A Bibliometric and Visualized Analysis of Remote Sensing Methods for Glacier Mass Balance Research
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Acquisition
2.2. Scientometric Analytical Methods
3. Results
3.1. Basic Characteristics of the Literature
3.2. Research Platforms and Core Strengths
3.3. Research Hotspots and Research Frontiers
4. Discussion
4.1. Satellite Gravimetry Method
4.2. Geometric Method
4.2.1. Measurement of Surface Elevation Change
- Global Navigation Satellite System
- 2.
- Satellite altimetry
- 3.
- DEM differencing
4.2.2. Measurement of Area Change
4.2.3. Volume Conversion Mass
4.3. Input–Output Method
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qin, D.; Zhou, B.; Xiao, C. Progress in studies of cryospheric changes and their impacts on climate of China. J. Meteorol. Res. 2014, 28, 732–746. [Google Scholar] [CrossRef]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef]
- Kääb, A.; Reynolds, J.M.; Haeberli, W. Glacier and Permafrost Hazards in High Mountains. Adv. Global Chang. Res. 2005, 23, 225–234. [Google Scholar]
- Zemp, M.; Hoelzle, M.; Haeberli, W. Six decades of glacier mass-balance observations: A review of the worldwide monitoring network. Ann. Glaciol. 2009, 50, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Mukherjee, K.; Menounos, B.; Shea, J.; Mortezapour, M.; Ednie, M.; Demuth, M.N. Evaluation of surface mass-balance records using geodetic data and physically-based modelling, Place and Peyto glaciers, western Canada. JGlac 2022, 1–18. [Google Scholar] [CrossRef]
- Krampe, D.; Arndt, A.; Schneider, C. Energy and glacier mass balance of Fürkeleferner, Italy: Past, present, and future. Front. Earth Sci. 2022, 10, 814027. [Google Scholar] [CrossRef]
- Peng, J.; Xu, L.; Li, Z.; Chen, P.; Luo, Y.; Cao, C. Study on Change of the Glacier Mass Balance and Its Response to Extreme Climate of Urumqi Glacier No. 1 in Tianshan Mountains in Recent 41 Years. Water 2022, 14, 2982. [Google Scholar] [CrossRef]
- Guruprasad, C.; Gopal, D.; Devaraj, S. Mass balance estimation of Mulkila glacier, Western Himalayas, using glacier melt model. Environ. Monit. Assess. 2022, 194, 761. [Google Scholar]
- Xiang, L.; Wang, H.; Jiang, L.; Shen, Q.; Steffen, H.; Li, Z. Glacier mass balance in High Mountain Asia inferred from a GRACE release-6 gravity solution for the period 2002–2016. J. Arid. Land 2021, 13, 224–238. [Google Scholar] [CrossRef]
- Wouters, B.; Gardner, A.S.; Moholdt, G. Global glacier mass loss during the GRACE satellite mission (2002–2016). Front. Earth Sci. 2019, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Sun, W. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. J. Geophys. Res. Solid Earth 2014, 119, 2504–2517. [Google Scholar] [CrossRef]
- Matsuo, K.; Heki, K. Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet. Sci. Lett. 2010, 290, 30–36. [Google Scholar] [CrossRef]
- Velicogna, I.; Mohajerani, Y.; Landerer, F.; Mouginot, J.; Noel, B.; Rignot, E.; Sutterley, T.; van den Broeke, M.; van Wessem, M.; Wiese, D. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 2020, 47, e2020GL087291. [Google Scholar] [CrossRef] [Green Version]
- Ciracì, E.; Velicogna, I.; Swenson, S. Continuity of the mass loss of the world's glaciers and ice caps from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 2020, 47, e2019GL086926. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Yan, L.; Wang, J.; Shao, D. Glacier Mass Balance in the Manas River Using Ascending and Descending Pass of Sentinel 1A/1B Data and SRTM DEM. Remote Sens. 2022, 14, 1506. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Neckel, N.; Kropáček, J.; Bolch, T.; Hochschild, V. Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett. 2014, 9, 014009. [Google Scholar] [CrossRef]
- Smith, B.E.; Sutterley, T.C.; Alexander, P.; Tedesco, M.; Medley, B.; Fettweis, X. Evaluating Greenland Surface Mass Balance and Firn Density Models with ICESat-2 altimetry differences. Cryosphere 2023, 17, 789–808. [Google Scholar] [CrossRef]
- Jakob, L.; Gourmelen, N.; Ewart, M.; Plummer, S. Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019. Cryosphere 2021, 15, 1845–1862. [Google Scholar] [CrossRef]
- Chuter, S.; Martín-Español, A.; Wouters, B.; Bamber, J.L. Mass balance reassessment of glaciers draining into the Abbot and Getz Ice Shelves of West Antarctica. Geophys. Res. Lett. 2017, 44, 7328–7337. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Falaschi, D.; Berthier, E.; Belart, J.M.; Bravo, C.; Castro, M.; Durand, M.; Villalba, R. Increased mass loss of glaciers in Volcán Domuyo (Argentinian Andes) between 1962 and 2020, revealed by aerial photos and satellite stereo imagery. JGlac 2022, 1–17. [Google Scholar] [CrossRef]
- Bollen, K.E.; Enderlin, E.M.; Muhlheim, R. Dynamic mass loss from Greenland's marine-terminating peripheral glaciers (1985–2018). JGlac 2022, 1–11. [Google Scholar] [CrossRef]
