A case study from the Ramganga catchment, Himalayas. Eng. Geol. 1990, 28, 119–131. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int. J. Remote Sens. 2005, 26, 1477–1491. [Google Scholar] [CrossRef]
- Subedi, P.; Subedi, K.; Thapa, B.; Subedi, P. Sinkhole susceptibility mapping in Marion County, Florida: Evaluation and comparison between analytical hierarchy process and logistic regression based approaches. Sci. Rep. 2019, 9(1), 7140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yesilnacar, E.; Topal, T. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng. Geol. 2005, 79, 251–266. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez, J.; Martín, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. [Google Scholar] [CrossRef]
- Moayedi, H.; Mehrabi, M.; Bui, D.T.; Pradhan, B.; Foong, L.K. Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility. J. Environ. Manag. 2020, 260, 109867. [Google Scholar] [CrossRef]
- North, M.P.; Stephens, S.L.; Collins, B.M.; Agee, J.K.; Aplet, G.; Franklin, J.F.; Fule, P.Z. Environmental science. Reform forest fire management. Science 2015, 349, 1280–1281. [Google Scholar] [CrossRef]
- Li, Z.J.; Zhang, K. Comparison of three GIS-based hydrological models. J. Hydrol. Eng. 2008, 13, 364–370. [Google Scholar] [CrossRef]
- Zhang, K.; Ali, A.; Antonarakis, A.; Moghaddam, M.; Saatchi, S.; Tabatabaeenejad, A.; Chen, R.; Jaruwatanadilok, S.; Cuenca, R.; Crow, W.T.; et al. The sensitivity of North American terrestrial carbon fluxes to spatial and temporal variation in soil moisture: An analysis using radar-derived estimates of root-zone soil moisture. J. Geophys. Res. Biogeosciences 2019, 124, 3208–3231. [Google Scholar] [CrossRef]
- Zhao, L.; Du, M.; Du, W.; Guo, J.; Liao, Z.; Kang, X.; Liu, Q. Evaluation of the Carbon Sink Capacity of the Proposed Kunlun Mountain National Park. Int. J. Environ. Res. Public Health 2022, 19, 9887. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Zhu, D.; Wang, W.; Liu, H.; Li, J.; Shi, N.; Ma, L.; Fu, S. Fine root biomass and morphology in a temperate forest are influenced more by the nitrogen treatment approach than the rate. Ecol. Indic. 2021, 130, 108031. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Li, Z.; Liu, Z.; Wang, J.; Huang, P. A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. J. Hydrol. 2020, 590, 125440. [Google Scholar] [CrossRef]
