Quantification of Pollutants in Mining Ponds Using a Combination of LiDAR and Geochemical Methods—Mining District of Hiendelaencina, Guadalajara (Spain)
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Sampling
3.2. Mineralogical and Geochemical Analysis
3.3. Mine Tailings Volumes and Toxic Element Mass from Aerial Imagery and LiDAR Data
4. Results
4.1. Mineralogical Characterisation
4.2. Geochemical Characterisation
4.3. Volume Measurement of the Ponds and Calculation of Tonnages
5. Discussion
5.1. Distribution and Origin of Metals
5.2. Mine Tailings Volumes from Aerial Imagery and LiDAR Data
5.3. Environmental Problems and Legislation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leblanc, M.; Morales, J.A.; Borreho, J.; Elbaz-Poulichet, F. 4,500-Year-old mining pollution in southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol. 2000, 95, 655–662. [Google Scholar] [CrossRef]
- González, O. Impacto Ambiental de las Áreas de Minería Metálica: Aplicación de Metodologías Analíticas no Destructivas al Análisis Geoquímico. Doctoral Thesis, Universidad Autónoma de Barcelona, Barcelona, Spain, 2011; p. 388. [Google Scholar]
- Baker, E.; Davies, M.; Fourie, A.; Mudd, G.; Thygesen, K. Chapter II. Mine Tailings Facilities: Overview and Industry Trends. In Towards Zero Harm: A Compendium of Papers Prepared for the Global Tailings Review; Oberle, B., Brereton, D., Mihaylova, A., Eds.; Global Tailings Review: London, UK, 2020; pp. 14–25. [Google Scholar]
- Lindsay, M.B.J.; Moncur, M.C.; Bain, J.G.; Jambor, J.L.; Ptacek, C.J.; Blowes, D.W. Geochemical and mineralogical aspects of sulfide mine tailings. Appl. Geochem. 2015, 57, 157–177. [Google Scholar] [CrossRef]
- López Gómez, A. El distrito minero de Hiendelaencina (Guadalajara). Cuad. Geogr. 1969, 6, 211–250. [Google Scholar]
- Martínez Frías, J. The Hiendelaencina mining district (Guadalajara, Spain). Miner. Depos. 1992, 27, 206–212. [Google Scholar] [CrossRef]
- Martín-Velázquez, S.; Rodríguez-Santalla, I.; Ropero-Szymañska, N.; Gómez-Ortiz, D.; Martín-Crespo, T.; De Ignacio, C. Geomorphological Mapping and Erosion of Abandoned Tailings in the Hiendelaencina Mining District (Spain) from Aerial Imagery and LiDAR Data. Remote Sens. 2022, 14, 4617. [Google Scholar] [CrossRef]
- Pérez, A.M.; Gracia, F.J.; Vallejo, I.; Barrera, J.A.; Ojeda, J. Estudio Morfométrico y Volumétrico del Retroceso de Acantilados Mediante Escáner Láser Terrestre y Modelado 3d. Aplicación al Acantilado de Torre Bermeja (Cádiz); Actas de las VI Jornadas de Geomorfología Litoral; Universidad Rey Juan Carlos and Ministerio deCiencia e Innovación: Tarragona, Spain, 2011. [Google Scholar]
- Rodríguez-Santalla, I.; Gomez-Ortiz, D.; Martín-Crespo, T.; Sánchez-García, M.J.; Montoya-Montes, I.; Martín-Velázquez, S.; Barrio, F.; Serra, J.; Ramírez-Cuesta, J.M.; Gracia, F.J. Study and Evolution of the Dune Field of La Banya Spit in Ebro Delta (Spain) Using LiDAR Data and GPR. Remote Sens. 2021, 13, 802. [Google Scholar] [CrossRef]
- Rodríguez-Santalla, I.; Díez-Martínez, A.; Navarro, N. Vulnerability Analysis of the Riumar Dune Field in El Garxal Coastal Wetland (Ebro Delta, Spain). J. Mar. Sci. Eng. 2021, 9, 601. [Google Scholar] [CrossRef]
- Fernández-Lozano, J.; Gutiérrez-Alonso, G.; Fernández-Morán, M. Using airborne LiDAR sensing technology and aerial orthoimages to unravel Roman water supply systems and gold works in NW Spain (Eria valley, León). J. Archaeol. Sci. 2015, 53, 356–373. [Google Scholar] [CrossRef]
