Review on Deep Learning Algorithms and Benchmark Datasets for Pairwise Global Point Cloud Registration
Abstract
:1. Introduction
2. Deep-Learning-Based Point Cloud Registration Strategy
2.1. ‘Hybrid’ Methods Utilising ‘Pose-Invariant’ Features
2.2. ‘End-to-End’ Methods
2.2.1. ‘End-to-End’ Methods Utilising Pose-Invariant Features
2.2.2. ‘End-to-End’ Methods Utilising Pose-Variant Features
2.2.3. Pose-Invariant Features Versus Pose-Variant Features
2.3. Performance Comparisons between ‘Hybrid’ and ‘End-to-End’ Methods
3. Key Steps of Deep-Learning-Based Point Cloud Registration Utilising Pose-Invariant Features
3.1. Feature Descriptors
3.1.1. Pose Invariance
3.1.2. Size of Receptive Field
3.1.3. Context Awareness
3.2. Key Point Detection
3.3. Feature Matching
3.4. Outlier Rejection
3.5. Rigid Motion Estimation
4. Benchmark Datasets
5. Evaluation Metrics
5.1. Definition
5.2. Summary of Evaluation Metric Results from the Literature
Method | 3DMatch | Rotated 3DMatch | KITTI | ETH (3DMatch) | |
---|---|---|---|---|---|
Title | C | ||||
PPFNet [33] | D | 0.623 | 0.003 | - | - |
PPF-FoldNet [34] | D | 0.718 | 0.731 | - | - |
3DMatch [32] | D | 0.573 | 0.011 | - | 0.169 |
FCGF [35] | D | 0.952 | 0.953 | 0.966 | 0.161 |
Multi-view [36] | D | 0.975 | 0.969 | - | 0.799 |
D3Feat [37] | D | 0.958 | 0.955 | 0.998 | 0.616 |
MS-SVConv [38] | D | 0.984 | - | - | 0.768 |
DIP [39] | D | 0.948 | 0.946 | 0.973 | 0.928 |
GeDi [40] | D | 0.979 | 0.976 | 0.998 | 0.982 |
PREDATOR [75] | D | 0.967 | - | - | - |
3Dfeat-Net [55] | D | - | - | 0.960 | - |
Equivariant3D [73] | D | 0.942 | 0.939 | - | - |
RelativeNet [63] | D | 0.760 | - | - | - |
CGF [72] | D | 0.478 | 0.499 | - | 0.202 |
3DsmoothNet [74] | D | 0.947 | 0.949 | - | 0.790 |
FoldingNet [66] | D | 0.613 | 0.023 | - | - |
CapsuleNet [98] | D | 0.807 | 0.807 | - | - |
SpinNet [71] | D | 0.978 | 0.978 | 0.991 | 0.928 |
YOHO [107] | D | 0.982 | - | - | 0.920 |
GeoTransformer [70] | D | 0.979 | - | - | - |
Lepard [81] | D | 0.983 | - | - | - |
Equivariant [109] | D | 0.976 | - | - | - |
NgeNet [79] | D | 0.982 | - | - | - |
WSDesc [110] | D | 0.967 | 0.785 | - | - |
CoFiNet [86] | D | 0.981 | - | - | - |
OCFNet [87] | D | 0.984 | - | - | - |
SpinImage [19] | H | 0.227, [33] | 0.227, [34] | - | - |
FPFH [20] | H | 0.359, [33] | 0.364, [34] | - | 0.221, [74] |
USC [21] | H | 0.400, [33] | - | - | - |
SHOT [22] | H | 0.238, [33] | 0.234, [34] | - | 0.611, [74] |
Method | 3DMatch | 3DLoMatch | KITTI | KITTI (3DMatch) | ModelNet40 | ||
---|---|---|---|---|---|---|---|
Title | C | RR | RR | SR | SR | RE ( ) | TE(m) |
DCP [57] | E | - | - | - | - | 11.975 [75] | 0.171 [75] |
RelativeNet [63] | E | 0.777 | - | - | - | - | - |
PCAM [59] | E | 0.855 [60] | - | - | - | - | - |
REGTR [60] | E | 0.920 | - | - | - | 1.473 | 0.014 |
PointNetLK [61] | E | - | - | - | - | 29.725 [60] | 0.29, [60] |
RPM-Net [76] | E | - | - | - | - | 1.712 [75] | 0.018 [75] |
OMNet [67] | E | 0.359 [60] | - | - | - | 2.947 [75] | 0.032 [75] |
RCP [120] | E | - | - | - | - | 1.665 | 0.016 |
HRegNet [78] | E | - | - | 0.997 | - | - | - |
WSDesc [110] | E | 0.814 | - | - | - | - | - |
PPFNet [33] | H | 0.71 | - | - | - | - | - |
FCGF [35] | H | 0.851 [75] | 0.401 [75] | 0.966 | 0.350 [40] | - | - |
3DMatch [32] | H | 0.670 [33] | - | - | - | - | - |
D3Feat [37] | H | 0.816 [75] | 0.372 [75] | 0.998 | 0.387 [40] | - | - |
DIP [39] | H | 0.890 | - | 0.973 [40] | 0.750 [40] | - | - |
GeDi [40] | H | - | - | 0.998 | 0.831 [40] | - | - |
PREDATOR [75] | H | 0.890 | 0.598 [75] | 0.998 | - | 1.739 | 0.019 |
DGR [68] | H | 0.853 [60] | - | - | - | - | - |
CGF [72] | H | 0.56 [33] | - | - | - | - | - |
3DSmoothNet [74] | H | 0.784 [75] | 0.330 [75] | 0.960 [75] | - | - | - |
SpinNet [71] | H | - | - | 0.991 | 0.654 [40] | - | - |
GeoTransformer [70] | H | 0.920 | 0.750 | 0.998 | - | - | - |
S-FCGF [69] | H | 0.914 | - | - | - | - | - |
NgeNet [79] | H | 0.929 | 0.845 | 0.998 | - | - | - |