- Zhao, F.; Song, L.; Peng, Z.; Yang, J.; Luan, G.; Chu, C.; Ding, J.; Feng, S.; Jing, Y.; Xie, Z. Night-time light remote sensing mapping: Construction and analysis of ethnic minority development index. Remote Sens. 2021, 13, 2129. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Nguyen, X.; Zhuang, X.; Li, J.; Querol, X.; Li, B.; Moreno, N.; Hoang, V.; Cordoba, P.; et al. First insights into mineralogy, geochemistry, and isotopic signatures of the Upper Triassic high sulfur coals from the Thai Nguyen Coal field, NE Vietnam. Int. J. Coal Geol. 2022, 261, 104097. [Google Scholar] [CrossRef]
- Pan, J.; Wang, W.; Li, J. Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China. Nat. Hazards 2016, 81, 1879–1899. [Google Scholar] [CrossRef]
- Abdollahi, M.; Dewan, A.; Hassan, Q.K. Applicability of remote sensing-based vegetation water content in modeling lightning-caused forest fire occurrences. ISPRS Int. J. Geo-Inf. 2019, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Xiong, S.; Li, B.; Zhu, S. DCGNN: A single-stage 3D object detection network based on density clustering and graph neural network. Complex Intell. Syst. 2022, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J.; Li, J.; Mao, D.; Zhang, Y.; Huang, Y.; Yang, J. Fast inverse-scattering reconstruction for airborne high-squint radar imagery based on Doppler centroid compensation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–17. [Google Scholar] [CrossRef]
- Abedi Gheshlaghi, H.; Feizizadeh, B.; Blaschke, T. GIS-based forest fire risk mapping using the analytical network process and fuzzy logic. J. Environ. Plan. Manag. 2019, 63, 481–499. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Zhao, M.; Oechel, W.C.; Cassano, J.; Running, S.W. Sensitivity of pan-Arctic terrestrial net primary productivity simulations to daily surface meteorology from NCEP-NCAR and ERA-40 reanalyses. J. Geophys. Res. Biogeosciences 2007, 112, G01. [Google Scholar] [CrossRef]
- Divya, A.; Kavithanjali, T.; Dharshini, P. IoT enabled forest fire detection and early warning system. In Proceedings of the 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 29–30 March 2019; pp. 1–5. [Google Scholar]
- Nuryanto, D.E.; Pradana, R.P.; Putra, I.D.G.A.; Heriyanto, E.; Linarka, U.A.; Satyaningsih, R.; Hidayanto, N.; Sopaheluwakan, A.; Permana, D.S. Developing models to establish seasonal forest fire early warning system. IOP Conf. Ser. Earth Environ. Sci. 2021, 909, 012005. [Google Scholar] [CrossRef]
- Washaya, P.; Balz, T.; Mohamadi, B. Coherence change-detection with sentinel-1 for natural and anthropogenic disaster monitoring in urban areas. Remote Sens. 2018, 10, 1026. [Google Scholar] [CrossRef] [Green Version]
- Armenteras, D.; Dávalos, L.M.; Barreto, J.S.; Miranda, A.; Hernández-Moreno, A.; Zamorano-Elgueta, C.; González-Delgado, T.M.; Meza-Elizalde, M.C.; Retana, J. Fire-induced loss of the world’s most biodiverse forests in Latin America. Sci. Adv. 2021, 7, 3357. [Google Scholar] [CrossRef] [PubMed]
