A Record-Setting 2021 Heat Wave in Western Canada Had a Significant Temporary Impact on Greenness of the World’s Largest Protected Temperate Rainforest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate Data
2.2. Remote Sensing Data
2.3. Ecosystem-Based Analysis
3. Results
3.1. Heat Wave Extent and Duration
3.2. Short-Term Response in Vegetation Greenness
3.3. Lead-Up and Medium-Term Response
3.4. Ecosystem Attributes and Heat Wave Impacts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Overland, J.E. Causes of the record-breaking Pacific Northwest heatwave, late June 2021. Atmosphere 2021, 12, 1434. [Google Scholar] [CrossRef]
- Bartusek, S.; Kornhuber, K.; Ting, M.F. 2021 North American heatwave amplified by climate change-driven nonlinear interactions. Nat. Clim. Chang. 2022, 12, 1143–1150. [Google Scholar] [CrossRef]
- White, R.H.; Anderson, S.; Booth, J.F.; Braich, G.; Draeger, C.; Fei, C.; Harley, C.D.G.; Henderson, S.B.; Jakob, M.; Lau, C.-A.; et al. The unprecedented Pacific Northwest heatwave of June 2021. Nat. Commun. 2023, 14, 727. [Google Scholar] [CrossRef] [PubMed]
- Thompson, V.; Kennedy-Asser, A.T.; Vosper, E.; Lo, Y.T.E.; Huntingford, C.; Andrews, O.; Collins, M.; Hegerl, G.C.; Mitchell, D. The 2021 western North America heat wave among the most extreme events ever recorded globally. Sci. Adv. 2022, 8, 6860. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, L20714. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012, 39, L06801. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Philip, S.Y.; Kew, S.F.; Van Oldenborgh, G.J.; Anslow, F.S.; Seneviratne, S.I.; Vautard, R.; Coumou, D.; Ebi, K.L.; Arrighi, J.; Singh, R. Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in June 2021. Earth Syst. Dyn. 2022, 13, 1689–1713. [Google Scholar] [CrossRef]
- Silberner, J. Heat wave causes hundreds of deaths and hospitalisations in Pacific north west. BMJ-Brit. Med. J. 2021, 374, N1696. [Google Scholar] [CrossRef]
- Henderson, S.B.; McLean, K.E.; Lee, M.J.; Kosatsky, T. Analysis of community deaths during the catastrophic 2021 heat dome: Early evidence to inform the public health response during subsequent events in greater Vancouver, Canada. Environ. Epidemiol. 2022, 6, e189. [Google Scholar] [CrossRef]
- Natural Resources Canada. Canadian National Fire Database (CNFDB). Available online: https://cwfis.cfs.nrcan.gc.ca/ha/nfdb (accessed on 10 January 2022).
- Still, C.; Sibley, A.; Depinte, D.; Busby, P.; Harrington, C.; Schulze, M.; Shaw, D.; Woodruff, D.; Rupp, D.; Daly, C. Causes of Widespread Foliar Damage from the June 2021 Pacific Northwest Heat Dome: More Heat than Drought. Tree Physiol. 2023, 43, 203–209. [Google Scholar] [CrossRef]
- Klein, T.; Torres-Ruiz, J.M.; Albers, J.J. Conifer desiccation in the 2021 NW heatwave confirms the role of hydraulic damage. Tree Physiol. 2022, 42, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Geddes, J.A.; Murphy, J.G.; Schurman, J.; Petroff, A.; Thomas, S.C. Net ecosystem exchange of an uneven-aged managed forest in central Ontario, and the impact of a spring heat wave event. Agric. For. Meteorol. 2014, 198, 105–115. [Google Scholar] [CrossRef]
- Filewod, B.; Thomas, S.C. Impacts of a spring heat wave on canopy processes in a northern hardwood forest. Glob. Chang. Biol. 2014, 20, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Stangler, D.F.; Hamann, A.; Kahle, H.P.; Spiecker, H. A heat wave during leaf expansion severely reduces productivity and modifies seasonal growth patterns in a northern hardwood forest. Tree Physiol. 2017, 37, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Rebetez, M.; Mayer, H.; Dupont, O.; Schindler, D.; Gartner, K.; Kropp, J.P.; Menzel, A. Heat and drought 2003 in Europe: A climate synthesis. Ann. For. Sci. 2006, 63, 569–577. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogee, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Pichler, P.; Oberhuber, W. Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. Forest Ecol. Manag. 2007, 242, 688–699. [Google Scholar] [CrossRef]
