Detector–Tracker Integration Framework for Autonomous Vehicles Pedestrian Tracking
Abstract
:1. Introduction
- (a)
- A pedestrian objects detector based on the improved YOLOv7 [33] network is established. The Space-to-Depth (SPD) convolution layer is adopted to improve the backbone network of YOLOv7. Yolov7-SPD has better pedestrian detection effect in complex scenes.
- (b)
- A novel appearance feature extraction network is proposed, which integrates the convolutional structural re-parameterization idea to construct a full-scale feature extraction block. The realization of pedestrian appearance features comprehensive extraction.
- (c)
- Experiments were carried out on MOT17 and MOT20 public datasets and driving video sequences, and the tracking performance of the proposed framework was evaluated by comparing with the most advanced multi-object tracking algorithms.
2. Related Work
2.1. System Model
2.2. Object Detection Algorithms
2.3. Tracking by Detection Algorithms
2.3.1. Apparent Feature Extraction Based on Feature Re-Extraction
2.3.2. Matching-Based Deep Data Association
2.3.3. Evaluation Metrics for Multi-Object Tracking
- True Positive (TP): Objects where the predicted trajectory coincides with the true trajectory.
- False Positive (FP): Objects that do not coincide with any GT trajectory.
- ID switch (IDs): Number of times the object ID has changed.
- False Negative (FN): Objects whose true trajectory does not coincide with any generated trajectory.
3. Proposed Online Pedestrian MOT Algorithm
3.1. Overall Architecture
3.2. Objects Detector
3.2.1. YOLOv7-SPD
3.2.2. Space-to-Depth (SPD)
3.3. Objects Tracker
3.3.1. Overview of DeepSORT
- (a)
- The appearance feature extraction network is only a general network for image classification tasks, which does not fully consider the difficulties of large intra-class variation and high similarity between classes in traffic scenes, and it is difficult to obtain accurate appearance feature vectors.
- (b)
- The feature extraction network cannot learn full-size features, and some matching errors will occur when the scale of the pedestrian object changes.
3.3.2. Improved Feature Extraction Network
4. Experiments
4.1. Experimental Environment
4.2. Datasets
4.2.1. Public Datasets
4.2.2. Driving Datasets
4.3. Implementation Results
4.3.1. Quantitative Analysis
4.3.2. Qualitative Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Liu, Y.; Ma, M.; Mei, S. A Spectral–Spatial Transformer Fusion Method for Hyperspectral Video Tracking. Remote Sens. 2023, 15, 1735. [Google Scholar] [CrossRef]
- Luo, Y.; Yin, D.; Wang, A. Pedestrian tracking in surveillance video based on modified CNN. Multimed. Tools Appl. 2018, 77, 24041–24058. [Google Scholar] [CrossRef]
- Hao, J.X.; Zhou, Y.M.; Zhang, G.S. A review of objects tracking algorithm based on UAV. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems, Shenzhen, China, 25–27 October 2018; pp. 328–333. [Google Scholar]
- Li, Y.; Wei, P.; You, M.; Wei, Y.; Zhang, H. Joint Detection, Tracking, and Classification of Multiple Extended Objects Based on the JDTC-PMBM-GGIW Filter. Remote Sens. 2023, 15, 887. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, W.; Mills, J.P. Optimizing Moving Object Trajectories from Roadside Lidar Data by Joint Detection and Tracking. Remote Sens. 2022, 14, 2124. [Google Scholar] [CrossRef]
- Peng, X.; Shan, J. Detection and Tracking of Pedestrians Using Doppler LiDAR. Remote Sens. 2021, 13, 2952. [Google Scholar] [CrossRef]
- Ciaparrone, G.; Sánchez, F.L.; Tabik, S. Deep learning in video multi-object tracking: A survey. Neurocomputing 2020, 381, 61–88. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhou, X.; Chen, S. Deep learning for multiple object tracking: A survey. IET Comput. Vis. 2019, 13, 355–368. [Google Scholar] [CrossRef]
- Tang, S.; Andriluka, M.; Andres, B. Multiple people tracking by lifted multi cut and person re-identification. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–27 July 2017; pp. 3539–3548. [Google Scholar]
- Keuper, M.; Tang, S.; Andres, B. Motion segmentation & multiple object tracking by correlation co-clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 140–153. [Google Scholar]
- Henschel, R.; Zou, Y.; Rosenhahn, B. Multiple people tracking using body and joint detections, In Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019.