- Raman, A.; Kulkarni, A.V.; Prasad, V. Glacier mass balance estimation in Garhwal Himalaya using improved accumulation area ratio method. Environ. Monit. Assess. 2022, 194, 1–16. [Google Scholar] [CrossRef]
- Livingstone, S.J.; Li, Y.; Rutishauser, A.; Sanderson, R.J.; Winter, K.; Mikucki, J.A.; Björnsson, H.; Bowling, J.S.; Chu, W.; Dow, C.F. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. 2022, 3, 106–124. [Google Scholar] [CrossRef]
- Zekollari, H.; Huss, M.; Farinotti, D.; Lhermitte, S. Ice-Dynamical Glacier Evolution Modeling—A Review. RvGeo 2022, 60, e2021RG000754. [Google Scholar] [CrossRef]
- Rashid, H.F. Bibliometric analysis as a tool in journal evaluation. Ser Libr 1991, 20, 55–64. [Google Scholar] [CrossRef]
- Quade, E.S. On the Limitations of Quantitative Analysis; Rand Corp.: Santa Monica, CA, USA, 1970. [Google Scholar]
- Vail, E.F. Knowledge mapping: Getting started with knowledge management. Inf. Syst. Manag. 1999, 16, 1–8. [Google Scholar] [CrossRef]
- Rastogi, R.; Sharma, T. Quantitative analysis of drainage basin characteristics. J. Soil Water Conserv. 2022, 26, 18–25. [Google Scholar]
- Adamopoulos, T.; Brandt, L.; Leight, J.; Restuccia, D. Misallocation, selection, and productivity: A quantitative analysis with panel data from china. Econometrica 2022, 90, 1261–1282. [Google Scholar] [CrossRef]
- Yang, S.; Li, X. Derivation of ambiguity in wavefront aberration and quantitative analysis in ao system. OptLE 2022, 158, 107174. [Google Scholar] [CrossRef]
- Li, K.; Rollins, J.; Yan, E. Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scim 2018, 115, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. Science mapping: A systematic review of the literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Hood, W.; Wilson, C. The literature of bibliometrics, scientometrics, and informetrics. Scim 2001, 52, 291–314. [Google Scholar]
- Keim, D.A. Information visualization and visual data mining. IEEE Trans. Visual. Comput. Graphics 2002, 8, 1–8. [Google Scholar] [CrossRef]
- Broadus, R.N. Toward a definition of “bibliometrics”. Scim 1987, 12, 373–379. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert. Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef]
- Kousha, K.; Levitt, J. Michael Thelwall wins the 2015 Derek John de Solla Price Medal. Scientometr. Int. J. All Quant. Asp. Sci. Sci. Policy 2016, 108, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Heid, T.; Kääb, A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Rem. Sens. Environ. 2012, 118, 339–355. [Google Scholar] [CrossRef]
- Xie, P. Study of international anticancer research trends via co-word and document co-citation visualization analysis. Scim 2015, 105, 611–622. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. JASIS 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Shean, D.E.; Joughin, I.R.; Dutrieux, P.; Smith, B.E.; Berthier, E. Ice shelf basal melt rates from a high-resolution digital elevation model (DEM) record for Pine Island Glacier, Antarctica. Cryosphere 2019, 13, 2633–2656. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Brun, F. Karakoram geodetic glacier mass balances between 2008 and 2016: Persistence of the anomaly and influence of a large rock avalanche on Siachen Glacier. JGlac 2019, 65, 494–507. [Google Scholar] [CrossRef] [Green Version]
- Björnsson, H.; Pálsson, F.; Gudmundsson, S.; Magnússon, E.; Adalgeirsdóttir, G.; Jóhannesson, T.; Berthier, E.; Sigurdsson, O.; Thorsteinsson, T. Contribution of Icelandic ice caps to sea level rise: Trends and variability since the Little Ice Age. Geophys. Res. Lett. 2013, 40, 1546–1550. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Toutin, T.; Schmitt, C.; Berthier, E.; Clavet, D. DEM generation over ice fields in the Canadian Arctic with along-track SPOT5 HRS stereo data. CaJRS 2011, 37, 429–438. [Google Scholar] [CrossRef]
- Berthier, E.; Toutin, T. SPOT5-HRS digital elevation models and the monitoring of glacier elevation changes in North-West Canada and South-East Alaska. Rem. Sens. Environ. 2008, 112, 2443–2454. [Google Scholar] [CrossRef]
- Błaszczyk, M.; Ignatiuk, D.; Grabiec, M.; Kolondra, L.; Laska, M.; Decaux, L.; Jania, J.; Berthier, E.; Luks, B.; Barzycka, B. Quality assessment and glaciological applications of digital elevation models derived from space-borne and aerial images over two tidewater glaciers of southern Spitsbergen. Remote Sens. 2019, 11, 1121. [Google Scholar] [CrossRef] [Green Version]
- Das, I.; Hock, R.; Berthier, E.; Lingle, C.S. 21st-century increase in glacier mass loss in the Wrangell Mountains, Alaska, USA, from airborne laser altimetry and satellite stereo imagery. JGlac 2014, 60, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Drolon, V.; Maisongrande, P.; Berthier, E.; Swinnen, E.; Huss, M. Monitoring of seasonal glacier mass balance over the European Alps using low-resolution optical satellite images. JGlac 2016, 62, 912–927. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Li, C.-h.; Ye, C.; Wang, J.; Wei, W.-w.; Deng, Y. Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database. Ecol. Modell. 2019, 410, 108779. [Google Scholar]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar]