Lepard [81] | H | 0.935 | 0.690 | - | - | - | - |
P2-Net [121] | H | 0.880 | - | - | - | - | - |
CoFiNet [86] | H | 0.893 | 0.675 | 0.998 | - | - | - |
OCFNet [87] | H | 0.897 | 0.681 | 0.998 | - | - | - |
SpinImage [19] | T | 0.34 [33] | - | - | - | - | - |
FPFH [20] | T | 0.40 [33] | - | - | - | - | - |
USC [21] | T | 0.43 [33] | - | - | - | - | - |
SHOT [22] | T | 0.27 [33] | - | - | - | - | - |
6. Challenges and Future Research
6.1. Computational Feasibility
6.2. Generalization Ability
6.3. Utilization of Texture Information
6.4. Evaluation Metrics
6.5. Multi-Temporal Data Registration
6.6. Multi-Modal Data Registration
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gümüş, K.; Gümüş, M.G.; Erkaya, H. A statistical evaluation of registration methods used in terrestrial laser scanning in cultural heritage applications. Mediterr. Archaeol. Archaeom. 2017, 17, 53–64. [Google Scholar]
- Xiong, X.; Adan, A.; Akinci, B.; Huber, D. Automatic creation of semantically rich 3D building models from laser scanner data. Autom. Constr. 2013, 31, 325–337. [Google Scholar] [CrossRef] [Green Version]
- McGuire, M.P.; Yust, M.B.S.; Shippee, B.J. Application of Terrestrial Lidar and Photogrammetry to the As-Built Verification and Displacement Monitoring of a Segmental Retaining Wall. In Proceedings of the Geotechnical Frontiers 2017, Orlando, FL, USA, 12–15 March 2017; pp. 461–471. [Google Scholar]
- Cai, Y.; Fan, L. An Efficient Approach to Automatic Construction of 3D Watertight Geometry of Buildings Using Point Clouds. Remote Sens. 2021, 13, 1947. [Google Scholar] [CrossRef]
- Crespo-Peremarch, P.; Tompalski, P.; Coops, N.C.; Ruiz, L.Á. Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data. Remote Sens. Environ. 2018, 217, 400–413. [Google Scholar] [CrossRef]
- Hashash, Y.M.A.; Filho, J.N.O.; Su, Y.Y.; Liu, L.Y. 3D Laser Scanning for Tracking Supported Excavation Construction. In Proceedings of the Geo-Frontiers, Austin, TX, USA, 24–26 January 2005; pp. 1–10. [Google Scholar]
- Su, Y.Y.; Hashash, Y.M.A.; Liu, L.Y. Integration of Construction As-Built Data Via Laser Scanning with Geotechnical Monitoring of Urban Excavation. J. Constr. Eng. Manag. 2006, 132, 1234–1241. [Google Scholar] [CrossRef]
- Yakar, M.; Yılmaz, H.M.; Mutluoǧlu, Ö. Comparative evaluation of excavation volume by TLS and total topographic station based methods. Lasers Eng. 2010, 19, 331–345. [Google Scholar]
- Pesci, A.; Casula, G.; Boschi, E. Laser scanning the Garisenda and Asinelli towers in Bologna (Italy): Detailed deformation patterns of two ancient leaning buildings. J. Cult. Herit. 2011, 12, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Tsai, Y.; Wang, R.; Lin, M. Finding the displacement of wood structure in heritage building by 3D laser scanner. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.L.; Lu, Y.Y.; Chen, Y.M.; Ma, L.; Jia, D.Z.; Cheng, L.; Li, M.C.; Hu, D.; He, X.F. Automated and Efficient Extraction of Highway Tunnel Lining Cross-sections Using Terrestrial Laser Scanning (TLS). Lasers Eng. 2018, 39, 341–353. [Google Scholar]
- Batur, M.; Yilmaz, O.; Ozener, H. A Case Study of Deformation Measurements of Istanbul Land Walls via Terrestrial Laser Scanning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6362–6371. [Google Scholar] [CrossRef]
- Zhao, Y.; Seo, H.; Chen, C. Displacement analysis of point cloud removed ground collapse effect in SMW by CANUPO machine learning algorithm. J. Civ. Struct. Health Monit. 2022, 12, 447–463. [Google Scholar] [CrossRef]
- O’Neal, M.A.; Pizzuto, J.E. The rates and spatial patterns of annual riverbank erosion revealed through terrestrial laser-scanner surveys of the South River, Virginia. Earth Surf. Process. Landf. 2011, 36, 695–701. [Google Scholar] [CrossRef]