- Andrés-Bercianos, R.; Fernandez-Lozano, J.; Alonso-Gavilán, G. Documentación de explotaciones mineras romanas y caracterización geológica de los placeres auríferos del piedemonte de Justel (Zamora). In The Archaeology of ‘Underdog Sites’ in the Douro Valley: From Prehistory to the Modern Age; Sánchez de la Parra-Pérez, S., Díaz-Navarro, S., Fernández-Lozano, J., Jiménez Gadea, J., Eds.; Archaeopress Publishing Ltd.: Oxford, UK, 2021; pp. 329–344. ISBN 978-1-78969-989-0. [Google Scholar]
- Matías, R.; Llamas, B. Analysis Using LIDAR and Photointerpretation of Las Murias-Los Tallares (Castrocontrigo, León-Spain): One of the Biggest Roman Gold Mines to Use the “Peines” System. Geoheritage 2019, 11, 381–397. [Google Scholar] [CrossRef]
- Fernández Lozano, J.; Gutiérrez Alonso, G. Aplicación de LiDAR aerotransportado para la cartografía de antiguas labores mineras romanas en el noroeste peninsular. Mapping 2014, 23, 22–29. [Google Scholar]
- Slob, S.; Hack, R. 3D Terrestrial Laser Scanning as a New Field Measurement and Monitoring Technique. In Engineering Geology for Infrastructure Planning in Europe; Hack, R., Azzam, R., Charlier, R., Eds.; Lecture Notes in Earth Sciences; Springer: Berlin, Germany, 2004; Volume 104, pp. 179–189. ISBN 978-3-540-21075-7. [Google Scholar]
- Howle, J.F.; Alpers, C.N.; Bawden, G.W.; Bond, S. Quantifying the Eroded Volume of Mercury-Contaminated Sediment Using Terrestrial Laser Scanning at Stocking Flat, Deer Creek, Nevada County, California, 2010–2013; Scientific Investigations Report 2015–5179; United States Geological Survey: City of Fairfax, VA, USA, 2013. [Google Scholar]
- Witt, E.C. Use of lidar point cloud data to support estimation of residual trace metals stored in mine chat piles in the Old Lead Belt of southeastern, Missouri. AIMS Environ. Sci. 2016, 3, 509–524. [Google Scholar]
- Martínez-Segura, M.; Vásconez-Maza, M.; García-Nieto, M.C. Volumetric characterisation of waste deposits generated during the production of fertiliser derived from phosphoric rock by using LiDAR and electrical resistivity tomography. Sci. Total Environ. 2020, 716, 137076. [Google Scholar] [CrossRef]
- Instituto Geográfico Nacional (IGN). Centro Nacional de Información Geográfica. Available online: https://www.cnig.es (accessed on 24 May 2021).
- Gismera Angona, A. Hiendelaencina y sus Minas de Plata; Aache Editorial: Guadalajara, Spain, 2018; p. 432. [Google Scholar]
- Calvo, M.; Sevillano, E. Famous Mineral Localities: Hiendelaencina, Spain. Mineral. Rec. 1992, 23, 241–249. [Google Scholar]
- Portero, J.M.; Pérez González, A.; Díaz Molina, M.; Gallardo, M.J.; González Lodeiro, F.; Aguilar, M.J.; Leal, C. Mapa Geológico Nacional Serie MAGNA escala 1:50.000. Hoja 460 (Hiendelaencina); Instituto Geológico y Minero de España: Madrid, Spain, 1990. [Google Scholar]
- García, G. Minas de Plata de Hiendelaencina (Fundición y Lavadero San Carlos). MTI Minas Castilla-La Mancha, Mineralogía Topográfica Ibérica 1995. Available online: https://mti-minas-castillalamancha.blogspot.com/ (accessed on 3 March 2022).
- Instituto Geológico y Minero de España (IGME). Información Sobre la Balsa 0460-3-0001. Available online: http://info.igme.es/balsas/InfoBalsa.aspx?id=0460-3-0001 (accessed on 25 May 2021).