- Chen, C. Visualizing and exploring scientific literature with Citespace: An introduction. In Proceedings of the 2018 Conference on Human Information Interaction & Retrieval, New Brunswick, NJ, USA, 11–15 March 2018; pp. 369–370. [Google Scholar]
- Ren, S.; Menenti, M.; Jia, L.; Zhang, J.; Zhang, J. Glacier Mass Balance in the Kangri Karpo Mountains by ZY-3 Stereo Images and SRTM DEMs Between 2000 and 2017. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4153–4156. [Google Scholar]
- Liu, S.; Sun, Y.-P.; Gao, X.-L.; Sui, Y. Knowledge domain and emerging trends in Alzheimer’s disease: A scientometric review based on CiteSpace analysis. Neural Regen Res. 2019, 14, 1643. [Google Scholar]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Kaser, G.; Kienholz, C. The Randolph Glacier Inventory: A globally complete inventory of glaciers. JGlac 2014, 60, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar]
- Shepherd, A.; Ivins, E.R.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Galin, N.; Horwath, M. A reconciled estimate of ice-sheet mass balance. Science 2012, 338, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.; Konovalov, V.; Le Bris, R. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Cuffey, K.M.; Paterson, W. The Physics of Glaciers, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2010. [Google Scholar]
- Meier, M.F.; Dyurgerov, M.B.; Rick, U.K.; O'neel, S.; Pfeffer, W.T.; Anderson, R.S.; Anderson, S.P.; Glazovsky, A.F. Glaciers dominate eustatic sea-level rise in the 21st century. Science 2007, 317, 1064–1067. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, H.D.; Arthern, R.J.; Vaughan, D.G.; Edwards, L.A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 2009, 461, 971–975. [Google Scholar] [CrossRef]
- Rignot, E.; Kanagaratnam, P. Changes in the velocity structure of the Greenland Ice Sheet. Science 2006, 311, 986–990. [Google Scholar] [CrossRef] [Green Version]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Velicogna, I.; van den Broeke, M.R.; Monaghan, A.; Lenaerts, J.T. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett 2011, 38, L05503. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q. The second Chinese glacier inventory: Data, methods and results. JGlac 2015, 61, 357–372. [Google Scholar]
- Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 2013, 7, 877–887. [Google Scholar]
- Immerzeel, W.W.; Van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Shean, D.E.; Alexandrov, O.; Moratto, Z.M.; Smith, B.E.; Joughin, I.R.; Porter, C.; Morin, P. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. 2016, 116, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Zemp, M.; Frey, H.; Gärtner-Roer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A.P.; Anderson, B. Historically unprecedented global glacier decline in the early 21st century. JGlac 2015, 61, 745–762. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, G.; Wang, Z.; Liu, J.; Shang, J.; Liang, L. Bibliometric analysis of remote sensing research trend in crop growth monitoring: A case study in China. Remote Sens. 2019, 11, 809. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Hao, Y.; Liu, Y.; Yeh, T.-C.J.; Zhang, M.; Wang, Q.; Fan, Y. Anomaly of glacier mass balance in different vertical zones and responses to climate modes: Urumqi Glacier No. 1, China. ClDy 2022, 1–17. [Google Scholar] [CrossRef]
- O'Neel, S.; McNeil, C.; Sass, L.C.; Florentine, C.; Baker, E.H.; Peitzsch, E.; McGrath, D.; Fountain, A.G.; Fagre, D. Reanalysis of the US Geological Survey Benchmark Glaciers: Long-term insight into climate forcing of glacier mass balance. JGlac 2019, 65, 850–866. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Cuo, L.; Liu, Q. Mass balance variation and associative climate drivers for the Dongkemadi Glacier in the central Tibetan Plateau. J. Geophys. Res. 2019, 124, 10814–10825. [Google Scholar] [CrossRef]
- Floricioiu, D.; Jaber, W.A.; Minet, C.; Rossi, C.; Eineder, M. Tandem-X for mass balance of glaciers and subglacial volcanic activities. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2903–2906. [Google Scholar]
- Masiokas, M.H.; Rabatel, A.; Rivera, A.; Ruiz, L.; Pitte, P.; Ceballos, J.L.; Barcaza, G.; Soruco, A.; Bown, F.; Berthier, E. A review of the current state and recent changes of the Andean cryosphere. Front. Earth Sci. 2020, 8, 99. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Xu, J. Glacier stagnant in central Karakorum during 2003 to 2008 derived from DEOS Mass Transport Model GRACE data and one monthly degree-day model. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII, Edinburgh, UK, 26–29 September 2016; pp. 48–59. [Google Scholar]