- Bremer, M.; Sass, O. Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology 2012, 138, 49–60. [Google Scholar] [CrossRef]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Pomerleau, F.; Colas, F.; Siegwart, R. A Review of Point Cloud Registration Algorithms for Mobile Robotics. Found. Trends Robot. 2015, 4, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Li, Y.; Yang, S.; Lu, H. Global-PBNet: A Novel Point Cloud Registration for Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22312–22319. [Google Scholar] [CrossRef]
- Johnson, A.E.; Hebert, M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 433–449. [Google Scholar] [CrossRef] [Green Version]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D registration. In Proceedings of the ICRA, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [Google Scholar]
- Tombari, F.; Salti, S.; Stefano, L.D. Unique shape context for 3d data description. In Proceedings of the ACM Workshop on 3D Object Retrieval, Firenze, Italy, 25 October 2010; pp. 57–62. [Google Scholar]
- Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description. Comput. Vis. Imag. Underst. 2014, 125, 251–264. [Google Scholar] [CrossRef]
- Zhou, Q.-Y.; Park, J.; Koltun, V. Fast Global Registration. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 766–782. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Choy, C.; Gwak, J.; Savarese, S. 4d spatio-temporal convnets: Minkowski convolutional neural networks. In Proceedings of the CVPR, Long Beach, CA, USA, 15–20 June 2019; pp. 3075–3084. [Google Scholar]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 2019, 38, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.; Qi, C.R.; Deschaud, J.; Marcotegui, B.; Goulette, F.; Guibas, L. KPConv: Flexible and Deformable Convolution for Point Clouds. In Proceedings of the ICCV, Seoul, Korea, 27 October–2 November 2019; pp. 6410–6419. [Google Scholar]
- Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of the CVPR, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361. [Google Scholar]
- Pomerleau, F.; Liu, M.; Colas, F.; Siegwart, R. Challenging data sets for point cloud registration algorithms. Int. J. Robot. Res. 2012, 31, 1705–1711. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the CVPR, Boston, MA, USA, 7–12 June 2015; pp. 1912–1920. [Google Scholar]
- Zeng, A.; Song, S.; Nießner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions. In Proceedings of the CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 199–208. [Google Scholar]
- Deng, H.; Birdal, T.; Ilic, S. Ppfnet: Global context aware local features for robust 3d point matching. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–23 June 2018; pp. 195–205. [Google Scholar]
- Deng, H.; Birdal, T.; Ilic, S. PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 620–638. [Google Scholar]
- Choy, C.; Park, J.; Koltun, V. Fully convolutional geometric features. In Proceedings of the ICCV, Seoul, Korea, 27 October–2 November 2019; pp. 8958–8966. [Google Scholar]
- Li, L.; Zhu, S.; Fu, H.; Tan, P.; Tai, C.L. End-to-End Learning Local Multi-View Descriptors for 3D Point Clouds. In Proceedings of the CVPR, Seattle, WA, USA, 13–19 June 2020; pp. 1916–1925. [Google Scholar]
- Bai, X.; Luo, Z.; Zhou, L.; Fu, H.; Quan, L.; Tai, C.-L. D3feat: Joint learning of dense detection and description of 3d local features. In Proceedings of the CVPR, Seattle, WA, USA, 13–19 June 2020; pp. 6359–6367. [Google Scholar]
- Horache, S.; Deschaud, J.-E.; Goulette, F. 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning. arXiv 2021. preprint. [Google Scholar] [CrossRef]
- Poiesi, F.; Boscaini, D. Distinctive 3D local deep descriptors. In Proceedings of the 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 5720–5727. [Google Scholar]