- Zhou, W.; Luo, Q.; Wang, J.; Xing, W. Distractor-aware discrimination learning for online multiple object tracking. Pattern Recognit. 2020, 107, 107512. [Google Scholar] [CrossRef]
- Yang, J.; Ge, H.; Yang, J. Online multi-object tracking using multi-function integration and tracking simulation training. Appl. Intell. 2022, 52, 1268–1288. [Google Scholar] [CrossRef]
- Liu, Q.; Chu, Q.; Liu, B.; Yu, N. Gsm: Graph similarity model for multi-object tracking. In Proceedings of the 2020 IJCAI, Online, 7–15 January 2021; pp. 530–536. [Google Scholar]
- Bewley, A.; Ge, Z.Y.; Ott, L. Simple online and real time tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar]
- Wojk, E.N.; Bewley, A.; Paulus, D. Simple online and real time tracking with a deep association metric. In Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, China, 17–20 September 2017; pp. 3645–3649. [Google Scholar]
- Azimi, S.M.; Kraus, M.; Bahmanyar, R.; Reinartz, P. Multiple Pedestrians and Vehicles Tracking in Aerial Imagery Using a Convolutional Neural Network. Remote Sens. 2021, 13, 1953. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wang, C.Y.; Wang, X.G. FairMOT: On the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 2021, 129, 3069–3087. [Google Scholar] [CrossRef]
- Duan, K.W.; Song, B.; Xie, L.X. CenterNet: Keypoint triplets for object detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, Repulic of Korea, 27 October–2 November 2019; pp. 6568–6577. [Google Scholar]
- Zhou, X.; Koltun, V.; Krahenbuhl, P. Tracking objects as points. In Proceedings of the 2020 Conference on Computer Vision, Seattle, WA, USA, 13–19 June 2020; pp. 474–490. [Google Scholar]
- Lu, Z.C.; Rathod, V.; Votel, R. RetinaTrack: Online single stage joint detection and tracking. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 13–19 June 2020; pp. 14656–14666. [Google Scholar]
- Liang, C.; Zhang, Z.; Lu, Y. Rethinking the competition between detection and ReID in multi-object tracking. arXiv 2020, arXiv:2010.12138. [Google Scholar]
- Liang, C.; Zhang, Z.P.; Zhou, X. One more check: Making “fake background” be tracked again. arXiv 2021, arXiv:2104.09441. [Google Scholar] [CrossRef]
- Yu, E.; Li, Z.L.; Han, S.D. RelationTrack: Relation-aware multiple object tracking with decoupled representation. arXiv 2021, arXiv:2105.04322. [Google Scholar] [CrossRef]
- Li, J.X.; Ding, Y.; Wei, H.L. SimpleTrack: Rethinking and improving the JDE approach for multi-object tracking. arXiv 2022, arXiv:2203.03985. [Google Scholar] [CrossRef]
- Wan, X.Y.; Zhou, S.P.; Wang, J.J. Multiple object tracking by trajectory map regression with temporal priors embedding. In Proceedings of the 2021 ACM Multimedia Conference, New York, NY, USA, 17 October 2021; pp. 1377–1386. [Google Scholar]
- Vaswani, A.; Shazeer, N.M.; Parmar, N. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Sun, P.; Cao, J.; Jiang, Y.; Zhang, R.; Xie, E.; Yuan, Z.; Wang, C.; Luo, P. Transtrack: Multiple object tracking with transformer. arXiv 2020, arXiv:2012.15460. [Google Scholar]