- Senande-Rivera, M.; Insua-Costa, D.; Miguez-Macho, G. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nat. Commun. 2022, 13, 1208. [Google Scholar] [CrossRef] [PubMed]
- Sahana, M.; Ganaie, T.A. GIS-based landscape vulnerability assessment to forest fire susceptibility of Rudraprayag district, Uttarakhand, India. Environ. Earth Sci. 2017, 76, 1–18. [Google Scholar] [CrossRef]
- Satendra; Kaushik, A.D. Forest Fire Disaster Management; National Institute of Disaster Management, Ministry of Home Affairs, Government of India: New Delhi, India, 2014. [Google Scholar]
- Gupta, B.; Agrawal, G.; Chauhan, A. Forest Fire: Characteristics and Management; Studera Press: New Delhi, India, 2022. [Google Scholar]
Variables | Collinearity Statistics | Variables | Collinearity Statistics | ||
---|---|---|---|---|---|
VIF | TOL | VIF | TOL | ||
Elevation | 2.57 | 0.39 | LAI | 1.14 | 0.88 |
Slope | 1.85 | 0.54 | LST day | 1.59 | 0.63 |
Aspect | 1.02 | 0.98 | LST night | 1.18 | 0.84 |
TWI | 1.34 | 0.74 | Distance from water bodies | 1.23 | 0.81 |
Mean temperature | 8.30 | 0.12 | Distance from rail | 1.23 | 0.81 |
Precipitation | 1.75 | 0.57 | Distance from road | 1.38 | 0.72 |
Solar radiation | 2.33 | 0.43 | Distance from settlement | 1.29 | 0.77 |
Wind speed | 1.25 | 0.80 | Forest type | 1.68 | 0.60 |
NDVI | 6.63 | 0.15 | NDWI | 5.33 | 0.19 |
Variables | Classes Distribution |
---|---|
Elevation (Figure 3a) | <300, 300–600, 600–900, 900–1200, and >1200 (in m) |
Aspect (Figure 3b) | Flat, North and Northeast (N + NE), Northwest (NW), West and Southwest (W + SW), and South, Southeast and East (S + SE + E) |
Slope angle (Figure 3c) | <5, 5–10, 10–20, 20–30, and >30 (in °) |
Precipitation (Figure 3d) | <110, 110–120, 120–130, 130–150, and >150 (in mm) |
Temperature (Figure 3e) | <29, 29–30, 30–31, 31–33, and >33 (in °C) |
Solar radiation (Figure 3f) | <18,000, 18,000–18,500, 18,500–19,000, 19,000–20,000, and >20,000 (in kJm−2day−1) |
Wind speed (Figure 3g) | <1.4, 1.4–1.5, 1.5–1.7, 1.7–2.0, and >2.0 (in ms−1) |
LST day (Figure 3h) | <300, 300–305, 305–310, 310–315, and >315 (in K) |
LST night (Figure 3i) | <270, 270–275, 275–285, 285–295, and >295 (in K) |
Land cover type (Figure 3j) | Mixed deciduous, Semi-evergreen, Plantation, Barren, and Water bodies |
LAI (Figure 3k) | <1, 1–2, 2–4, 4–7, and >7 |
NDVI (Figure 3l) | <0, 0–0.3, 0.3–0.5, 0.5–0.7, and >0.7 |
NDWI (Figure 3m) | <−0.1, −0.1–0, 0–0.1, 0.1–0.3, and >0.3 |
TWI (Figure 3n) | <6, 6–6.5, 6.5–7.5, 7.5–10, and >10 |
Distance from road (Figure 3o) | <1, 1–3, 3–10, 10–20, and >20 (in km) |