- Poiesi, F.; Boscaini, D. Learning general and distinctive 3D local deep descriptors for point cloud registration. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 3979–3985. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Quan, S.; Wang, P.; Zhang, Y. Evaluating Local Geometric Feature Representations for 3D Rigid Data Matching. IEEE Trans. Image Process. 2020, 29, 2522–2535. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Song, P.; Chen, X. Signature of Geometric Centroids for 3D Local Shape Description and Partial Shape Matching. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2017; pp. 311–326. [Google Scholar]
- Quan, S.; Ma, J.; Hu, F.; Fang, B.; Ma, T. Local voxelized structure for 3D binary feature representation and robust registration of point clouds from low-cost sensors. Inf. Sci. 2018, 444, 153–171. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Chen, S.; Liu, X.; Xu, H.; Wu, Y.; Li, M.; Chen, Y. Registration of laser scanning point clouds: A review. Sensors 2018, 18, 1641. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y. Target-less registration of point clouds: A review. arXiv 2019. preprint. [Google Scholar] [CrossRef]
- Dong, Z.; Liang, F.; Yang, B.; Xu, Y.; Zang, Y.; Li, J.; Wang, Y.; Dai, W.; Fan, H.; Hyyppä, J.; et al. Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 163, 327–342. [Google Scholar] [CrossRef]
- Gu, X.; Wang, X.; Guo, Y. A review of research on point cloud registration methods. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Ho Chi Minh City, Vietnam, 6–8 January 2020; p. 022070. [Google Scholar]
- Villena-Martinez, V.; Oprea, S.; Saval-Calvo, M.; Azorin-Lopez, J.; Fuster-Guillo, A.; Fisher, R.B. When Deep Learning Meets Data Alignment: A Review on Deep Registration Networks (DRNs). Appl. Sci. 2020, 10, 7524. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, Y.; Sun, J. Deep learning based point cloud registration: An overview. Virtual Real. Intell. Hardw. 2020, 2, 222–246. [Google Scholar] [CrossRef]
- Tang, W.; Zou, D.; Li, P. Learning-based Point Cloud Registration: A Short Review and Evaluation. In Proceedings of the International Conference on Artificial Intelligence in Electronics Engineering, Phuket, Thailand, 7–15 January 2021; pp. 27–34. [Google Scholar]
- Huang, X.; Mei, G.; Zhang, J.; Abbas, R. A comprehensive survey on point cloud registration. arXiv 2021. preprint. [Google Scholar] [CrossRef]
- Brightman, N.; Fan, L.; Zhao, Y. Point cloud registration: A mini-review of current state, challenging issues and future directions. AIMS Geosci. 2023, 9, 68–85. [Google Scholar] [CrossRef]
- Li, X.; Pontes, J.K.; Lucey, S. Pointnetlk revisited. In Proceedings of the CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 12763–12772. [Google Scholar]
- Yew, Z.J.; Lee, G.H. 3dfeat-net: Weakly supervised local 3d features for point cloud registration. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 607–623. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Random sample Consensus: A paradigm for model fitting with applications to image analysis and automated cartography. In Readings in Computer Vision; Fischler, M.A., Firschein, O., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 1987; pp. 726–740. [Google Scholar]
- Wang, Y.; Solomon, J.M. Deep closest point: Learning representations for point cloud registration. In Proceedings of the ICCV, Seoul, Korea, 27 October–2 November 2019; pp. 3523–3532. [Google Scholar]
- Wang, Y.; Solomon, J.M. Prnet: Self-supervised learning for partial-to-partial registration. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 10–12 December 2019. [Google Scholar]
- Cao, A.Q.; Puy, G.; Boulch, A.; Marlet, R. PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds. In Proceedings of the ICCV, Montreal, QC, Canada, 10–17 October 2021; pp. 13209–13218. [Google Scholar]
- Yew, Z.J.; Lee, G.H. REGTR: End-to-end Point Cloud Correspondences with Transformers. In Proceedings of the CVPR, New Orleans, LA, USA, 18–24 June 2022; pp. 6677–6686. [Google Scholar]
- Aoki, Y.; Goforth, H.; Srivatsan, R.A.; Lucey, S. Pointnetlk: Robust & efficient point cloud registration using pointnet. In Proceedings of the CVPR, Long Beach, CA, USA, 15–20 June 2019; pp. 7163–7172. [Google Scholar]