- Hubbard, C.R.; Snyder, R.L. RIR—Measurement and Use in Quantitative XRD. Powder Diffr. 1988, 3, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Instituto Geográfico Nacional (IGN). Mapa Topográfico del Municipio de Hiendelaencina 1:25,000; Instituto Geográfico Nacional: Madrid, Spain, 1954. [Google Scholar]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Martínez-Pagán, P.; De Ignacio, C.; Lillo, J.; Faz, Á. Geoenvironmental characterization of unstable abandoned mine tailings combining geophysical and geochemical methods (Cartagena-La Union district, Spain). Eng. Geol. 2018, 232, 135–146. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martínez-Pagán, P.; De Ignacio-San José, C.; Martín-Velázquez, S.; Lillo, J.; Faz, A. Geoenvironmental characterization of riverbeds affected by mine tailings in the Mazarrón district (Spain). J. Geochem. Explor. 2012, 119–120, 6–16. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Esbrí, J.M.; de Ignacio-San José, C.; Sánchez-García, M.J.; Montoya-Montes, I.; Martín-González, F. Abandoned mine tailings in cultural itineraries: Don Quixote Route (Spain). Eng. Geol. 2015, 197, 82–93. [Google Scholar] [CrossRef]
- Mansson, E. Investigation of Particle Sizes, Beach Profiles and Compounds in Tailings Dams. Master’s Thesis, Lund University, Lund, Sweden, 2014. [Google Scholar]
- Quille, M.E.; O’Kelly, B.C. Geotechnical properties of zinc/lead mine tailings from Tara Mines, Ireland. In Proceedings of the ASCE GeoShanghai, Shanghai, China, 3–5 June 2010; Volume 204, pp. 111–117. [Google Scholar]
- Mhlongo, S.E.; Makatu, F.L.; Malaza, N.K.; Ramalata, A.T. Evaluation of copper tailings from the abandoned Messina Mine for possible reuse in recreational projects, South Africa. J. Degrad. Min. Lands Manag. 2022, 9, 3359–3366. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Martín-Velázquez, S.; Gómez-Ortiz, D.; De Ignacio-San José, C.; Lillo-Ramos, J. A geochemical and geophysical characterization of sulfide mine ponds at the Iberian Pyrite Belt (Spain). Water Air Soil Pollut. 2011, 217, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Gutiérrez, A.; Schnabel, S.; Berenguer-Sempere, F.; Lavado-Contador, F.; Rubio-Delgado, J. Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena 2014, 120, 91–101. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.-P.; Allemand, P.; Deseilligny, M.P.; Skupinski, G. Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology 2015, 231, 130–145. [Google Scholar] [CrossRef]
- Pineux, N.; Lisein, J.; Swerts, G.; Bielders, C.; Lejeune, P.; Colinet, G.; Degré, A. Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed? Geomorphology 2017, 280, 122–136. [Google Scholar] [CrossRef]
- Kariminejad, N.; Hosseinalizadeh, M.; Pourghasemi, H.R.; Tiefenbacher, J.P. Change detection in piping, gully head forms, and mechanisms. Catena 2021, 206, 105550. [Google Scholar] [CrossRef]