Distance from rail (Figure 3p) | <1, 1–5, 5–10, 10–20, and >20 (in km) |
Distance from water bodies (Figure 3q) | <0.5, 0.5–2.5, 2.5–7.5, 7.5–15, and >15 (in km) |
Distance from settlement (Figure 3r) | <5, 5–10, 10–20, 20–30, >30 (in km) |
Sl No | Parameter | Classes | Firepoint | % Firepoint | No. of Pixel | % Pixel | FR | NRF | W | CF | Wi | Wf | AHP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Elevation | <300 | 6641 | 21.054 | 10,081,077 | 13.843 | 1.521 | 1.053 | 1 | 0.343 | 0.419 | 100 | 0.058 | |
300–600 | 10,432 | 33.072 | 38,030,875 | 52.222 | 0.633 | 1.654 | 1 | −0.367 | −0.457 | 0.236 | λmax = 5.306 | |||
600–900 | 11,819 | 37.469 | 20,178,724 | 27.708 | 1.352 | 1.873 | 1 | 0.261 | 0.302 | 0.536 | CI = 0.076 | |||
900–1200 | 2506 | 7.945 | 4,306,390 | 5.913 | 1.344 | 0.397 | 0 | 0.256 | 0.295 | 0.134 | ||||
>1200 | 145 | 0.460 | 228,998 | 0.314 | 1.462 | 0.023 | 0 | 0.316 | 0.380 | 0.035 | CR = 0.069 | |||
2 | Aspect | Flat | 14 | 0.044 | 2,333,606 | 12.644 | 0.004 | 0.002 | 0 | −0.996 | −5.652 | 1 | 0.041 | λmax = 5.283 |
N + NE | 7497 | 23.768 | 4,208,371 | 22.802 | 1.042 | 1.188 | 1 | 0.041 | 0.041 | 0.051 | ||||
NW | 12,336 | 39.109 | 6,098,469 | 33.044 | 1.184 | 1.955 | 1 | 0.155 | 0.169 | 0.292 | CI = 0.071 | |||
W + SW | 7797 | 24.719 | 3,837,835 | 20.795 | 1.189 | 1.236 | 1 | 0.159 | 0.173 | 0.498 | ||||
S + SE + E | 3899 | 12.361 | 1,977,539 | 10.715 | 1.154 | 0.618 | 0 | 0.133 | 0.143 | 0.117 | CR = 0.064 | |||
3 | Slope | <5 | 5649 | 17.909 | 8,043,419 | 42.239 | 0.424 | 0.895 | 0 | −0.576 | −0.858 | 89.792 | 0.060 | λmax = 5.198 |
5–10 | 6889 | 21.840 | 4,270,390 | 22.425 | 0.974 | 1.092 | 1 | −0.027 | −0.026 | 0.125 | ||||
10–20 | 10,413 | 33.012 | 2,605,392 | 13.682 | 2.413 | 1.651 | 1 | 0.587 | 0.881 | 0.309 | CI = 0.049 | |||
20–30 | 6656 | 21.101 | 1,137,790 | 5.975 | 3.532 | 1.055 | 1 | 0.718 | 1.262 | 0.469 | ||||
>30 | 1936 | 6.138 | 2,985,836 | 15.680 | 0.391 | 0.307 | 0 | −0.609 | −0.938 | 0.037 | CR = 0.045 | |||
4 | Temperature | <29 | 13,965 | 44.273 | 22,878 | 12.611 | 3.511 | 2.214 | 2 | 0.866 | 1.256 | 52.125 | 0.519 | λmax = 5.175 |
29–30 | 6125 | 19.418 | 16,332 | 9.002 | 2.157 | 0.971 | 0 | 0.649 | 0.769 | 0.143 | ||||
30–31 | 5399 | 17.116 | 35,584 | 19.614 | 0.873 | 0.856 | 0 | −0.150 | −0.136 | 0.068 | CI = 0.044 | |||
31–33 | 5919 | 18.765 | 93,268 | 51.410 | 0.365 | 0.938 | 0 | −0.678 | −1.008 | 0.033 | ||||
>33 | 135 | 0.428 | 13,357 | 7.363 | 0.058 | 0.021 | 0 | −0.951 | −2.845 | 0.237 | CR = 0.039 | |||
5 | Precipitation | <110 | 1889 | 5.989 | 14,886 | 8.205 | 0.730 | 0.299 | 0 | −0.309 | −0.315 | 92.462 | 0.034 | λmax = 5.119 |
110–120 | 14,210 | 45.050 | 78,272 | 43.144 | 1.044 | 2.252 | 2 | 0.051 | 0.043 | 0.285 | ||||