- Sarode, V.; Li, X.; Goforth, H.; Aoki, Y.; Srivatsan, R.A.; Lucey, S.; Choset, H. Pcrnet: Point cloud registration network using pointnet encoding. arXiv 2019. preprint. [Google Scholar] [CrossRef]
- Deng, H.; Birdal, T.; Ilic, S. 3d local features for direct pairwise registration. In Proceedings of the CVPR, Kalifornija, CA, USA, 1 April–16 May 2019; pp. 3244–3253. [Google Scholar]
- Horn, B.K. Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 1987, 4, 629–642. [Google Scholar] [CrossRef]
- Baker, S.; Matthews, I. Lucas-kanade 20 years on: A unifying framework. Int. J. Comput. Vis. 2004, 56, 221–255. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, C.; Shen, Y.; Tian, D. Foldingnet: Point cloud auto-encoder via deep grid deformation. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–23 June 2018; pp. 206–215. [Google Scholar]
- Xu, H.; Liu, S.; Wang, G.; Liu, G.; Zeng, B. OMNet: Learning Overlapping Mask for Partial-to-Partial Point Cloud Registration. In Proceedings of the ICCV, Montreal, QC, Canada, 10–17 October 2021; pp. 3112–3121. [Google Scholar]
- Choy, C.; Dong, W.; Koltun, V. Deep Global Registration. In Proceedings of the CVPR, Seattle, WA, USA, 13–19 June 2020; pp. 2511–2520. [Google Scholar]
- Yang, H.; Dong, W.; Carlone, L.; Koltun, V. Self-supervised geometric perception. In Proceedings of the CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 14350–14361. [Google Scholar]
- Qin, Z.; Yu, H.; Wang, C.; Guo, Y.; Peng, Y.; Xu, K. Geometric transformer for fast and robust point cloud registration. In Proceedings of the CVPR, New Orleans, LA, USA, 18–24 June 2022; pp. 11143–11152. [Google Scholar]
- Ao, S.; Hu, Q.; Yang, B.; Markham, A.; Guo, Y. Spinnet: Learning a general surface descriptor for 3d point cloud registration. In Proceedings of the CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 11753–11762. [Google Scholar]
- Khoury, M.; Zhou, Q.-Y.; Koltun, V. Learning compact geometric features. In Proceedings of the ICCV, Venice, Italy, 22–29 October 2017; pp. 153–161. [Google Scholar]
- Spezialetti, R.; Salti, S.; Stefano, L.D. Learning an effective equivariant 3d descriptor without supervision. In Proceedings of the ICCV, Seoul, Korea, 27 October–2 November 2019; pp. 6401–6410. [Google Scholar]
- Gojcic, Z.; Zhou, C.; Wegner, J.D.; Wieser, A. The perfect match: 3d point cloud matching with smoothed densities. In Proceedings of the CVPR, Long Beach, CA, USA, 15–20 June 2019; pp. 5545–5554. [Google Scholar]
- Huang, S.; Gojcic, Z.; Usvyatsov, M.; Wieser, A.; Schindler, K. PREDATOR: Registration of 3D Point Clouds with Low Overlap. In Proceedings of the CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 4265–4274. [Google Scholar]
- Yew, Z.J.; Lee, G.H. Rpm-net: Robust point matching using learned features. In Proceedings of the CVPR, Seattle, WA, USA, 13–19 June 2020; pp. 11824–11833. [Google Scholar]
- Luo, W.; Li, Y.; Urtasun, R.; Zemel, R. Understanding the effective receptive field in deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Lu, F.; Chen, G.; Liu, Y.; Zhang, L.; Qu, S.; Liu, S.; Gu, R. HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration. In Proceedings of the ICCV, Montreal, QC, Canada, 10–17 October 2021; pp. 16014–16023. [Google Scholar]
- Zhu, L.; Guan, H.; Lin, C.; Han, R. Neighborhood-aware Geometric Encoding Network for Point Cloud Registration. arXiv 2022. preprint. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Li, Y.; Harada, T. Lepard: Learning partial point cloud matching in rigid and deformable scenes. In Proceedings of the CVPR, Orleans, LA, USA, 18–24 June 2022; pp. 5554–5564. [Google Scholar]
- Su, J.; Lu, Y.; Pan, S.; Wen, B.; Liu, Y. Roformer: Enhanced transformer with rotary position embedding. arXiv 2021. preprint. [Google Scholar] [CrossRef]
