Landslide Susceptibility Mapping and Driving Mechanisms in a Vulnerable Region Based on Multiple Machine Learning Models
Abstract
:1. Introduction
2. Methodology
2.1. Study Region
2.2. Data Description
2.2.1. Model Input Variables and Descriptions
2.2.2. Training and Validation Sample Plot Data
2.3. Research Work Flow
2.3.1. Multicollinearity Test
2.3.2. Adaptive Boosting (AdaBoost) Method
2.3.3. Gradient-Boosting Decision-Tree (GBDT) Method
2.3.4. Multilayer Perceptron Method
2.3.5. Random Forest Method
2.3.6. Model Parameterization
2.3.7. Model Evaluation Metrics
3. Results and Analysis
3.1. Multicollinearity Analysis
3.2. Accuracy Assessment for the Modeling Results
3.3. Predicted Landslide Susceptibility
3.4. Driving Mechanisms of Landslide Suceptibility
4. Discussion
4.1. Effectiveness for Different Models
4.2. Major Contributing Factors
4.3. Implications for Policymaking and Disaster Mitigation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fall, M.; Azzam, R.; Noubactep, C. A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Eng. Geol. 2006, 82, 241–263. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T. An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping. Int. J. Geogr. Inf. Sci. 2014, 28, 610–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Rahmati, O. Prediction of the landslide susceptibility: Which algorithm, which precision? Catena 2018, 162, 177–192. [Google Scholar] [CrossRef]
- Ma, Z.; Mei, G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth Sci. Rev. 2021, 223, 103858. [Google Scholar] [CrossRef]
- Felicísimo, A.; Cuartero, A.; Remondo, J.; Quirós, E. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: A comparative study. Landslides 2013, 10, 175–189. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 2017, 305, 314–327. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Sharifi, A. Flood mapping using relevance vector machine and SAR data: A case study from Aqqala, Iran. J. Indian Soc. Remote Sens. 2020, 48, 1289–1296. [Google Scholar] [CrossRef]
- Sharifi, A.; Hosseingholizadeh, M. The effect of rapid population growth on urban expansion and destruction of green space in Tehran from 1972 to 2017. J. Indian Soc. Remote Sens. 2019, 47, 1063–1071. [Google Scholar] [CrossRef]
- Jalayer, S.; Sharifi, A.; Abbasi-Moghadam, D.; Tariq, A.; Qin, S. Modeling and predicting land use land cover spatiotemporal changes: A case study in chalus watershed, Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5496–5513. [Google Scholar] [CrossRef]
- Raghu, S.; Sriraam, N. Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures. Expert Syst. Appl. 2017, 89, 205–221. [Google Scholar] [CrossRef]
- Zare, M.; Pourghasemi, H.R.; Vafakhah, M.; Pradhan, B. Landslide susceptibility mapping at vaz watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab. J. Geosci. 2013, 6, 2873–2888. [Google Scholar] [CrossRef]
- Binh Thai, P.; Dieu Tien, B.; Prakash, I.; Dholakia, M.B. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at himalayan area (India) using GIS. Catena 2017, 149, 52–63. [Google Scholar]
- Moayedi, H.; Mehrabi, M.; Mosallanezhad, M.; Rashid, A.S.A.; Pradhan, B. Modification of landslide susceptibility mapping using optimized pso-ann technique. Eng. Comput. 2019, 35, 967–984. [Google Scholar] [CrossRef]
- Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the effects of training data selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomat. Nat. Hazards Risk 2018, 9, 49–69. [Google Scholar] [CrossRef]
- Wu, Y.; Ke, Y.; Chen, Z.; Liang, S.; Zhao, H.; Hong, H. Application of alternating decision tree with adaboost and bagging ensembles for landslide susceptibility mapping. Catena 2020, 187, 104396. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena 2020, 195, 104777. [Google Scholar] [CrossRef]
- Song, J.; Wang, Y.; Fang, Z.; Peng, L.; Hong, H. Potential of ensemble learning to improve tree-based classifiers for landslide susceptibility mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4642–4662. [Google Scholar] [CrossRef]
- Chen, T.; Zhu, L.; Niu, R.; Trinder, C.J.; Peng, L.; Lei, T. Mapping landslide susceptibility at the three gorges reservoir, China, using gradient boosting decision tree, random forest and information value models. J. Mt. Sci. 2020, 17, 670–685. [Google Scholar] [CrossRef]
- Hong, H.; Pourghasemi, H.R.; Pourtaghi, Z.S. Landslide susceptibility assessment in Lianhua county (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 2016, 259, 105–118. [Google Scholar] [CrossRef]
- Sun, D.; Wen, H.; Wang, D.; Xu, J. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using bayes algorithm. Geomorphology 2020, 362, 107201. [Google Scholar] [CrossRef]
- Kim, J.-C.; Lee, S.; Jung, H.-S.; Lee, S. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-chang, Korea. Geocarto Int. 2018, 33, 1000–1015. [Google Scholar] [CrossRef]
- Viet-Ha, N.; Shirzadi, A.; Shahabi, H.; Chen, W.; Clague, J.J.; Geertsema, M.; Jaafari, A.; Avand, M.; Miraki, S.; Asl, D.T.; et al. Shallow landslide susceptibility mapping by random forest base classifier and its ensembles in a semi-arid region of Iran. Forests 2020, 11, 421. [Google Scholar]
- Trigila, A.; Iadanza, C.; Esposito, C.; Scarascia-Mugnozza, G. Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [Google Scholar] [CrossRef]
- Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at Izmir, Turkey. Landslides 2012, 9, 93–106. [Google Scholar] [CrossRef]
- Huan, Y.; Song, L.; Khan, U.; Zhang, B. Stacking ensemble of machine learning methods for landslide susceptibility mapping in Zhangjiajie City, Hunan Province. Environ. Earth Sci. 2023, 82, 35. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Bui, D.T.; Pradhan, B.; Acharya, T.D.; Pham, B.T.; Zhu, A.X.; Chen, W.; Ahmad, B.B. Landslide susceptibility mapping using j48 decision tree with adaboost, bagging and rotation forest ensembles in the Guangchang area (China). Catena 2018, 163, 399–413. [Google Scholar] [CrossRef]
- Kadavi, P.R.; Lee, C.W.; Lee, S. Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens. 2018, 10, 1252. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.J.; Kuncheva, L.I.; Alonso, C.J. Rotation forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1619–1630. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.M.; Pourghasemi, H.R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 2021, 12, 639–655. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Yang, B.; Liu, Z.Q.; Kwan, J.S.H.; Chen, L. Spatiotemporal modelling of rainfall-induced landslides using machine learning. Landslides 2021, 18, 2499–2514. [Google Scholar] [CrossRef]
- Tien Bui, D.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar] [CrossRef]