- Xu, Y.; Ban, Y.; Delorme, G.; Gan, C.; Rus, D.; Alameda-Pineda, X. Transcenter: Transformers with dense queries for multiple-object tracking. arXiv 2021, arXiv:2103.15145. [Google Scholar]
- Meinhardt, T.; Kirillov, A.; Leal-taixe, L. TrackFormer: Multi-object tracking with transformers. arXiv 2021, arXiv:2101.02702. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G. End-to-end object detection with transformers. arXiv 2020, arXiv:2005.12872. [Google Scholar]
- Zeng, F.G.; Dong, B.; Wang, T.C. MOTR: End-to-end multiple-object tracking with transformer. arXiv 2021, arXiv:2105.03247. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.Y.; Dollar, P.; Girshick, R. Feature pyramid networks for object detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision and Pattern, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.Q.; He, K.M.; Girshick, R. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R. You only look once: Unified real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D. SSD: Single shot multi box detector. In Proceedings of the 14th European Conference Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Tsung-Yi, L.; Priya, G.; Ross, G.; Kaiming, H.; Piotr, D. Focal Loss for Dense Object Detection. In Proceedings of the IEEE international conference on computer vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Zhang, Y.F.; Sun, P.Z.; Jiang, Y.J. ByteTrack: Multi object tracking by associating every detection box. arXiv 2021, arXiv:2110.06864. [Google Scholar]
- Shan, C.B.; Wei, C.B.; Deng, B. Tracklets Predicting Based Adaptive Graph Tracking. arXiv 2020, arXiv:2010.09015. [Google Scholar]
- Cao, J.; Weng, X.; Khirodkar, R. Observation centric sort: Rethinking sort for robust multi-object tracking. arXiv 2022, arXiv:2203.14360. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.Q. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Yang, F.; Chang, X.; Sakti, S. ReMOT: A model agnostic refinement for multiple object tracking. Image Vis. Comput. 2021, 106, 104091. [Google Scholar] [CrossRef]
- Baisa, N.L. Robust online multi-objects visual tracking using a HISP filter with discriminative deep appearance learning. J. Vis. Commun. Image Represent. 2021, 77, 102952. [Google Scholar] [CrossRef]
- Chen, L.; Ai, H.Z.; Zhuang, Z.J. Real-time multiple people tracking with deeply learned candidate selection and person re- identification. In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo, San Diego, CA, USA, 23–27 July 2018; pp. 1–6. [Google Scholar]
- Du, Y.; Zhao, Z.; Song, Y.; Zhao, Y.; Su, F.; Gong, T. Strongsort: Make deepsort great again. IEEE Trans. Multimed. 2023. [Google Scholar] [CrossRef]
- Karthik, S.; Prabhu, A.; Gandhi, V. Simple unsupervised multi-object tracking. arXiv 2020, arXiv:2006.02609. [Google Scholar]
- Baisa, N.L. Occlusion- robust online multi- object visual tracking using a GM-PHD filter with a CNN-based reidentification. J. Vis. Commun. Image Represent. 2021, 80, 103279. [Google Scholar] [CrossRef]