120–130 | 9387 | 29.759 | 60,623 | 33.416 | 0.891 | 1.488 | 1 | −0.129 | −0.116 | 0.134 | CI = 0.029 | |||
130–150 | 4952 | 15.699 | 24,548 | 13.531 | 1.160 | 0.785 | 0 | 0.167 | 0.149 | 0.078 | ||||
>150 | 1105 | 3.503 | 3090 | 1.703 | 2.057 | 0.175 | 0 | 0.622 | 0.721 | 0.468 | CR = 0.027 | |||
6 | Solar radiation | <18,000 | 1907 | 6.046 | 24,140 | 13.306 | 0.454 | 0.302 | 0 | −0.592 | −0.789 | 51.319 | 0.038 | λmax = 5.283 |
18,000–18,500 | 2956 | 9.371 | 42,806 | 23.595 | 0.397 | 0.469 | 0 | −0.648 | −0.923 | 0.073 | ||||
18,500–19,000 | 7127 | 22.595 | 40,741 | 22.457 | 1.006 | 1.130 | 1 | 0.007 | 0.006 | 0.409 | CI = 0.071 | |||
19,000–20,000 | 19,263 | 61.069 | 70,150 | 38.667 | 1.579 | 3.053 | 2 | 0.444 | 0.457 | 0.367 | ||||
>20,000 | 290 | 0.919 | 3582 | 1.974 | 0.466 | 0.046 | 0 | −0.581 | −0.764 | 0.114 | CR = 0.064 | |||
7 | Wind speed | <1.4 | 3352 | 10.627 | 19,992 | 11.020 | 0.964 | 0.531 | 0 | −0.043 | −0.036 | 31.962 | 0.513 | λmax = 5.102 |
1.4–1.5 | 14,461 | 45.845 | 53,611 | 29.551 | 1.551 | 2.292 | 2 | 0.430 | 0.439 | 0.238 | ||||
1.5–1.7 | 12,821 | 40.646 | 84,344 | 46.491 | 0.874 | 2.032 | 2 | −0.148 | −0.134 | 0.151 | CI = 0.025 | |||
1.7–2 | 729 | 2.311 | 12,134 | 6.688 | 0.346 | 0.116 | 0 | −0.696 | −1.063 | 0.061 | ||||
>2 | 180 | 0.571 | 11,338 | 6.250 | 0.091 | 0.029 | 0 | −0.923 | −2.394 | 0.037 | CR = 0.023 | |||
8 | LSTday | <300 | 543 | 1.721 | 8791 | 7.926 | 0.217 | 0.086 | 0 | −0.834 | −1.527 | 46.849 | 0.036 | λmax = 5.332 |
300–305 | 1698 | 5.383 | 5460 | 4.923 | 1.094 | 0.269 | 0 | 0.119 | 0.089 | 0.529 | ||||
305–310 | 23,617 | 74.872 | 52,544 | 47.374 | 1.580 | 3.744 | 2 | 0.513 | 0.458 | 0.229 | CI = 0.083 | |||
310–315 | 5549 | 17.592 | 43,323 | 39.061 | 0.450 | 0.880 | 0 | −0.630 | −0.798 | 0.129 | ||||
>315 | 136 | 0.431 | 794 | 0.716 | 0.602 | 0.022 | 0 | −0.480 | −0.507 | 0.077 | CR = 0.075 | |||
9 | LSTnight | <270 | 10 | 0.032 | 1052 | 0.948 | 0.033 | 0.002 | 0 | −0.976 | −3.398 | 20.668 | 0.035 | λmax = 5.257 |
270–275 | 998 | 3.164 | 4605 | 4.152 | 0.762 | 0.158 | 0 | −0.304 | −0.272 | 0.061 | ||||
275–285 | 2432 | 7.710 | 14,873 | 13.410 | 0.575 | 0.386 | 0 | −0.508 | −0.553 | 0.140 | CI = 0.064 | |||
285–295 | 8512 | 26.985 | 20,885 | 18.830 | 1.433 | 1.349 | 1 | 0.422 | 0.360 | 0.283 | ||||
>295 | 19,591 | 62.109 | 69,497 | 62.660 | 0.991 | 3.105 | 2 | −0.012 | −0.009 | 0.480 | CR = 0.058 | |||
10 | Land cover type | Mixed deciduous | 24,355 | 77.212 | 9,822,1091 | 66.037 | 1.169 | 3.861 | 2 | 0.145 | 0.156 | 35.210 | 0.262 | λmax = 5.175 |
Semi-evergreen | 298 | 0.945 | 11,330,787 | 7.618 | 0.124 | 0.047 | 0 | −0.876 | −2.087 | 0.060 | ||||