- Huh, K.I.; Mark, B.G.; Ahn, Y.; Hopkinson, C. Volume change of tropical Peruvian glaciers from multi-temporal digital elevation models and volume–surface area scaling. Geogr. Ann. Ser. A Phys. Geogr. 2017, 99, 222–239. [Google Scholar] [CrossRef]
- Pandey, A.C.; Ghosh, S.; Nathawat, M.; Tiwari, R.K. Area change and thickness variation over Pensilungpa Glacier (J&K) using remote sensing. J. Indian Soc. Remote Sens. 2012, 40, 245–255. [Google Scholar]
- Surazakov, A.B.; Aizen, V.B. Estimating volume change of mountain glaciers using SRTM and map-based topographic data. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2991–2995. [Google Scholar] [CrossRef]
- Liu, Z. Current Situation and Development Trend of Ideological and Cultural Psychology Research in the Context of the COVID-19 Epidemic-Knowledge Graph Analysis Based on Citespace. Psychiatr. Danub. 2022, 34, S878–S890. [Google Scholar]
- Mohajerani, Y.; Velicogna, I.; Rignot, E. Mass loss of Totten and Moscow University Glaciers, East Antarctica, using regionally optimized GRACE mascons. Geophys. Res. Lett. 2018, 45, 7010–7018. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Geodetic glacier mass balance (1975–1999) in the central Pamir using the SRTM DEM and KH-9 imagery. JGlac 2019, 65, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Sandberg Sørensen, L.; Simonsen, S.B.; Mölg, N.; Machguth, H.; Rastner, P.; Paul, F. Mass loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys. Res. Lett. 2013, 40, 875–881. [Google Scholar] [CrossRef] [Green Version]
- Moholdt, G.; Nuth, C.; Hagen, J.O.; Kohler, J. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Rem. Sens. Environ. 2010, 114, 2756–2767. [Google Scholar] [CrossRef]
- Jin, S.; Zou, F. Re-estimation of glacier mass loss in Greenland from GRACE with correction of land–ocean leakage effects. GPC 2015, 135, 170–178. [Google Scholar] [CrossRef]
- Zou, F.; Tenzer, R.; Fok, H.S.; Nichol, J.E. Mass balance of the Greenland ice sheet from GRACE and surface mass balance modelling. Water 2020, 12, 1847. [Google Scholar] [CrossRef]
- Richter, A.; Groh, A.; Horwath, M.; Ivins, E.; Marderwald, E.; Hormaechea, J.L.; Perdomo, R.; Dietrich, R. The rapid and steady mass loss of the patagonian icefields throughout the GRACE era: 2002–2017. Remote Sens. 2019, 11, 909. [Google Scholar] [CrossRef] [Green Version]
- Velicogna, I.; Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 2006, 311, 1754–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Tapley, B.; Wilson, C. Alaskan mountain glacial melting observed by satellite gravimetry. Earth Planet. Sci. Lett. 2006, 248, 368–378. [Google Scholar] [CrossRef]
- Luthcke, S.B.; Arendt, A.A.; Rowlands, D.D.; McCarthy, J.J.; Larsen, C.F. Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. JGlac 2008, 54, 767–777. [Google Scholar] [CrossRef] [Green Version]
- Moiwo, J.P.; Yang, Y.; Tao, F.; Lu, W.; Han, S. Water storage change in the Himalayas from the Gravity Recovery and Climate Experiment (GRACE) and an empirical climate model. WRR 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Abich, K.; Abramovici, A.; Amparan, B.; Baatzsch, A.; Okihiro, B.B.; Barr, D.C.; Bize, M.P.; Bogan, C.; Braxmaier, C.; Burke, M.J. In-orbit performance of the GRACE follow-on laser ranging interferometer. PhRvL 2019, 123, 031101. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Cazenave, A.; Dahle, C.; Llovel, W.; Panet, I.; Pfeffer, J.; Moreira, L. Applications and challenges of GRACE and GRACE follow-on satellite gravimetry. SGeo 2022, 43, 305–345. [Google Scholar] [CrossRef]
- Gao, C.-C.; Lu, Y.; Shi, H.-L.; Zhang, Z.-Z.; Jiang, Y.-T. Combination of GRACE and ICESat data sets to estimate Antarctica Glacial Isostatic Adjustment (GIA). ChJG 2016, 59, 4007–4021. [Google Scholar]
- Wang, H.-s.; Wu, P.; Xu, H.-z. A review of research in glacial isostatic adjustment. Prog. Geophys. 2009, 24, 1958–1967. [Google Scholar]
- Peltier, W.R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 2004, 32, 111–149. [Google Scholar] [CrossRef]
- Ivins, E.R.; James, T.S. Antarctic glacial isostatic adjustment: A new assessment. Antarct. Sci. 2005, 17, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Yi, S.; Chang, L.; Sun, W. Large-scale seasonal changes in glacier thickness across High Mountain Asia. Geophys. Res. Lett. 2017, 44, 10427–10435. [Google Scholar] [CrossRef]
- Treichler, D.; Kääb, A.; Salzmann, N.; Xu, C.-Y. Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes. Cryosphere 2019, 13, 2977–3005. [Google Scholar] [CrossRef] [Green Version]
- Wingham, D.J.; Ridout, A.J.; Scharroo, R.; Arthern, R.J.; Shum, C. Antarctic elevation change from 1992 to 1996. Science 1998, 282, 456–458. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Shum, C.; Tseng, K.-H.; Huang, Z.; Sohn, H.-G. Elevation changes of Bering Glacier System, Alaska, from 1992 to 2010, observed by satellite radar altimetry. Rem. Sens. Environ. 2013, 132, 40–48. [Google Scholar] [CrossRef]