- Muthers, S.; Laschewski, G.; Matzarakis, A. The Summers 2003 and 2015 in South-West Germany: Heat Waves and Heat-Related Mortality in the Context of Climate Change. Atmosphere 2017, 8, 224. [Google Scholar] [CrossRef]
- Rouault, G.; Candau, J.N.; Lieutier, F.; Nageleisen, L.M.; Martin, J.C.; Warzee, N. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann. For. Sci. 2006, 63, 613–624. [Google Scholar] [CrossRef]
- Teskey, R.; Wertin, T.; Bauweraerts, I.; Ameye, M.; McGuire, M.A.; Steppe, K. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 2015, 38, 1699–1712. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, L.T.; Humphreys, A.M. Global variation in the thermal tolerances of plants. Proc. Natl. Acad. Sci. USA 2020, 117, 13580–13587. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.E.; Tjoelker, M.G.; Varhammar, A.; Medlyn, B.E.; Reich, P.B.; Leigh, A.; Pfautsch, S.; Blackman, C.J.; Lopez, R.; Aspinwall, M.J.; et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Chang. Biol. 2018, 24, 2390–2402. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; Van der Velde, M.; Vicca, S.; Babst, F.; et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Chang. Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 129. [Google Scholar] [CrossRef]
- Pollastrini, M.; Puletti, N.; Selvi, F.; Iacopetti, G.; Bussotti, F. Widespread crown defoliation after a drought and heat wave in the forests of Tuscany (central Italy) and their recovery—A case study from summer 2017. Front. For. Glob. Chang. 2019, 2, 74. [Google Scholar] [CrossRef]
- Vicca, S.; Balzarolo, M.; Filella, I.; Granier, A.; Herbst, M.; Knohl, A.; Longdoz, B.; Mund, M.; Nagy, Z.; Pintér, K. Remotely-sensed detection of effects of extreme droughts on gross primary production. Sci. Rep. 2016, 6, 28269. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef]
- Anderson, L.O.; Malhi, Y.; Aragao, L.E.O.C.; Ladle, R.; Arai, E.; Barbier, N.; Phillips, O. Remote sensing detection of droughts in Amazonian forest canopies. New Phytol. 2010, 187, 733–750. [Google Scholar] [CrossRef]
- Hoyer, S.; Hamman, J. xarray: ND labeled arrays and datasets in Python. J. Open Res. Softw. 2017, 5, 10. [Google Scholar] [CrossRef]
- Wang, T.L.; Hamann, A.; Spittlehouse, D.; Carroll, C. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America. PLoS ONE 2016, 11, e0156720. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); University of Arizona: Tucson, AZ, USA, 2015. [Google Scholar]
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product; USGS: Reston, VA, USA, 2018; pp. 1–18.
- Pojar, J.; Klinka, K.; Meidinger, D.V. Biogeoclimatic Ecosystem Classification in British-Columbia. For. Ecol. Manag. 1987, 22, 119–154. [Google Scholar] [CrossRef]
- Bailey, R.G. Delineation of Ecosystem Regions. Environ. Manag. 1983, 7, 365–373. [Google Scholar] [CrossRef]
- Schroeder, T.A.; Hamann, A.; Wang, T.L.; Coops, N.C. Occurrence and dominance of six Pacific Northwest conifer species. J. Veg. Sci. 2010, 21, 586–596. [Google Scholar] [CrossRef]
- Latifovic, R.; Pouliot, D.; Olthof, I. Circa 2010 Land Cover of Canada: Local Optimization Methodology and Product Development. Remote Sens. 2017, 9, 1098. [Google Scholar] [CrossRef]
- Nachtergaele, F.; Verelst, L.; Wiberg, D.; Batjes, N.; Dijkshoorn, J.; Fischer, G.; Jones, A.; Montanarella, L.; Petri, M.; Prieler, S. Harmonized World Soil Database Version 1.2. Available online: http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4 (accessed on 12 January 2023).