Plantation | 2567 | 8.138 | 12,459,729 | 8.377 | 0.971 | 0.407 | 0 | −0.029 | −0.029 | 0.139 | CI = 0.044 | |||
Barren | 3525 | 11.175 | 15,165,589 | 10.196 | 1.096 | 0.559 | 0 | 0.088 | 0.092 | 0.500 | ||||
Riverine | 798 | 2.530 | 11,560,215 | 7.772 | 0.326 | 0.126 | 0 | −0.675 | −1.122 | 0.038 | CR = 0.039 | |||
11 | LAI | <1 | 7704 | 24.424 | 455,128 | 65.010 | 0.376 | 1.221 | 1 | −0.635 | −0.979 | 32.024 | 0.243 | λmax = 5.195 |
1–2 | 22,791 | 72.254 | 214,892 | 30.695 | 2.354 | 3.613 | 2 | 0.602 | 0.856 | 0.523 | ||||
2–4 | 759 | 2.406 | 7061 | 1.009 | 2.386 | 0.120 | 0 | 0.608 | 0.870 | 0.066 | CI = 0.049 | |||
4–7 | 273 | 0.865 | 6733 | 0.962 | 0.900 | 0.043 | 0 | −0.104 | −0.105 | 0.127 | ||||
>7 | 16 | 0.051 | 16,277 | 2.325 | 0.022 | 0.003 | 0 | −0.979 | −3.825 | 0.041 | CR = 0.044 | |||
12 | NDVI | <0 | 0 | 0.000 | 2148 | 0.489 | 0.000 | 0.000 | 0 | −1.000 | 0.000 | 55.701 | 0.035 | λmax = 5.266 |
0–0.3 | 600 | 1.902 | 41,631 | 9.477 | 0.201 | 0.095 | 0 | −0.811 | −1.606 | 0.062 | ||||
0.3–0.5 | 13,506 | 42.818 | 294,447 | 67.031 | 0.639 | 2.141 | 2 | −0.379 | −0.448 | 0.106 | CI = 0.067 | |||
0.5–0.7 | 17,349 | 55.001 | 98,838 | 22.501 | 2.444 | 2.750 | 2 | 0.637 | 0.894 | 0.284 | ||||
>0.7 | 88 | 0.279 | 2205 | 0.502 | 0.556 | 0.014 | 0 | −0.861 | −0.587 | 0.514 | CR = 0.059 | |||
13 | NDWI | <−0.1 | 5197 | 16.476 | 160,255 | 36.477 | 0.452 | 0.824 | 0 | −0.567 | −0.795 | 82.438 | 0.060 | λmax = 5.305 |
−0.1–0 | 14,963 | 47.437 | 185,886 | 42.312 | 1.121 | 2.372 | 2 | 0.116 | 0.114 | 0.321 | ||||
0–0.1 | 9967 | 31.598 | 70,653 | 16.082 | 1.965 | 1.580 | 1 | 0.529 | 0.675 | 0.110 | CI = 0.076 | |||
0.1–0.3 | 1416 | 4.489 | 22,255 | 5.066 | 0.886 | 0.224 | 0 | −0.122 | −0.121 | 0.477 | ||||
>0.3 | 0 | 0.000 | 278 | 0.063 | 0.000 | 0.000 | 0 | −1.000 | 0.000 | 0.032 | CR = 0.069 | |||
14 | TWI | <6 | 15,921 | 50.474 | 5,108,265 | 21.454 | 2.353 | 2.524 | 2 | 0.576 | 0.856 | 61.947 | 0.497 | λmax = 5.138 |
6–6.5 | 4849 | 15.373 | 3,062,640 | 12.863 | 1.195 | 0.769 | 0 | 0.163 | 0.178 | 0.254 | ||||
6.5–7.5 | 5582 | 17.696 | 4,175,465 | 17.537 | 1.009 | 0.885 | 0 | 0.009 | 0.009 | 0.155 | CI = 0.034 | |||
7.5–10 | 4205 | 13.331 | 3,180,920 | 13.360 | 0.998 | 0.667 | 0 | −0.002 | −0.002 | 0.060 | ||||
>10 | 986 | 3.126 | 8,282,846 | 34.787 | 0.090 | 0.156 | 0 | −0.910 | −2.410 | 0.034 | CR = 0.031 | |||
15 | Distance from road | <1 | 5145 | 16.311 | 6,006,263 | 26.090 | 0.625 | 0.816 | 0 | −0.375 | −0.470 | 71.739 | 0.510 | λmax = 5.237 |
1–3 | 8058 | 25.546 | 5,112,878 | 22.209 | 1.150 | 1.277 | 1 | 0.131 | 0.140 | 0.264 | ||||
3–10 | 14,036 | 44.498 | 4,520,205 | 19.635 | 2.266 | 2.225 | 2 | 0.560 | 0.818 | 0.130 | CI = 0.059 | |||