- Brenner, A.C.; DiMarzio, J.P.; Zwally, H.J. Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets. IEEE Trans. Geosci. Remote Sens. 2007, 45, 321–331. [Google Scholar] [CrossRef]
- Wingham, D.; Francis, C.; Baker, S.; Bouzinac, C.; Brockley, D.; Cullen, R.; de Chateau-Thierry, P.; Laxon, S.; Mallow, U.; Mavrocordatos, C. CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields. AdSpR 2006, 37, 841–871. [Google Scholar] [CrossRef]
- McMillan, M.; Shepherd, A.; Sundal, A.; Briggs, K.; Muir, A.; Ridout, A.; Hogg, A.; Wingham, D. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 2014, 41, 3899–3905. [Google Scholar] [CrossRef]
- Morris, A.; Moholdt, G.; Gray, L. Spread of Svalbard glacier mass loss to Barents Sea margins revealed by CryoSat-2. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005357. [Google Scholar] [CrossRef]
- Li, S.; Liao, J.; Zhang, L. Extraction and analysis of elevation changes in Antarctic ice sheet from CryoSat-2 and Sentinel-3 radar altimeters. J. Appl. Remote Sens. 2022, 16, 034514. [Google Scholar]
- Elmer, N.J.; Hain, C.; Hossain, F.; Desroches, D.; Pottier, C. Generating proxy SWOT water surface elevations using WRF-Hydro and the CNES SWOT Hydrology Simulator. WRR 2020, 56, e2020WR027464. [Google Scholar] [CrossRef]
- Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT mission and its capabilities for land hydrology. In Remote Sensing and Water Resources; Springer: Berlin/Heidelberg, Germany, 2016; pp. 117–147. [Google Scholar]
- Rott, H.; Scheiblauer, S.; Wuite, J.; Krieger, L.; Floricioiu, D.; Rizzoli, P.; Libert, L.; Nagler, T. Penetration of interferometric radar signals in Antarctic snow. Cryosphere 2021, 15, 4399–4419. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, T.; Zou, F. Glacial density and GIA in Alaska estimated from ICESat, GPS and GRACE measurements. J. Geophys. Res. Earth Surf. 2017, 122, 76–90. [Google Scholar] [CrossRef]
- Zwally, H.J.; Li, J.; Robbins, J.W.; Saba, J.L.; Yi, D.; Brenner, A.C. Mass gains of the Antarctic ice sheet exceed losses. JGlac 2015, 61, 1019–1036. [Google Scholar] [CrossRef] [Green Version]
- Zou, F.; Jin, S. Estimations of glacier melting in Greenland from combined satellite gravimetry and icesat. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6185–6188. [Google Scholar]
- Chen, G.; Zhang, S. Elevation and volume change determination of Greenland Ice Sheet based on icesat observations. ChJG 2019, 62, 2417–2428. [Google Scholar]
- Fan, Y.; Ke, C.-Q.; Zhou, X.; Shen, X.; Yu, X.; Lhakpa, D. Glacier mass-balance estimates over High Mountain Asia from 2000 to 2021 based on ICESat-2 and NASADEM. JGlac 2022, 1–13. [Google Scholar] [CrossRef]
- Sochor, L.; Seehaus, T.; Braun, M.H. Increased ice thinning over svalbard measured by icesat/icesat-2 laser altimetry. Remote Sens. 2021, 13, 2089. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Wang, C.; Li, L. Accelerated Glacier Mass Loss over Svalbard Derived from ICESat-2 in 2019–2021. Atmos 2022, 13, 1255. [Google Scholar] [CrossRef]
- Bodin, X.; Thibert, E.; Fabre, D.; Ribolini, A.; Schoeneich, P.; Francou, B.; Reynaud, L.; Fort, M. Two decades of responses (1986–2006) to climate by the Laurichard rock glacier, French Alps. Permafr. Periglac. Process. 2009, 20, 331–344. [Google Scholar] [CrossRef]
- Hagg, W.J.; Braun, L.N.; Uvarov, V.N.; Makarevich, K.G. A comparison of three methods of mass-balance determination in the Tuyuksu glacier region, Tien Shan, Central Asia. JGlac 2004, 50, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.; Young, G. Changes in areal extent, elevation and volume of Athabasca Glacier, Alberta, Canada, as estimated from a series of maps produced between 1919 and 1979. Ann. Glaciol. 1997, 24, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A systematic, regional assessment of high mountain Asia glacier mass balance. Front. Earth Sci. 2020, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Negi, H.; Kumar, K.; Shekhar, C.; Kanda, N. Quantifying mass balance of East-Karakoram glaciers using geodetic technique. Polar Sci. 2019, 19, 24–39. [Google Scholar] [CrossRef]
- Denzinger, F.; Machguth, H.; Barandun, M.; Berthier, E.; Girod, L.; Kronenberg, M.; Usubaliev, R.; Hoelzle, M. Geodetic mass balance of Abramov Glacier from 1975 to 2015. JGlac 2021, 67, 331–342. [Google Scholar] [CrossRef]
- Čekada, M.T.; Zorn, M. Thickness and geodetic mass balance changes for the Triglav Glacier (southeastern Alps) from 1952 to 2016. Acta Geogr. Slov. 2020, 60, 155–173. [Google Scholar] [CrossRef]