- Carrara, A.; Pike, R.J. GIS technology and models for assessing landslide hazard and risk. Geomorphology 2008, 94, 57–260. [Google Scholar] [CrossRef]
- Jebur, M.N.; Pradhan, B.; Tehrany, M.S. Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sens. Environ. 2014, 152, 150–165. [Google Scholar] [CrossRef]
- Borgomeo, E.; Hebditch, K.V.; Whittaker, A.C.; Lonergan, L. Characterising the spatial distribution, frequency and geomorphic controls on landslide occurrence, molise, italy. Geomorphology 2014, 226, 148–161. [Google Scholar] [CrossRef]
- Gibson, A.D.; Culshaw, M.G.; Dashwood, C.; Pennington, C.V.L. Landslide man-agement in the UK—The problem of managing hazards in a ‘low-risk’ environment. Landslides 2013, 10, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Chen, G.; Shi, W.; Jin, J.; Wu, J.; Huang, F.; Chong, Y.; Meng, Y.; Li, Y.; Zhang, Y. Spatiotemporal evolution pattern and driving mechanisms of landslides in the wenchuan earthquake-affected region: A case study in the Bailong river basin, China. Remote Sens. 2022, 14, 2339. [Google Scholar] [CrossRef]
- Liao, M.; Wen, H.; Yang, L. Identifying the essential conditioning factors of landslide susceptibility models under different grid resolutions using hybrid machine learning: A case of Wushan and Wuxi counties, China. Catena 2022, 217, 106428. [Google Scholar] [CrossRef]
- Lin, Q.; Lima, P.; Steger, S.; Glade, T.; Jiang, T.; Zhang, J.; Liu, T.; Wang, Y. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data. Geosci. Front. 2021, 12, 101248. [Google Scholar] [CrossRef]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Huang, R. Large-scale landslides and their sliding mechanisms in China since the 20th century. Chin. J. Rock Mech. Eng. 2007, 3, 433–454. [Google Scholar]
- Hu, R.; Fan, L.; Wang, S.; Wang, L.; Wang, X. Theory and method for landslide risk assessment-current status and future development. J. Eng. Geol. 2013, 21, 76–84. [Google Scholar]
- Bui, D.T.; Tsangaratos, P.; Nguyen, V.T.; Liem, N.V.; Trinh, P.T. Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. Catena 2020, 188, 104426. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Peng, J.; Shahabi, H.; Hong, H. GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena 2018, 164, 135–149. [Google Scholar] [CrossRef]
- Wu, W.; Sidle, R.C. A distributed slope stability model for steep forested basins. Water Resour. Res. 1995, 31, 2097–2110. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, Y.; Wang, Y.; Wang, Y. Analysis on the relationships between the small range debris flow and rainfall in Linan, Zhejiang Province. Bull. Sci. Technol. 2012, 28, 44–50. [Google Scholar]
- Li, L.; Lan, H.; Guo, C.; Zhang, Y.; Li, Q.; Wu, Y. Geohazard susceptibility assessment along the sichuan-tibet railway and its adjacent area using an improved frequency ratio method. Geoscience 2017, 31, 911–929. [Google Scholar]
- Lan, H.; Wu, F.; Zhou, C.; Wang, S. Analysis on susceptibility of GIS based landslide triggering factors in Yunnan Xiaojiang watershed. Chin. J. Rock Mech. Eng. 2002, 21, 1500–1506. [Google Scholar]
- Li, B.; Pan, B.; Han, J. Basic terrestrial geomorphological types in China and thier circumscriptions. Quat. Sci. 2008, 28, 535–543. [Google Scholar]
- Zhang, H.; Wang, X.; Yu, Z. Slope surface complexity factor extract and analysis based on ArcGIS. J. Cent. China Norm. Univ. (Nat. Sci.) 2009, 43, 323–326. [Google Scholar]