- Castillo, C.; Perez, R.; James, M.R.; Quinton, J.N.; Taguas, E.V.; Gómez, J.A. Comparing the accuracy of several field methods for measuring gully erosion. Soil Sci. Soc. Am. J. 2012, 76, 1319–1332. [Google Scholar] [CrossRef] [Green Version]
- Glendell, M.; Mcshane, G.; Farrow, L.; James, M.; Quinton, J.; Anderson, K.; Evans, M.; Benaud, P.; Rawlins, B.; Morgan, D.; et al. Testing the utility of structure from motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surf. Process Landf. 2017, 42, 1860–1871. [Google Scholar] [CrossRef] [Green Version]
- Stöcker, C.; Eltner, A.; Karrasch, P. Measuring gullies by synergetic application of UAV and close range photogrammetry—A case study from Andalusia, Spain. Catena 2015, 132, 1–11. [Google Scholar] [CrossRef]
- Tarolli, P.; Giulia, S. Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology 2016, 255, 140–161. [Google Scholar] [CrossRef] [Green Version]
- Kinnunen, P.; Karhu, M.; Yli-Rantala, E.; Kivikytö-Reponen, P.; Mäkinen, J. A review of circular economy strategies for mine tailings. Chem. Eng. Technol. 2022, 8, 100499. [Google Scholar] [CrossRef]
- Martín Duque, J.F.; Zapico, I.; Oyarzun, R.; López García, J.A.; Cubas, P. A descriptive and quantitative approach regarding erosion and development of landforms on abandoned mine tailings: New insights and environmental implications from SE Spain. Geomorphology 2015, 239, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Trybała, P.; Kaczan, W.; Górecki, A. Mining Waste Volume Estimation Using Airborne Lidar Data and Historical Maps: A Case Study of Tailing Piles in Szklary, Lower Silesia. Environ. Sci. Proc. 2021, 9, 32. [Google Scholar]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–626. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Martínez-Pagán, P.; De Ignacio, C.; Lillo, J.; Faz, Á. Abandoned mine tailings affecting riverbed sediments in the Cartagena–La Union District, Mediterranean Coastal Area (Spain). Remote Sens. 2020, 12, 2042. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Alpers, C.N. Geochemistry of acid mine waters. In The Environmental Geochemistry of Mineral Deposits, Processes, Techniques, and Health Issues; Plumlee, G.S., Logsdon, M.J., Filipek, L.F., Eds.; Reviews in Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 1999; Volume 6A, pp. 133–160. ISBN 9781629490137. [Google Scholar]
- Boletín Oficial del Estado (BOE). Real Decreto 1310/1990, de 29 de Octubre, que Regula la Utilización de los Lodos de Depuración en el Sector Agrario; Agencia Estatal Boletín Oficial del Estado (AEBOE): Madrid, Spain, 1990; Volume 262. [Google Scholar]
- Martiñá-Prieto, D.; Cancelo-González, J.; Barral, M.T. Arsenic mobility in As-containing soils from geogenic origin: Fractionation and leachability. J. Chem. 2018, 2018, 7328203. [Google Scholar] [CrossRef] [Green Version]