- Farías-Barahona, D.; Vivero, S.; Casassa, G.; Schaefer, M.; Burger, F.; Seehaus, T.; Iribarren-Anacona, P.; Escobar, F.; Braun, M.H. Geodetic mass balances and area changes of Echaurren Norte Glacier (Central Andes, Chile) between 1955 and 2015. Remote Sens. 2019, 11, 260. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Jiang, L.; Sun, Y.; Yi, C.; Wang, H.; Hsu, H. Glacier elevation changes (2012–2016) of the Puruogangri Ice Field on the Tibetan Plateau derived from bi-temporal TanDEM-X InSAR data. IJRS 2016, 37, 5687–5707. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Aguilar, M.A.; Fernández, I.; Negreiros, J.G.; Delgado, J.; Pérez, J.L. A new two-step robust surface matching approach for three-dimensional georeferencing of historical digital elevation models. IEEE Geosci. Remote Sens. Lett. 2012, 9, 589–593. [Google Scholar] [CrossRef]
- Karkee, M.; Steward, B.L.; Abd Aziz, S. Improving quality of public domain digital elevation models through data fusion. Biosyst. Eng. 2008, 101, 293–305. [Google Scholar] [CrossRef]
- Wu, B.; Guo, J.; Hu, H.; Li, Z.; Chen, Y. Co-registration of lunar topographic models derived from Chang’E-1, SELENE, and LRO laser altimeter data based on a novel surface matchingmethod. Earth Planet. Sci. Lett. 2013, 364, 68–84. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Proceedings of the Sensor fusion IV: Control Paradigms and Data Structures, Boston, MA, USA, 12–15 November 1991; pp. 586–606. [Google Scholar]
- Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001; pp. 145–152. [Google Scholar]
- Gruen, A.; Akca, D. Least squares 3D surface and curve matching. ISPRS J. Photogramm Remote Sens. 2005, 59, 151–174. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Arnaud, Y.; Kumar, R.; Ahmad, S.; Wagnon, P.; Chevallier, P. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Rem. Sens. Environ. 2007, 108, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Gorokhovich, Y.; Voustianiouk, A. Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Rem. Sens. Environ. 2006, 104, 409–415. [Google Scholar] [CrossRef]
- Peduzzi, P.; Herold, C.; Silverio, W. Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: The case of Nevado Coropuna (Peru). Cryosphere 2010, 4, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.B.; Yun, H.S. High-Resolution Bathymetry in Shallow Waters off the Southern Coast of Korea from Satellite Altimetry and Remote Sensed Imagery. J. Coast Res. 2021, 114, 390–394. [Google Scholar] [CrossRef]
- Krieger, L.; Strößenreuther, U.; Helm, V.; Floricioiu, D.; Horwath, M. Synergistic use of single-pass interferometry and radar altimetry to measure mass loss of NEGIS outlet glaciers between 2011 and 2014. Remote Sens. 2020, 12, 996. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Long, D.; Li, X.; Huang, Q.; Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Rem. Sens. Environ. 2022, 270, 112853. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Rem. Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Chen, Y.; Jiang, W.; Liu, C.; Yang, L. Glacier area changes in the Nujiang-Salween River Basin over the past 45 years. J. Geogr. Sci. 2022, 32, 1177–1204. [Google Scholar] [CrossRef]
- Lama, L.; Kayastha, R.B.; Maharjan, S.B.; Bajracharya, S.; Chand, M.; Mool, P. Glacier area and volume changes of Hidden Valley, Mustang, Nepal from ~1980s to 2010 based on remote sensing. Proc. Int. Assoc. Hydrol. Sci. 2015, 368, 57–62. [Google Scholar] [CrossRef]
- Hu, M.; Zhou, G.; Lv, X.; Zhou, L.; He, X.; Tian, Z. A new automatic extraction method for glaciers on the Tibetan Plateau under clouds, shadows and snow cover. Remote Sens. 2022, 14, 3084. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Shi, C.; Yan, D. Automated glacier extraction index by optimization of red/SWIR and NIR/SWIR ratio index for glacier mapping using landsat imagery. Water 2019, 11, 1223. [Google Scholar] [CrossRef] [Green Version]
- Lambert, C.B.; Resler, L.M.; Shao, Y.; Butler, D.R. Vegetation change as related to terrain factors at two glacier forefronts, Glacier National Park, Montana, USA. J. Mt. Sci. 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Barzycka, B.; Grabiec, M.; Błaszczyk, M.; Ignatiuk, D.; Laska, M.; Hagen, J.O.; Jania, J. Changes of glacier facies on Hornsund glaciers (Svalbard) during the decade 2007–2017. Rem. Sens. Environ. 2020, 251, 112060. [Google Scholar] [CrossRef]
- Kumar, M.; Al-Quraishi, A.M.F.; Mondal, I. Glacier changes monitoring in Bhutan High Himalaya using remote sensing technology. Environ. Eng. Res. 2021, 26, 190255. [Google Scholar] [CrossRef]
- Ji, Q.; Yang, T.-b.; He, Y.; Chen, J.; Wang, K. Glacier changes in the eastern Nyainqêntanglha Range of Tibetan Plateau from 1975 to 2013. J. Mt. Sci. 2016, 13, 682–692. [Google Scholar] [CrossRef]
- Burns, P.; Nolin, A. Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Rem. Sens. Environ. 2014, 140, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Kraaijenbrink, P.; Shea, J.; Pellicciotti, F.; De Jong, S.; Immerzeel, W. Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier. Rem. Sens. Environ. 2016, 186, 581–595. [Google Scholar] [CrossRef]