- Tu, H.; Liu, Z. Demonstrating on optimum statistica unit of relief amplitude in China. J. Hubei Univ. 1990, 12, 266–271. [Google Scholar]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: A Global Perspective; Pearson: Delhi, India, 2014. [Google Scholar]
- Hembram, T.k.; Paul, G.C.; Saha, S. Spatial prediction of susceptibility to gully erosion in Jainti River Basin, Eastern India: A comparison of information value and logistic regression models. Model. Earth Syst. Environ. 2019, 5, 689–708. [Google Scholar] [CrossRef]
- Saha, S.; Gayen, A.; Pourghasemi, H.R.; Tiefenbacher, J.P. Identification of soil erosion-susceptible areas using fuzzy logic and analytical hierarchy process modeling in an agricultural watershed of Burdwan district, India. Environ. Earth Sci. 2019, 78, 649. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.C.; Hong, H.Y. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan county, China. Sci. Total Environ. 2019, 666, 975–993. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Schapire, R.E. The strength of weak learnability. Mach. Learn. 1990, 5, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Freund, Y.; Schapire, R.E. A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 1999, 14, 771–780. [Google Scholar]
- Friedman, J.H.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting. Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting: Nonlinear methods and data mining. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar]
- Liang, Z.; Wang, C.; Duan, Z.; Liu, H.; Khan, K.J. A hybrid model consisting of supervised and unsupervised learning for landslide susceptibility mapping. Remote Sens. 2021, 13, 1464. [Google Scholar] [CrossRef]
- Ghritlahre, H.K.; Prasad, R.K. Exergetic performance prediction of solar air heater using mlp, grnn and rbf models of artificial neural network technique. J. Environ. Manag. 2018, 223, 566–575. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagation errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall/CRC: New York, NY, USA, 1994. [Google Scholar]
- Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-validation pitfalls when selecting and assessing regression and classification models. J. Cheminform. 2014, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Kardani, N.; Zhou, A.; Nazem, M.; Shen, S. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J. Rock Mech. Geotech. Eng. 2021, 13, 188–201. [Google Scholar] [CrossRef]
- Chen, M.; Wu, J.; Liu, L.; Zhao, W.; Tian, F.; Shen, Q.; Zhao, B.; Du, R. DR-Net: An improved network for building extraction from high resolution remote sensing image. Remote Sens. 2021, 13, 294. [Google Scholar]
- Roy, J.; Saha, S.; Arabameri, A.; Blaschke, T.; Bui, D.T. A novel ensemble approach for landslide susceptibility mapping (LSM) in Darjeeling and Kalimpong districts, West Bengal, India. Remote Sens. 2019, 11, 2866. [Google Scholar] [CrossRef] [Green Version]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Sahin, E.K. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl. Sci. 2020, 2, 1308. [Google Scholar] [CrossRef]
- Binh Thai, P.; Prakash, I.; Singh, S.K.; Shirzadi, A.; Shahabi, H.; Thi-Thu-Trang, T.; Dieu Tien, B. Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid machine learning approaches. Catena 2019, 175, 203–218. [Google Scholar]