- Pryimak, V. Hidroquímica de las Aguas de los Pozos Mineros de Hiendelaencina. Evaluación de Posibles Flujos Contaminantes Desde las Balsas de Lodos Mediante Tomografía Eléctrica. Master’s Thesis, Universidad de Alcalá de Henares-Universidad Rey Juan Carlos, Madrid, Spain, 2022. [Google Scholar]
Flight Name | Frame Date | Scale | Pixel Size (GSD; m) | Original Frame Format |
---|---|---|---|---|
AMS 1956–1957. Ministry of Defense | 8 October 1956 | 1:32,000 | 0.5–1 | Analog |
National 1980–1986 | 1983 | 1:30,000 | 0.45–0.75 | Analog |
PNOA 2015 | 28 June 2015 | 1:30,000 | 0.45 | Digital |
Depth (m) | Mine Pond N | Mine Pond S | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Qtz | Mus | Fsp | Si | Ba | Sample | Qtz | Mus | Fsp | Si | Ba | Pyr | |
0 | HB-44 | 50 | 25 | 0–5 | 10 | 10 | HB2-25 | 45 | 30 | 10 | 10 | 5 | - |
0.5 | HB-43 | 55 | 30 | 5 | 10 | 0 | HB2-26 | 45 | 30 | 10 | 10 | 0–5 | - |
1 | HB-42 | 50 | 20 | 15 | 10 | 5 | HB2-27 | 45 | 30 | 10 | 10 | 0–5 | - |
1.5 | HB-41 | 60 | 20 | 5 | 10 | 5 | HB2-28 | 45 | 30 | 10 | 10 | 5 | - |
2 | HB-40 | 60 | 25 | 5 | 5 | 5 | HB2-29 | 45 | 30 | 10 | 10 | 5 | - |
2.5 | HB-39 | 60 | 25 | 5 | 10 | - | HB2-30 | 35 | 30 | 10 | 5 | 15 | 0–5 |
3 | HB-38 | 50 | 35 | 5 | 5 | 5 | HB2-31 | 45 | 30 | 10 | 10 | 5 | - |
3.5 | HB-37 | 55 | 30 | 5 | 10 | - | HB2-32 | 40 | 25 | 15 | 10 | 0–5 | 0–5 |
4 | HB-36 | 60 | 25 | 5 | 10 | 0 | HB2-33 | 40 | 25 | 20 | 10 | 5 | - |
4.5 | HB-35 | 70 | 20 | 5 | 5 | - | HB2-34 | 45 | 30 | 10 | 10 | 5 | - |
5 | HB-34 | 60 | 20 | 5 | 10 | 5 | HB2-35 | 45 | 30 | 15 | 5 | 0–5 | 0–5 |
5.5 | HB-33 | 50 | 30 | 10 | 10 | - | HB2-36 | 45 | 30 | 15 | 5 | 5 | - |
6 | HB-32 | 50 | 30 | 5 | 10 | 5 | HB2-37 | 45 | 30 | 10 | 10 | 0–5 | - |
6.5 | HB-31 | 55 | 30 | 5 | 10 | - | HB2-38 | 40 | 30 | 25 | 5 | - | - |
7 | HB-30 | 60 | 25 | 5 | 5 | 5 | HB2-39 | 45 | 30 | 15 | 5 | 5 | - |
7.5 | HB-29 | 55 | 30 | 5 | 10 | - | HB2-40 | 40 | 35 | 20 | 0–5 | - | - |
8 | HB-28 | 50 | 30 | 5 | 10 | 5 | HB2-41 | 40 | 30 | 15 | 10 | 5 | - |
8.5 | HB-27 | 60 | 25 | 5 | 5 | 5 | HB2-42 | 45 | 30 | 10 | 10 | 5 | - |
9 | HB-26 | 55 | 20 | 10 | 10 | 5 | |||||||
9.5 | HB-25 | 45 | 30 | 10 | 10 | 5 |
Sample | Depth | Ag | As | Ba | Cr | Cu | Fe2O3 total | Ni | Pb | S | Sb | Zn | EC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (μg/g) | (μg/g) | (wt%) | (μg/g) | (μg/g) | (wt%) | (μg/g) | (μg/g) | (wt%) | (μg/g) | (μg/g) | (μS/cm) | ||
Mine Pond N | HB-44 | 0 | 14.6 | 136 | 6.87 | 40 | 11 | 6.24 | 16 | 172 | 0.20 | 23.2 | 81 | 42 |
HB-43 | 0.5 | 8.1 | 185 | 1.50 | 60 | 14 | 6.24 | 18 | 72 | 0.10 | 20.1 | 120 | 41 | |
HB-42 | 1 | 8.1 | 148 | 3.88 | 50 | 9 | 5.99 | 13 | 84 | 0.11 | 16 | 264 | 48 | |
HB-41 | 1.5 | 10.7 | 119 | 1.29 | 70 | 15 | 5.52 | 17 | 125 | 0.10 | 23.9 | 130 | 66 | |