- Roberts-Pierel, B.M.; Kirchner, P.B.; Kilbride, J.B.; Kennedy, R.E. Changes over the Last 35 Years in Alaska’s Glaciated Landscape: A Novel Deep Learning Approach to Mapping Glaciers at Fine Temporal Granularity. Remote Sens. 2022, 14, 4582. [Google Scholar] [CrossRef]
- Sidjak, R. Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. IJRS 1999, 20, 273–284. [Google Scholar] [CrossRef]
- Kaushik, S.; Singh, T.; Bhardwaj, A.; Joshi, P.K.; Dietz, A.J. Automated Delineation of Supraglacial Debris Cover Using Deep Learning and Multisource Remote Sensing Data. Remote Sens. 2022, 14, 1352. [Google Scholar] [CrossRef]
- Atwood, D.; Meyer, F.; Arendt, A. Using L-band SAR coherence to delineate glacier extent. CaJRS 2010, 36, S186–S195. [Google Scholar] [CrossRef]
- Maksymiuk, O.; Mayer, C.; Stilla, U. Velocity estimation of glaciers with physically-based spatial regularization—Experiments using satellite SAR intensity images. Rem. Sens. Environ. 2016, 172, 190–204. [Google Scholar] [CrossRef]
- Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier remote sensing using Sentinel-2. Part II: Mapping glacier extents and surface facies, and comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Gupta, R.; Arora, M. Delineation of debris-covered glacier boundaries using optical and thermal remote sensing data. Remote Sens. Lett. 2010, 1, 11–17. [Google Scholar] [CrossRef]
- Muhammad, S.; Tian, L.; Khan, A. Early twenty-first century glacier mass losses in the Indus Basin constrained by density assumptions. JHyd 2019, 574, 467–475. [Google Scholar] [CrossRef]
- Bisset, R.R.; Dehecq, A.; Goldberg, D.N.; Huss, M.; Bingham, R.G.; Gourmelen, N. Reversed surface-mass-balance gradients on Himalayan debris-covered glaciers inferred from remote sensing. Remote Sens. 2020, 12, 1563. [Google Scholar] [CrossRef]
- Ettema, J.; van den Broeke, M.R.; van Meijgaard, E.; van de Berg, W.J.; Bamber, J.L.; Box, J.E.; Bales, R.C. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Fettweis, X. Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR. Cryosphere 2007, 1, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Van Angelen, J.; Lenaerts, J.; Lhermitte, S.; Fettweis, X.; Kuipers Munneke, P.; Van den Broeke, M.; Van Meijgaard, E.; Smeets, C. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: A study with a regional climate model. Cryosphere 2012, 6, 1175–1186. [Google Scholar] [CrossRef] [Green Version]
- Enderlin, E.M.; Howat, I.M.; Jeong, S.; Noh, M.J.; Van Angelen, J.H.; Van Den Broeke, M.R. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 2014, 41, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.; Stenseng, L.; Skourup, H.; Colgan, W.; Khan, S.A.; Kristensen, S.S.; Andersen, S.; Box, J.; Ahlstrøm, A.; Fettweis, X. Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth Planet. Sci. Lett. 2015, 409, 89–95. [Google Scholar] [CrossRef]
- Hubbard, A.; Willis, I.; Sharp, M.; Mair, D.; Nienow, P.; Hubbard, B.; Blatter, H. Glacier mass-balance determination by remote sensing and high-resolution modelling. JGlac 2000, 46, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Callens, D.; Thonnard, N.; Lenaerts, J.T.; Van Wessem, J.M.; Van De Berg, W.J.; Matsuoka, K.; Pattyn, F. Mass balance of the Sør Rondane glacial system, East Antarctica. Ann. Glaciol. 2015, 56, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; Van Den Broeke, M.; Van Wessem, M.J.; Morlighem, M. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Mouginot, J.; Rignot, E.; Bjørk, A.A.; Van den Broeke, M.; Millan, R.; Morlighem, M.; Noël, B.; Scheuchl, B.; Wood, M. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA 2019, 116, 9239–9244. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Vincent, C. Relative contribution of surface mass-balance and ice-flux changes to the accelerated thinning of Mer de Glace, French Alps, over1979-2008. JGlac 2012, 58, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Van Tricht, L.; Huybrechts, P.; Van Breedam, J.; Vanhulle, A.; Van Oost, K.; Zekollari, H. Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland). Cryosphere 2021, 15, 4445–4464. [Google Scholar] [CrossRef]
Top | Journals | Publications |
---|---|---|
1 | Journal of Glaciology | 464 |
2 | Cryosphere | 366 |
3 | Remote Sensing | 309 |
4 | Geophysical Research Letters | 178 |
5 | Annals of Glaciology | 167 |
6 | Remote Sensing of Environment | 152 |
7 | Journal of Geophysical Research: Earth Surface | 146 |
8 | IEEE International Symposium on Geoscience and Remote Sensing (IGARSS) | 127 |
9 | Frontiers in Earth Science | 106 |
10 | Geomorphology | 100 |
Top | Cited Journals | Count |
---|---|---|
1 | Journal of Glaciology | 3463 |
2 | Geophysical Research Letters | 2857 |
3 | Science | 2771 |
4 | Annals of Glaciology | 2682 |
5 | Cryosphere | 2496 |
6 | Remote Sensing of Environment | 2249 |
7 | Nature | 2218 |
8 | Journal of Geophysical Research: Earth Surface | 1872 |
9 | Global and Planetary Change | 1757 |