10–20 | 4089 | 12.963 | 7,150,172 | 31.059 | 0.417 | 0.648 | 0 | −0.583 | −0.874 | 0.064 | ||||
>20 | 215 | 0.682 | 231,630 | 1.006 | 0.677 | 0.034 | 0 | −0.323 | −0.389 | 0.033 | CR = 0.053 | |||
16 | Distance from rail | <1 | 426 | 1.351 | 6,494,457 | 29.225 | 0.046 | 0.068 | 0 | −0.954 | −3.075 | 35.398 | 0.510 | λmax = 5.237 |
1–5 | 1895 | 6.008 | 2,219,039 | 9.986 | 0.602 | 0.300 | 0 | −0.399 | −0.508 | 0.264 | ||||
5–10 | 3018 | 9.568 | 2,391,306 | 10.761 | 0.889 | 0.478 | 0 | −0.111 | −0.117 | 0.130 | CI = 0.059 | |||
10–20 | 5612 | 17.792 | 3,824,770 | 17.211 | 1.034 | 0.890 | 0 | 0.033 | 0.033 | 0.064 | ||||
>20 | 20,592 | 65.282 | 7,292,978 | 32.818 | 1.989 | 3.264 | 2 | 0.498 | 0.688 | 0.033 | CR = 0.053 | |||
17 | Distance from water bodies | <0.5 | 1534 | 4.863 | 1,812,501 | 8.558 | 0.568 | 0.243 | 0 | −0.432 | −0.565 | 61.319 | 0.036 | λmax = 5.265 |
0.5–2.5 | 6138 | 19.459 | 4,745,758 | 22.409 | 0.868 | 0.973 | 0 | −0.132 | −0.141 | 0.102 | ||||
2.5–7.5 | 13,935 | 44.178 | 6,303,685 | 29.765 | 1.484 | 2.209 | 2 | 0.327 | 0.395 | 0.268 | CI = 0.066 | |||
7.5–15 | 8557 | 27.128 | 2,982,205 | 14.082 | 1.926 | 1.356 | 1 | 0.482 | 0.656 | 0.538 | ||||
>15 | 1379 | 4.372 | 5,333,884 | 25.186 | 0.174 | 0.219 | 0 | −0.827 | −1.751 | 0.056 | CR = 0.059 | |||
18 | Distance from settlement | <5 | 4674 | 14.818 | 3,985,083 | 15.709 | 0.943 | 0.741 | 0 | −0.057 | −0.058 | 52.717 | 0.510 | λmax = 5.237 |
5–10 | 8770 | 27.803 | 5,615,606 | 22.136 | 1.256 | 1.390 | 1 | 0.204 | 0.228 | 0.264 | ||||
10–20 | 14,964 | 47.440 | 5,777,885 | 22.776 | 2.083 | 2.372 | 2 | 0.521 | 0.734 | 0.130 | CI = 0.059 | |||
20–30 | 2840 | 9.004 | 8,963,108 | 35.332 | 0.255 | 0.450 | 0 | −0.745 | −1.367 | 0.064 | ||||
>30 | 295 | 0.935 | 1,026,536 | 4.047 | 0.231 | 0.047 | 0 | −0.769 | −1.465 | 0.033 | CR = 0.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, J.; Mahato, S.; Joshi, P.K.; Liou, Y.-A. Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches. Remote Sens. 2023, 15, 1340. https://doi.org/10.3390/rs15051340
Das J, Mahato S, Joshi PK, Liou Y-A. Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches. Remote Sensing. 2023; 15(5):1340. https://doi.org/10.3390/rs15051340
Chicago/Turabian StyleDas, Jayshree, Susanta Mahato, Pawan Kumar Joshi, and Yuei-An Liou. 2023. "Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches" Remote Sensing 15, no. 5: 1340. https://doi.org/10.3390/rs15051340
APA StyleDas, J., Mahato, S., Joshi, P. K., & Liou, Y. -A. (2023). Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches. Remote Sensing, 15(5), 1340. https://doi.org/10.3390/rs15051340