HB-40 | 2 | 23.5 | 108 | 5.12 | 50 | 31 | 6.14 | 17 | 481 | 0.13 | 40.2 | 374 | 57 | |
HB-39 | 2.5 | 9.5 | 105 | 0.23 | 100 | 45 | 5.93 | 21 | 250 | 0.10 | 29.6 | 129 | 61 | |
HB-38 | 3 | 4.2 | 51 | 1.12 | 60 | 8 | 4.98 | 16 | 63 | 0.10 | 8.3 | 112 | 162 | |
HB-37 | 3.5 | 7.7 | 94 | 0.91 | 60 | 20 | 5.28 | 18 | 140 | 0.11 | 19.8 | 111 | 61 | |
HB-36 | 4 | 9.2 | 72 | 1.31 | 50 | 15 | 6.32 | 14 | 126 | 0.11 | 31.7 | 124 | 112 | |
HB-35 | 4.5 | 6 | 122 | 0.71 | 70 | 10 | 4.79 | 16 | 58 | 0.11 | 13.8 | 88 | 97 | |
HB-34 | 5 | 6.6 | 135 | 1.34 | 60 | 10 | 5.94 | 14 | 66 | 0.07 | 15.6 | 88 | 104 | |
HB-33 | 5.5 | 4 | 43 | 0.29 | 90 | 11 | 5.02 | 16 | 36 | 0.07 | 8.9 | 111 | 161 | |
HB-32 | 6 | 6.3 | 153 | 2.76 | 50 | 8 | 5.86 | 15 | 122 | 0.15 | 16.4 | 89 | 368 | |
HB-31 | 6.5 | 5.3 | 22 | 0.69 | 40 | 10 | 4.94 | 14 | 45 | 0.11 | 13 | 100 | 128 | |
HB-30 | 7 | 37.9 | 238 | 1.95 | 30 | 39 | 4.72 | 15 | 318 | 0.17 | 64.9 | 254 | 654 | |
HB-29 | 7.5 | 10.2 | 134 | 0.30 | 50 | 32 | 5.27 | 19 | 281 | 0.11 | 27.6 | 139 | 122 | |
HB-28 | 8 | 23.4 | 178 | 1.42 | 50 | 33 | 5.37 | 15 | 424 | 0.13 | 47.4 | 183 | 107 | |
HB-27 | 8.5 | 16.9 | 135 | 2.72 | 30 | 10 | 4.8 | 12 | 237 | 0.17 | 28.3 | 160 | 160 | |
HB-26 | 9 | 7.9 | 123 | 1.44 | 30 | 12 | 5.04 | 11 | 225 | 0.13 | 23.1 | 214 | 539 | |
HB-25 | 9.5 | 10.2 | 143 | 1.63 | 40 | 9 | 5.39 | 13 | 141 | 0.10 | 21.2 | 287 | 56 | |
Mine Pond S | HB2-25 | 0 | 27.2 | 469 | 2.28 | 40 | 20 | 5.64 | 18 | 162 | 0.17 | 41.6 | 296 | 102 |
HB2-26 | 0.5 | 25.1 | 198 | 0.86 | 60 | 19 | 4.86 | 15 | 179 | 0.11 | 43 | 196 | 215 | |
HB2-27 | 1 | 8.2 | 110 | 0.83 | 40 | 13 | 4.91 | 13 | 95 | 0.09 | 15.1 | 247 | 236 | |
HB2-28 | 1.5 | 7.3 | 141 | 1.33 | 40 | 13 | 4.78 | 14 | 85 | 0.09 | 19.2 | 203 | 161 | |
HB2-29 | 2 | 27.7 | 343 | 2.64 | 20 | 32 | 5.62 | 21 | 272 | 0.29 | 32.4 | 560 | 195 | |
HB2-30 | 2.5 | 22.7 | 193 | 10.55 | 40 | 22 | 4.84 | 14 | 184 | 0.18 | 58.2 | 160 | 180 | |
HB2-31 | 3 | 13.2 | 281 | 2.00 | 30 | 18 | 5.47 | 12 | 153 | 0.12 | 38.9 | 154 | 58 | |
HB2-32 | 3.5 | 30.2 | 203 | 0.52 | 40 | 152 | 7.87 | 22 | 1410 | 0.13 | 123 | 347 | 197 | |
HB2-33 | 4 | 21.3 | 216 | 2.31 | 50 | 22 | 5.9 | 16 | 102 | 0.10 | 34.5 | 213 | 216 | |
HB2-34 | 4.5 | 22.8 | 388 | 2.31 | 40 | 20 | 4.88 | 15 | 130 | 0.10 | 48.7 | 166 | 168 | |
HB2-35 | 5 | 21.8 | 105 | 1.04 | 40 | 30 | 5.85 | 18 | 291 | 0.13 | 97.7 | 171 | 145 | |
HB2-36 | 5.5 | 22.2 | 493 | 1.49 | 30 | 38 | 6.04 | 19 | 287 | 0.12 | 46.2 | 219 | 89 | |
HB2-37 | 6 | 9.5 | 80 | 0.89 | 70 | 13 | 4.79 | 17 | 158 | 0.09 | 35.1 | 120 | 214 | |
HB2-38 | 6.5 | 5.9 | 59 | 0.68 | 60 | 15 | 5.04 | 16 | 63 | 0.09 | 14.8 | 133 | 117 | |
HB2-39 | 7 | 16.8 | 273 | 2.75 | 60 | 34 | 6.15 | 18 | 136 | 0.11 | 34.1 | 175 | 189 | |
HB2-40 | 7.5 | 6.2 | 117 | 0.80 | 50 | 11 | 4.63 | 12 | 104 | 0.09 | 19.5 | 178 | 188 | |