10 | Nature Geoscience | 1713 |
Top | Author | Freq. | Centrality |
---|---|---|---|
1 | Berthier E | 94 | 0.10 |
2 | Kääb A | 85 | 0.10 |
3 | Liu SY | 82 | 0.05 |
4 | Rignot E | 81 | 0.04 |
5 | Bolch T | 73 | 0.14 |
6 | Paul F | 66 | 0.05 |
7 | Van den Broeke M | 66 | 0.05 |
8 | Kulkarni AV | 56 | 0.00 |
9 | Li ZQ | 55 | 0.00 |
10 | Huss M | 50 | 0.00 |
Author | Freq. | Centrality |
---|---|---|
Rignot E | 1069 | 0.83 |
Kääb A | 928 | 0.83 |
Bolch T | 910 | 0.45 |
Paul F | 847 | 0.50 |
Joughin I | 605 | 0.28 |
Huss M | 587 | 0.14 |
Berthier E | 581 | 0.03 |
Benn DI | 569 | 0.00 |
Haeberli W | 568 | 0.41 |
Oerlemans J | 563 | 0.56 |
Country/Region | Freq. | Centrality |
---|---|---|
USA | 1444 | 0.06 |
China | 1011 | 0.02 |
England | 632 | 0.02 |
Germany | 601 | 0.25 |
Switzerland | 506 | 0.02 |
France | 450 | 0.05 |
India | 389 | 0.02 |
Norway | 383 | 0.02 |
Canada | 354 | 0.02 |
Netherlands | 255 | 0.00 |
Top | Institution | Freq. | Centrality |
---|---|---|---|
1 | Chinese Academy of Sciences | 773 | 0.28 |
2 | University of Colorado | 199 | 0.04 |
3 | University of Zurich | 175 | 0.08 |
4 | California Institute of Technology | 161 | 0.39 |
5 | University of Oslo | 143 | 0.09 |
6 | NASA | 142 | 1.02 |
7 | Utrecht University | 141 | 0.11 |
8 | University Grenoble Alpes | 118 | 0.32 |
9 | University of Leeds | 115 | 0.17 |
10 | Ohio State University | 113 | 0.09 |
Top | Title | Author | Year | Source |
---|---|---|---|---|
1 | A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009 | Gardner AS | 2013 | SCIENCE |
2 | A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016 | Brun F | 2017 | NAT GEOSCI |
3 | The Randolph Glacier Inventory: a globally complete inventory of glaciers | Pfeffer WT | 2014 | J GLACIOL |
4 | The State and Fate of Himalayan Glaciers | Bolch T | 2012 | SCIENCE |
5 | Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas | Kääb A | 2012 | NATURE |
6 | Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011 | Gardelle J | 2013 | CRYOSPHERE |
7 | Recent contributions of glaciers and ice caps to sea level rise | Jacob T | 2012 | NATURE |
8 | A Reconciled Estimate of Ice-Sheet Mass Balance | Shepherd A | 2012 | SCIENCE |
9 | Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings | Yao TD | 2012 | NAT CLIM CHANGE |
10 | On the accuracy of glacier outlines derived from remote-sensing data | Paul F | 2013 | ANN GLACIOL |
No. | Words | Frequency | Betweenness Centrality |
---|---|---|---|
1 | Mass balance | 962 | 0.19 |
2 | Climate change | 878 | 0.38 |
3 | Glacier | 494 | 0.34 |
4 | Remote sensing | 384 | 0.10 |
5 | Model | 330 | 0.15 |
6 | Retreat | 291 | 0.12 |
7 | Variability | 281 | 0.22 |
8 | Dynamics | 270 | 0.07 |
9 | Flow | 267 | 0.18 |
10 | Inventory | 257 | 0.35 |
Year | Keywords |
---|---|
2021 | water storage change, NDVI, InSAR, land terminating glacier, Google Earth Engine, glacier modeling, extraction, dammed lake, artificial satellite, Artificial intelligence, energy balance model, snow line altitude, hydrological response, machine learning, ICESat-2, KH-9, photogrammetry |
2020 | glacier dynamics, accuracy assessment, Tibetan plateau, spatial distribution, Pamir, mass change, geodetic method, climate change, Changri Nup Glacier, alpine terrain, area change, glacier flow |
2019 | glacier volume, ice thickness, glacier surge, classification, satellite gravimetry, risk assessment, lake outburst flood, High Mountain Asia, geodetic mass balance, fresh, Glacial Isostatic Adjustment, elevation model, glacier mapping, glacier hazard, Inventory, time series, |
2018 | surface velocity, submarine melt, Qilian Mountain, Pine Island, Pamir Karakorum Himalaya, meltwater, grounding line retreat, glacier shrinkage, Central Himalaya, airborne radar, albedo, firn, debris cover |
2017 | Tandem-x, Karakoram, GRACE, glacier elevation change, DEM generation, upper indus basin, expansion, reconstruction, scale, fusion, remote sensing data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, A.; Shi, H.; Wang, Y.; Yang, J.; Gao, C.; Lu, Y. A Bibliometric and Visualized Analysis of Remote Sensing Methods for Glacier Mass Balance Research. Remote Sens. 2023, 15, 1425. https://doi.org/10.3390/rs15051425
Yu A, Shi H, Wang Y, Yang J, Gao C, Lu Y. A Bibliometric and Visualized Analysis of Remote Sensing Methods for Glacier Mass Balance Research. Remote Sensing. 2023; 15(5):1425. https://doi.org/10.3390/rs15051425
Chicago/Turabian StyleYu, Aijie, Hongling Shi, Yifan Wang, Jin Yang, Chunchun Gao, and Yang Lu. 2023. "A Bibliometric and Visualized Analysis of Remote Sensing Methods for Glacier Mass Balance Research" Remote Sensing 15, no. 5: 1425. https://doi.org/10.3390/rs15051425
APA StyleYu, A., Shi, H., Wang, Y., Yang, J., Gao, C., & Lu, Y. (2023). A Bibliometric and Visualized Analysis of Remote Sensing Methods for Glacier Mass Balance Research. Remote Sensing, 15(5), 1425. https://doi.org/10.3390/rs15051425