- Chu, P.; Wang, J.; You, Q.; Ling, H.; Liu, Z. Transmot: Spatial-temporal graph transformer for multiple object tracking. arXiv 2021, arXiv:2104.00194. [Google Scholar]
- Xu, Y.; Osep, A.; Ban, Y.; Horaud, R.; Leal-Taixé, L.; Alameda-Pineda, X. How to train your deep multi-object tracker. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 6787–6796. [Google Scholar]
- Son, J.; Baek, M.; Cho, M.; Han, B. Multi-object tracking with quadruplet convolutional neural networks. In Proceedings of the 2017 IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5620–5629. [Google Scholar]
- Sajjadi, M.S.; Vemulapalli, R.; Brown, M. Frame-recurrent video super-resolution. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6626–6634. [Google Scholar]
- Sunkara, R.; Luo, T. No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects. arXiv 2022, arXiv:2208.03641. [Google Scholar]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the 2021 IEEE/CVF conference on computer vision and pattern recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742. [Google Scholar]
- Aandrew, G.H.; Menglong, Z.; Bo, C.; Dmitry, K.; Weijun, W.; Tobias, W. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE/CVF conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Zhou, K.; Yang, Y.; Cavallaro, A.; Xiang, T. Omni-scale feature learning for person re-identification. In Proceedings of the 2019 IEEE/CVF international conference on computer vision, Long Beach, CA, USA, 16–20 June 2019; pp. 3702–3712. [Google Scholar]
- Dendorfer, P.; Osep, A.; Milan, A. MOTChallenge: A Benchmark for Single Camera Multiple Objects Tracking. Int. J. Comput. Vis. 2021, 129, 845–881. [Google Scholar] [CrossRef]
- Shao, S.; Zhao, Z.; Li, B.; Xiao, T.; Yu, G.; Zhang, X.; Sun, J. Crowdhuman: A benchmark for detecting human in a crowd. arXiv 2018, arXiv:1805.00123. [Google Scholar]
- Zhang, S.; Benenson, R.; Schiele, B. Citypersons: A diverse dataset for pedestrian detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–27 July 2017; pp. 3213–3221. [Google Scholar]
- Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Bu, J.; Tian, Q. Person re-identification meets image search. arXiv 2015, arXiv:1502.02171. [Google Scholar]
Stage | FSNet | Output |
---|---|---|
Conv1 | conv3×3, stride 2 max pooling3×3, stride 2 | 128 × 64, 64 64 × 32, 64 |
Conv2 | block×2 | 64 × 32, 256 |
Conv3 | conv1×1 average pooling2×2, stride 2 | 64 × 32, 256 32 × 16, 256 |
Conv4 | block×2 | 32 × 16, 384 |
Conv5 | conv1×1 average pooling2×2, stride 2 | 32 × 16, 384 16 × 8, 384 |
Conv6 | block×2 | 16 × 8, 512 |
Conv7 | conv1×1 | 16 × 8, 512 |
Gap | global average pooling | 1 × 1, 512 |
Fc | fc | 1 × 1, 512 |
Method | HOTA (↑) | IDF1 (↑) | MOTA (↑) | IDs (↓) | FPS (↑) |
---|---|---|---|---|---|
SORT [15] | 32.9 | 38.1 | 41.2 | 4816 | 114 |
FairMOT [18] | 56.0 | 70.3 | 71.2 | 3398 | 22 |
DeepMOT [55] | 40.9 | 52.6 | 52.9 | 1990 | 6 |
CenterTrack [20] | 51.2 | 63.3 | 66.8 | 3139 | 5 |
TransTrack [28] | 53.3 | 62.6 | 72.8 | 3678 | 43 |