- Abedini, M.; Ghasemian, B.; Shirzadi, A.; Shahabi, H.; Chapi, K.; Binh Thai, P.; Bin Ahmad, B.; Dieu Tien, B. A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment. Geocarto Int. 2019, 34, 1427–1457. [Google Scholar] [CrossRef]
- Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Saha, S.; Arabameri, A.; Saha, A.; Blaschke, T.; Ngo, P.T.T.; Viet Ha, N.; Band, S.S. Prediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on cross-validation method. Sci. Total Environ. 2021, 764, 142928. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, D.; Bandibas, J. Landslide susceptibility mapping using geological data, a dem from aster images and an artificial neural network (ANN). Geomorphology 2009, 113, 97–109. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [Google Scholar]
- Meinhardt, M.; Fink, M.; Tünschel, H. Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: Comparison of a new method to calculate weighting factors by means of bivariate statistics. Geomorphology 2015, 234, 80–97. [Google Scholar] [CrossRef]
- Turner, A.K. Social and environmental impacts of landslides. Innov. Infrastruct. Solut. 2018, 3, 70. [Google Scholar] [CrossRef]
- Hong, Y.; Adler, R.F. Towards an early warning system for global landslides triggered by rainfall and earthquake. Int. J. Remote Sens. 2007, 28, 3713–3719. [Google Scholar] [CrossRef]
Data Name | Format | Spatial Resolution | Acquisition Date | Source |
---|---|---|---|---|
DEM | Raster | 30 m | - | https://www.gscloud.cn (accessed on 1 March 2023) |
Geological condition | Shapefile | - | - | https://www.resdc.cn (accessed on 1 March 2023) |
Road network | Shapefile | - | - | https://www.resdc.cn (accessed on 1 March 2023) |
Land cover | Raster | 10 m | 2020 | https://livingatlas.arcgis.com/landcover (accessed on 1 March 2023) |
Population density | Raster | 30 m | 2020 | https://www.worldpop.org (accessed on 1 March 2023) |
Sentinel-2A images | Raster | 10 m | 5 March 2020–11 March 2020 | https://scihub.copernicus.eu (accessed on 1 March 2023) |
Landslide plots | Shapefile | - | 1945–2020 | https://www.resdc.cn (accessed on 1 March 2023) |
Mean precipitation in the monsoon season | Raster | 1 km | 2010–2018 | https://www.worldclim.org (accessed on 1 March 2023) |
Water system map | Shapefile | - | 2022 | https://www.resdc.cn (accessed on 1 March 2023) |
Models | Hyperparameter Values |
---|---|
AdaBoost | Number of trees = 40, learning rate = 1 |
GBDT | Number of trees = 17, learning rate = 0.1 |
MLP | Learning rate = 0.005, decay = 0.01, epoch = 300, batch size = 16 |
RF | Number of trees = 17, min samples leaf = 3, max features = 3 |
LCFs | VIF | Tolerance |
---|---|---|
slope | 1.9395 | 0.5156 |
aspect | 1.1275 | 0.8869 |
curvature | 1.0263 | 0.9743 |
surface roughness | 2.0980 | 0.4766 |
landform | 4.9820 | 0.2007 |
RDLS | 2.5817 | 0.3873 |
lithology | 1.1964 | 0.8359 |
vegetation coverage | 1.4745 | 0.6782 |
precipitation | 4.4280 | 0.2258 |
distance to fault | 1.1602 | 0.8619 |
distance to river | 1.3437 | 0.7442 |
distance to road | 1.2861 | 0.7776 |
population density | 2.1321 | 0.4690 |
Model | Classification Results | Precision | Recall | F1-Score | AUC (ROC) |
---|---|---|---|---|---|
AdaBoost | Landslide | 0.81 | 0.87 | 0.83 | 0.91 |
Non-Landslide | 0.86 | 0.80 | |||
GBDT | Landslide | 0.78 | 0.93 | 0.83 | 0.88 |
Non-Landslide | 0.92 | 0.73 | |||
MLP | Landslide | 0.74 | 0.83 | 0.77 | 0.79 |
Non-Landslide | 0.81 | 0.70 | |||
RF | Landslide | 0.80 | 0.91 | 0.85 | 0.92 |