- Georgakis, G.; Karanam, S.; Wu, Z.; Ernst, J.; Košecká, J. End-to-End Learning of Keypoint Detector and Descriptor for Pose Invariant 3D Matching. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1965–1973. [Google Scholar]
- Tinchev, G.; Penate-Sanchez, A.; Fallon, M. SKD: Keypoint Detection for Point Clouds Using Saliency Estimation. IEEE Robot Autom. Let. 2021, 6, 3785–3792. [Google Scholar] [CrossRef]
- Sarode, V.; Dhagat, A.; Srivatsan, R.A.; Zevallos, N.; Lucey, S.; Choset, H. Masknet: A fully-convolutional network to estimate inlier points. In Proceedings of the International Conference on 3D Vision, Fukuoka, Japan, 25–28 November 2020; pp. 1029–1038. [Google Scholar]
- Yu, H.; Li, F.; Saleh, M.; Busam, B.; Ilic, S. CoFiNet: Reliable coarse-to-fine correspondences for robust pointcloud registration. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 7–10 December 2021; pp. 23872–23884. [Google Scholar]
- Mei, G.; Huang, X.; Zhang, J.; Wu, Q. Overlap-Guided Coarse-to-Fine Correspondence Prediction for Point Cloud Registration. In Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022; pp. 1–6. [Google Scholar]
- El Banani, M.; Gao, L.; Johnson, J. Unsupervisedr&r: Unsupervised point cloud registration via differentiable rendering. In Proceedings of the CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 7129–7139. [Google Scholar]
- Pais, G.D.; Ramalingam, S.; Govindu, V.M.; Nascimento, J.C.; Chellappa, R.; Miraldo, P. 3dregnet: A deep neural network for 3d point registration. In Proceedings of the CVPR, Seattle, WA, USA, 13–19 June 2020; pp. 7193–7203. [Google Scholar]
- Bai, X.; Luo, Z.; Zhou, L.; Chen, H.; Li, L.; Hu, Z.; Fu, H.; Tai, C.-L. Pointdsc: Robust point cloud registration using deep spatial consistency. In Proceedings of the CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 15859–15869. [Google Scholar]
- Jang, E.; Gu, S.; Poole, B. Categorical reparameterization with gumbel-softmax. arXiv 2016. preprint. [Google Scholar] [CrossRef]
- Turk, G.; Levoy, M. The Stanford 3d Scanning Repository. Available online: http://graphics.stanford.edu/data/3Dscanrep (accessed on 13 January 2023).
- Dai, A.; Chang, A.X.; Savva, M.; Halber, M.; Funkhouser, T.; Nießner, M. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 5828–5839. [Google Scholar]
- Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 573–580. [Google Scholar]
- Maddern, W.; Pascoe, G.; Linegar, C.; Newman, P. 1 year, 1000 km: The Oxford RobotCar dataset. Int. J. Robot. Res. 2017, 36, 3–15. [Google Scholar] [CrossRef]
- Fontana, S.; Cattaneo, D.; Ballardini, A.L.; Vaghi, M.; Sorrenti, D.G. A benchmark for point clouds registration algorithms. Robot. Auton. Syst. 2021, 140, 103734. [Google Scholar] [CrossRef]
- Tombari, F.; Salti, S.; Di Stefano, L. Performance evaluation of 3D keypoint detectors. Int. J. Comput. Vis. 2013, 102, 198–220. [Google Scholar] [CrossRef]
- Zhao, Y.; Birdal, T.; Deng, H.; Tombari, F. 3D point capsule networks. In Proceedings of the CVPR, Long Beach, CA, USA, 15–20 June 2019; pp. 1009–1018. [Google Scholar]
- Liu, X.; Killeen, B.D.; Sinha, A.; Ishii, M.; Hager, G.D.; Taylor, R.H.; Unberath, M. Neighborhood normalization for robust geometric feature learning. In Proceedings of the CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 13044–13053. [Google Scholar]
- Shotton, J.; Glocker, B.; Zach, C.; Izadi, S.; Criminisi, A.; Fitzgibbon, A. Scene coordinate regression forests for camera relocalization in RGB-D images. In Proceedings of the CVPR, Portland, OR, USA, 23–28 June 2013; pp. 2930–2937. [Google Scholar]
- Xiao, J.; Owens, A.; Torralba, A. Sun3d: A database of big spaces reconstructed using sfm and object labels. In Proceedings of the ICCV, Sydney, NSW, Australia, 1–8 December 2013; pp. 1625–1632. [Google Scholar]
- Lai, K.; Bo, L.; Fox, D. Unsupervised feature learning for 3d scene labeling. In Proceedings of the ICRA, Hong Kong, China, 31 May–7 June 2014; pp. 3050–3057. [Google Scholar]