TransCenter [29] | 52.3 | 62.1 | 71.7 | 4911 | 2 |
TransMOT [30] | 60.1 | 72.9 | 73.7 | 2640 | 2 |
ByteTrack [42] | 58.9 | 75.6 | 76.2 | 2298 | 22 |
StrongSORT [51] | 63.3 | 74.5 | 75.8 | 1646 | 18 |
DeepSORT [16] | 60.1 | 72.8 | 74.6 | 1898 | 14 |
Ours | 62.4 | 74.7 | 77.0 | 1591 | 17 |
Method | HOTA (↑) | IDF1 (↑) | MOTA (↑) | IDs (↓) | FPS (↑) |
---|---|---|---|---|---|
SORT [15] | 34.4 | 42.9 | 38.1 | 4968 | 48 |
FairMOT [18] | 52.4 | 64.8 | 60.2 | 5419 | 13 |
DeepMOT [55] | 38.2 | 49.7 | 49.4 | 2065 | 3 |
CenterTrack [20] | 48.1 | 59.7 | 62.4 | 3320 | 3 |
TransTrack [28] | 50.8 | 58.6 | 72.1 | 3875 | 43 |
TransCenter [29] | 41.2 | 47.5 | 55.1 | 5023 | 2 |
TransMOT [30] | 54.1 | 68.7 | 65.8 | 2891 | 2 |
ByteTrack [42] | 57.1 | 72.3 | 71.5 | 2361 | 13 |
StrongSORT [51] | 59.8 | 74.1 | 70.9 | 1809 | 9 |
DeepSORT [16] | 56.5 | 66.1 | 67.3 | 2269 | 8 |
Ours | 58.9 | 74.3 | 71.8 | 1788 | 10 |
Method | HOTA (↑) | IDF1 (↑) | MOTA (↑) | IDs (↓) | FPS (↑) |
---|---|---|---|---|---|
SORT [15] | 33.7 | 38.9 | 42.4 | 4796 | 112 |
FairMOT [18] | 57.2 | 71.2 | 72.5 | 3306 | 20 |
DeepMOT [55] | 42.4 | 53.2 | 53.4 | 1954 | 5 |
CenterTrack [20] | 52.2 | 64.7 | 67.3 | 3039 | 4 |
TransTrack [28] | 54.0 | 63.1 | 74.2 | 3609 | 42 |
TransCenter [29] | 54.3 | 64.3 | 72.5 | 4710 | 2 |
TransMOT [30] | 60.5 | 74.6 | 75.1 | 2340 | 2 |
ByteTrack [42] | 60.1 | 76.2 | 78.4 | 2236 | 22 |
StrongSORT [51] | 63.5 | 75.1 | 76.3 | 1446 | 18 |
DeepSORT [16] | 61.1 | 74.2 | 76.0 | 1837 | 14 |
Ours | 63.7 | 78.5 | 78.3 | 1453 | 16 |
Method | HOTA (↑) | IDF1 (↑) | MOTA (↑) | IDs (↓) | FPS (↑) |
---|---|---|---|---|---|
SORT [15] | 35.7 | 44.7 | 40.4 | 4856 | 46 |
FairMOT [18] | 53.9 | 66.1 | 60.5 | 5235 | 12 |
DeepMOT [55] | 39.3 | 50.2 | 49.9 | 2098 | 3 |
CenterTrack [20] | 48.9 | 60.1 | 63.6 | 3423 | 2 |
TransTrack [28] | 51.6 | 59.7 | 73.2 | 3891 | 24 |
TransCenter [29] | 42.1 | 48.2 | 56.4 | 4690 | 1 |
TransMOT [30] | 54.3 | 69.2 | 67.9 | 2451 | 1 |
ByteTrack [42] | 59.7 | 74.5 | 73.8 | 2531 | 12 |
StrongSORT [51] | 60.2 | 74.7 | 71.4 | 1782 | 8 |
DeepSORT [16] | 57.4 | 68.1 | 69.7 | 2095 | 7 |
Ours | 60.4 | 75.1 | 73.9 | 1546 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Jin, L.; He, Y.; Huo, Z.; Wang, G.; Sun, X. Detector–Tracker Integration Framework for Autonomous Vehicles Pedestrian Tracking. Remote Sens. 2023, 15, 2088. https://doi.org/10.3390/rs15082088
Wang H, Jin L, He Y, Huo Z, Wang G, Sun X. Detector–Tracker Integration Framework for Autonomous Vehicles Pedestrian Tracking. Remote Sensing. 2023; 15(8):2088. https://doi.org/10.3390/rs15082088
Chicago/Turabian StyleWang, Huanhuan, Lisheng Jin, Yang He, Zhen Huo, Guangqi Wang, and Xinyu Sun. 2023. "Detector–Tracker Integration Framework for Autonomous Vehicles Pedestrian Tracking" Remote Sensing 15, no. 8: 2088. https://doi.org/10.3390/rs15082088
APA StyleWang, H., Jin, L., He, Y., Huo, Z., Wang, G., & Sun, X. (2023). Detector–Tracker Integration Framework for Autonomous Vehicles Pedestrian Tracking. Remote Sensing, 15(8), 2088. https://doi.org/10.3390/rs15082088