Non-Landslide | 0.92 | 0.77 |
Number | Pairwise Comparison | Cross-Correlation Coefficient |
---|---|---|
1 | MLP vs. RF | 0.74 |
2 | MLP vs. AdaBoost | 0.66 |
3 | MLP vs. GBDT | 0.60 |
4 | RF vs. AdaBoost | 0.90 |
5 | RF vs. GBDT | 0.90 |
6 | AdaBoost vs. GBDT | 0.88 |
Models | Percentage of Pixels | |||
---|---|---|---|---|
Low | Moderate | High | Very High | |
RF | 21% | 39% | 32% | 8% |
MLP | 45% | 13% | 18% | 24% |
AdaBoost | 21% | 42% | 30% | 7% |
GBDT | 19% | 41% | 33% | 7% |
Town Name | MLP | RF | AdaBoost | GBDT | Average | Moderate Risk (%) | High Risk (%) | Very High Risk (%) |
---|---|---|---|---|---|---|---|---|
Daoshi | 0.65 | 0.66 | 0.66 | 0.67 | 0.66 | 17.73 | 42.85 | 37.56 |
Jinnan | 0.60 | 0.65 | 0.61 | 0.59 | 0.61 | 17.19 | 71.96 | 10.44 |
Linglong | 0.56 | 0.59 | 0.59 | 0.57 | 0.58 | 25.55 | 62.72 | 9.39 |
Qingliangfeng | 0.54 | 0.52 | 0.52 | 0.52 | 0.53 | 39.79 | 31.91 | 19.83 |
Heqiao | 0.46 | 0.51 | 0.48 | 0.51 | 0.49 | 42.87 | 34.01 | 12.15 |
Banqiao | 0.39 | 0.5 | 0.49 | 0.47 | 0.46 | 43.82 | 41.50 | 1.86 |
Jincheng | 0.33 | 0.49 | 0.50 | 0.49 | 0.45 | 51.26 | 38.62 | 0.21 |
Jinbei | 0.24 | 0.47 | 0.47 | 0.45 | 0.41 | 68.92 | 20.70 | 0.05 |
Qingshanhu | 0.34 | 0.47 | 0.46 | 0.45 | 0.43 | 53.87 | 33.02 | 0.33 |
Tuankou | 0.39 | 0.43 | 0.42 | 0.44 | 0.42 | 44.80 | 27.54 | 6.03 |
Taiyang | 0.45 | 0.43 | 0.41 | 0.42 | 0.43 | 35.95 | 31.98 | 6.70 |
Longgang | 0.44 | 0.41 | 0.40 | 0.44 | 0.42 | 37.31 | 26.76 | 9.34 |
Changhua | 0.57 | 0.41 | 0.39 | 0.38 | 0.44 | 45.31 | 29.83 | 5.84 |
Yuqian | 0.36 | 0.39 | 0.37 | 0.38 | 0.37 | 38.82 | 27.61 | 0.92 |
Tianmushan | 0.35 | 0.37 | 0.38 | 0.40 | 0.38 | 33.43 | 29.11 | 2.19 |
Gaohong | 0.13 | 0.35 | 0.36 | 0.40 | 0.31 | 48.58 | 10.39 | 0.01 |
Qianchuan | 0.25 | 0.31 | 0.29 | 0.33 | 0.30 | 37.33 | 13.76 | 0.36 |
Taihuyuan | 0.15 | 0.3 | 0.31 | 0.35 | 0.28 | 36.90 | 10.98 | 0.56 |
Factors | Class | Landslide Pixel Numbers | ||
---|---|---|---|---|
Population density (person/km2) | ≤0.20 | 7 | 0.05 | −0.67 |
≤0.50 | 27 | 0.18 | −0.25 | |
≤2.00 | 84 | 0.58 | 0.27 | |
≤138.13 | 28 | 0.19 | 0.16 | |
Distance to road (m) | ≤391.60 | 104 | 0.71 | 0.15 |
≤948.10 | 11 | 0.08 | −0.35 | |
≤1751.91 | 26 | 0.18 | −0.22 | |
≤5255.74 | 5 | 0.03 | −0.06 | |
Relief amplitude (m) | ≤87.00 | 26 | 0.18 | −0.08 |
≤156.00 | 76 | 0.52 | 0.18 | |
≤226.00 | 32 | 0.22 | −0.14 | |
≤545.00 | 12 | 0.08 | −0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Pei, W.; Zhang, J.; Chen, G. Landslide Susceptibility Mapping and Driving Mechanisms in a Vulnerable Region Based on Multiple Machine Learning Models. Remote Sens. 2023, 15, 1886. https://doi.org/10.3390/rs15071886
Yu H, Pei W, Zhang J, Chen G. Landslide Susceptibility Mapping and Driving Mechanisms in a Vulnerable Region Based on Multiple Machine Learning Models. Remote Sensing. 2023; 15(7):1886. https://doi.org/10.3390/rs15071886
Chicago/Turabian StyleYu, Haiwei, Wenjie Pei, Jingyi Zhang, and Guangsheng Chen. 2023. "Landslide Susceptibility Mapping and Driving Mechanisms in a Vulnerable Region Based on Multiple Machine Learning Models" Remote Sensing 15, no. 7: 1886. https://doi.org/10.3390/rs15071886
APA StyleYu, H., Pei, W., Zhang, J., & Chen, G. (2023). Landslide Susceptibility Mapping and Driving Mechanisms in a Vulnerable Region Based on Multiple Machine Learning Models. Remote Sensing, 15(7), 1886. https://doi.org/10.3390/rs15071886