- Valentin, J.; Dai, A.; Nießner, M.; Kohli, P.; Torr, P.; Izadi, S.; Keskin, C. Learning to navigate the energy landscape. In Proceedings of the Fourth International Conference on 3D Vision, Stanford, CA, USA, 25–28 October 2016; pp. 323–332. [Google Scholar]
- Halber, M.; Funkhouser, T.A. Structured Global Registration of RGB-D Scans in Indoor Environments. arXiv 2016. preprint. [Google Scholar] [CrossRef]
- Arnold, E.; Mozaffari, S.; Dianati, M. Fast and Robust Registration of Partially Overlapping Point Clouds. IEEE Robot. Autom. Lett. 2021, 7, 1502–1509. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE T Pattern Anal. 1992, 14, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, Y.; Dong, Z.; Wang, W.; Yang, B. You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors. arXiv 2021. preprint. [Google Scholar] [CrossRef]
- Huang, R.; Yao, W.; Xu, Y.; Ye, Z.; Stilla, U. Pairwise Point Cloud Registration Using Graph Matching and Rotation-Invariant Features. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Chen, W.; Li, H.; Hill, R. Equivariant Point Network for 3D Point Cloud Analysis. In Proceedings of the CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 14509–14518. [Google Scholar]
- Li, L.; Fu, H.; Ovsjanikov, M. WSDesc: Weakly Supervised 3D Local Descriptor Learning for Point Cloud Registration. IEEE Trans. Vis. Comput. Graph. 2022, 1. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, G.; Wang, X.; Shu, M. DDRNet: Fast point cloud registration network for large-scale scenes. ISPRS J. Photogramm. Remote Sens. 2021, 175, 184–198. [Google Scholar] [CrossRef]
- Lee, D.; Hamsici, O.C.; Feng, S.; Sharma, P.; Gernoth, T. DeepPRO: Deep partial point cloud registration of objects. In Proceedings of the ICCV, Montreal, QC, Canada, 10–17 October 2021; pp. 5683–5692. [Google Scholar]
- Min, T.; Kim, E.; Shim, I. Geometry Guided Network for Point Cloud Registration. IEEE Robot. Autom. Lett. 2021, 6, 7270–7277. [Google Scholar] [CrossRef]
- Wu, B.; Ma, J.; Chen, G.; An, P. Feature interactive representation for point cloud registration. In Proceedings of the ICCV, Montreal, QC, Canada, 10–17 October 2021; pp. 5530–5539. [Google Scholar]
- Song, Y.; Shen, W.; Peng, K. A novel partial point cloud registration method based on graph attention network. Vis. Comput. 2023, 39, 1109–1120. [Google Scholar] [CrossRef]
- Kadam, P.; Zhang, M.; Liu, S.; Kuo, C.C.J. R-PointHop: A Green, Accurate, and Unsupervised Point Cloud Registration Method. IEEE Trans. Image Process. 2022, 31, 2710–2725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, J.; Dai, Y.; Fan, B.; He, M. VRNet: Learning the Rectified Virtual Corresponding Points for 3D Point Cloud Registration. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 4997–5010. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, C.; Feng, Y.; Du, S.; Dai, Q.; Gao, Y. STORM: Structure-Based Overlap Matching for Partial Point Cloud Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 1135–1149. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Kang, W.; Yan, Z.; Wang, B.; Ning, Q. Multi-features guidance network for partial-to-partial point cloud registration. Neural Comput. Appl. 2022, 34, 1623–1634. [Google Scholar] [CrossRef]
- Gu, X.; Tang, C.; Yuan, W.; Dai, Z.; Zhu, S.; Tan, P. RCP: Recurrent Closest Point for Point Cloud. In Proceedings of the CVPR, Orleans, LA, USA, 18–24 June 2022; pp. 8216–8226. [Google Scholar]
- Wang, B.; Chen, C.; Cui, Z.; Qin, J.; Lu, C.X.; Yu, Z.; Zhao, P.; Dong, Z.; Zhu, F.; Trigoni, N.; et al. P2-Net: Joint Description and Detection of Local Features for Pixel and Point Matching. arXiv 2021, arXiv:2103.01055. [Google Scholar]
- Dang, Z.; Wang, L.; Qiu, J.; Lu, M.; Salzmann, M. What Stops Learning-based 3D Registration from Working in the Real World? arXiv 2021. preprint. [Google Scholar] [CrossRef]
- Griffiths, D.; Boehm, J. SynthCity: A large scale synthetic point cloud. arXiv 2019. preprint. [Google Scholar] [CrossRef]