HB2-41 | 8 | 5.2 | 232 | 1.48 | 70 | 12 | 6.37 | 15 | 70 | 0.13 | 16 | 166 | 206 | |
HB2-42 | 8.5 | 19.9 | 417 | 1.72 | 50 | 15 | 6.31 | 17 | 119 | 0.11 | 42.7 | 250 | 225 | |
Blank sample | BUS-1.5 | 0.05 | 0.3 | 13 | 0.03 | 30 | 5 | 2.89 | 10 | 22 | 0.01 | 0.3 | 26 | - |
Mine Pond | 2014 | 1983 | Surrounding Area | |||
---|---|---|---|---|---|---|
Volume | Area | Volume | Area | Volume | Area | |
North | 287,872 ± 198 | 24,686 | 276,959 ± 155 | 22,280 | 10,913 ± 97 | 2406 |
South | 335,629 ± 227 | 46,306 | 311,746 ± 99 | 35,455 | 23,883 ± 291 | 10,851 |
North + South | 623,501 ± 425 | 70,992 | 588,705 ± 254 | 57,735 | 34,796 ± 388 | 13,257 |
Pond | Grain Density (t/m3) | Dry Density (t/m3) | Mass (t) | Element Amount (t) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | As | Cr | Cu | Ni | Pb | Sb | Zn | Σ | ||||
North | 2.87 | 1.706 ± 0.053 | 491,110 ± 15,600 | 5.9 ± 0.2 | 59.9 ± 1.9 | 26.5 ± 0.8 | 8.8 ± 0.2 | 7.9 ± 0.2 | 85.9 ± 2.7 | 12.3 ± 0.4 | 77.6 ± 2.5 | 279.0 ± 9 |
South | 2.92 | 1.705 ± 0.039 | 572,247 ± 13,475 | 10.3 ± 0.2 | 137.3 ± 3.2 | 26.3 ± 0.6 | 16.0 ± 0.4 | 9.2 ± 0.2 | 127.6 ± 3.0 | 24.0 ± 0.6 | 125.9 ± 3.0 | 466.4 ± 11 |
Elements | Limit Values in Soils with pH > 7 (μg/g) |
---|---|
Cd | 3 |
Cr | 150 |
Cu | 210 |
Ni | 112 |
Pb | 300 |
Zn | 450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Crespo, T.; Gomez-Ortiz, D.; Pryimak, V.; Martín-Velázquez, S.; Rodríguez-Santalla, I.; Ropero-Szymañska, N.; José, C.d.I.-S. Quantification of Pollutants in Mining Ponds Using a Combination of LiDAR and Geochemical Methods—Mining District of Hiendelaencina, Guadalajara (Spain). Remote Sens. 2023, 15, 1423. https://doi.org/10.3390/rs15051423
Martín-Crespo T, Gomez-Ortiz D, Pryimak V, Martín-Velázquez S, Rodríguez-Santalla I, Ropero-Szymañska N, José CdI-S. Quantification of Pollutants in Mining Ponds Using a Combination of LiDAR and Geochemical Methods—Mining District of Hiendelaencina, Guadalajara (Spain). Remote Sensing. 2023; 15(5):1423. https://doi.org/10.3390/rs15051423
Chicago/Turabian StyleMartín-Crespo, Tomás, David Gomez-Ortiz, Vladyslava Pryimak, Silvia Martín-Velázquez, Inmaculada Rodríguez-Santalla, Nikoletta Ropero-Szymañska, and Cristina de Ignacio-San José. 2023. "Quantification of Pollutants in Mining Ponds Using a Combination of LiDAR and Geochemical Methods—Mining District of Hiendelaencina, Guadalajara (Spain)" Remote Sensing 15, no. 5: 1423. https://doi.org/10.3390/rs15051423
APA StyleMartín-Crespo, T., Gomez-Ortiz, D., Pryimak, V., Martín-Velázquez, S., Rodríguez-Santalla, I., Ropero-Szymañska, N., & José, C. d. I. -S. (2023). Quantification of Pollutants in Mining Ponds Using a Combination of LiDAR and Geochemical Methods—Mining District of Hiendelaencina, Guadalajara (Spain). Remote Sensing, 15(5), 1423. https://doi.org/10.3390/rs15051423