- Xiao, A.; Huang, J.; Guan, D.; Zhan, F.; Lu, S. Synlidar: Learning from synthetic lidar sequential point cloud for semantic segmentation. arXiv 2021. preprint. [Google Scholar] [CrossRef]
- Fang, J.; Yan, F.; Zhao, T.; Zhang, F.; Zhou, D.; Yang, R.; Ma, Y.; Wang, L. Simulating LIDAR point cloud for autonomous driving using real-world scenes and traffic flows. arXiv 2018, 1, preprint. [Google Scholar] [CrossRef]
- Wang, F.; Zhuang, Y.; Gu, H.; Hu, H. Automatic Generation of Synthetic LiDAR Point Clouds for 3-D Data Analysis. IEEE Trans. Instrum. Meas. 2019, 68, 2671–2673. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Qu, W.; Zuo, Y.; Fang, Y.; Zhao, X. IMFNet: Interpretable Multimodal Fusion for Point Cloud Registration. arXiv 2021. preprint. [Google Scholar] [CrossRef]
- Sun, C.; Jia, Y.; Guo, Y.; Wu, Y. Global-Aware Registration of Less-Overlap RGB-D Scans. In Proceedings of the CVPR, Orleans, LA, USA, 18–24 June 2022; pp. 6357–6366. [Google Scholar]
- Hou, M.; Li, S.; Jiang, L.; Wu, Y.; Hu, Y.; Yang, S.; Zhang, X. A New Method of Gold Foil Damage Detection in Stone Carving Relics Based on Multi-Temporal 3D LiDAR Point Clouds. ISPRS Int. J. Geo-Inf. 2016, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Matwij, W.; Gruszczyński, W.; Puniach, E.; Ćwiąkała, P. Determination of underground mining-induced displacement field using multi-temporal TLS point cloud registration. Measurement 2021, 180, 109482. [Google Scholar] [CrossRef]
- Pang, L.; Liu, D.; Li, C.; Zhang, F. Automatic Registration of Homogeneous and Cross-Source TomoSAR Point Clouds in Urban Areas. Sensors 2023, 23, 852. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Hu, X.; Dai, H. Deep fusion of multi-view and multimodal representation of ALS point cloud for 3D terrain scene recognition. ISPRS J. Photogramm. Remote Sens. 2018, 143, 205–212. [Google Scholar] [CrossRef]
- Zováthi, Ö.; Nagy, B.; Benedek, C. Point cloud registration and change detection in urban environment using an onboard Lidar sensor and MLS reference data. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102767. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Li, S.; Mei, G.; Xu, Z.; Wang, Y.; Zhang, J.; Bennamoun, M. Robust real-world point cloud registration by inlier detection. Comput. Vis. Image Underst. 2022, 224, 103556. [Google Scholar] [CrossRef]
Dataset | # Scenes | # Frames or Scans | Format | Scenario |
---|---|---|---|---|
Stanford [92] | 9 | - | TIN mesh | individual objects |
ModelNet [31] | 151,128 | - | CAD | synthetic individual objects |
ModelNet40 [31] | 12,311 | - | CAD | synthetic individual objects |
3Dmatch [32] | 62 | 200,000 | RGB-D | indoor |
ScanNet [93] | 1513 | 2,500,000 | RGB-D | indoor |
TUM [94] | 2 | 39 | RGB-D | indoor |
ETH [30] | 8 | 276 | point cloud | indoor and outdoor |
KITTI [29] | 39.2 km | - | point cloud | outdoor |
RobotCar [95] | 1000 km | - | point cloud | outdoor |
WHU [47] | 11 | 115 | point cloud | indoor and outdoor |
Composite [96] | 14 | 400 | RGB-D and point cloud | indoor and outdoor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Fan, L. Review on Deep Learning Algorithms and Benchmark Datasets for Pairwise Global Point Cloud Registration. Remote Sens. 2023, 15, 2060. https://doi.org/10.3390/rs15082060
Zhao Y, Fan L. Review on Deep Learning Algorithms and Benchmark Datasets for Pairwise Global Point Cloud Registration. Remote Sensing. 2023; 15(8):2060. https://doi.org/10.3390/rs15082060
Chicago/Turabian StyleZhao, Yang, and Lei Fan. 2023. "Review on Deep Learning Algorithms and Benchmark Datasets for Pairwise Global Point Cloud Registration" Remote Sensing 15, no. 8: 2060. https://doi.org/10.3390/rs15082060
APA StyleZhao, Y., & Fan, L. (2023). Review on Deep Learning Algorithms and Benchmark Datasets for Pairwise Global Point Cloud Registration. Remote Sensing, 15(8), 2060. https://doi.org/10.3390/rs15082060