- Goslee, S.C.; Urban, D.L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 2007, 22, 1–19. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 5 June 2022).
- Bigras, F.J. Selection of white spruce families in the context of climate change: Heat tolerance. Tree Physiol. 2000, 20, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Rita, A.; Camarero, J.J.; Nole, A.; Borghetti, M.; Brunetti, M.; Pergola, N.; Serio, C.; Vicente-Serrano, S.M.; Tramutoli, V.; Ripullone, F. The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. Global Chang. Biol. 2020, 26, 851–863. [Google Scholar] [CrossRef]
- Government of BC. Great Bear Rainforest Legal Direction & Agreements. Government of British Columbia. Available online: https://www2.gov.bc.ca/gov/content/industry/crown-land-water/land-use-planning/regions/west-coast/great-bear-rainforest/great-bear-rainforest-legal-direction-agreements (accessed on 20 March 2023).
- Mercer, C.; Comeau, V.M.; Daniels, L.D.; Carrer, M. Contrasting impacts of climate warming on coastal old-growth tree species reveal an early warning of forest decline. Front. For. Glob. Chang. 2022, 4, 775301. [Google Scholar] [CrossRef]
- Shanley, C.S.; Pyare, S.; Goldstein, M.I.; Alaback, P.B.; Albert, D.M.; Beier, C.M.; Brinkman, T.J.; Edwards, R.T.; Hood, E.; MacKinnon, A.; et al. Climate change implications in the northern coastal temperate rainforest of North America. Clim. Chang. 2015, 130, 155–170. [Google Scholar] [CrossRef]
- Mahony, C.R.; Wang, T.; Hamann, A.; Cannon, A.J. A global climate model ensemble for downscaled monthly climate normals over North America. Int. J. Climatol. 2022, 42, 5871–5891. [Google Scholar] [CrossRef]
- Geange, S.R.; Arnold, P.A.; Catling, A.A.; Coast, O.; Cook, A.M.; Gowland, K.M.; Leigh, A.; Notarnicola, R.F.; Posch, B.C.; Venn, S.E.; et al. The thermal tolerance of photosynthetic tissues: A global systematic review and agenda for future research. New Phytol. 2021, 229, 2497–2513. [Google Scholar] [CrossRef]
- Liepe, K.J.; Hamann, A.; Smets, P.; Fitzpatrick, C.R.; Aitken, S.N. Adaptation of lodgepole pine and interior spruce to climate: Implications for reforestation in a warming world. Evol. Appl. 2016, 9, 409–419. [Google Scholar] [CrossRef]
- Schreiber, S.G.; Hamann, A.; Hacke, U.G.; Thomas, B.R. Sixteen years of winter stress: An assessment of cold hardiness, growth performance and survival of hybrid poplar clones at a boreal planting site. Plant Cell Environ. 2013, 36, 419–428. [Google Scholar] [CrossRef]
Time Period: | January–Febuary–March | April–May–June | ||
---|---|---|---|---|
Temp | Prec | Temp | Prec | |
Southern BC | +0.9 °C | +7% | +1.5 °C | −11% |
Northern BC | +1.4 °C | +42% | +1.1 °C | +5% |
Alaska coast | +1.2 °C | +24% | +1.2 °C | +8% |
Interior BC | +2.0 °C | +7% | +1.2 °C | +7% |
Region: | Correlation with ΔEVI |
Alaska Coast |
Northern BC Coast |
Southern BC Coast |
Interior BC | |
---|---|---|---|---|---|---|
Vegetation response | ||||||
EVI deviation in 16 days following the heat wave (%) | 18 | −31 | 0 | 13 | ||
Ecosystem attributes | ||||||
Elevation (m) | ELEV | −0.49 | 328 | 303 | 456 | 927 |
Field Capacity (cm3 cm−3) | FIELDCAP | −0.40 | 350 | 347 | 323 | 372 |
Thermal Capacity (m2 s−1) | THERMCAP | −0.33 | 81 | 95 | 99 | 115 |
Soil Wilting Point (cm3 cm−3) | WILTPOINT | −0.57 | 106 | 104 | 101 | 164 |
Proportion of Deciduous Trees | PROP_DEC | −0.29 | 7 | 9 | 9 | 17 |
Climate normal variables | ||||||
Mean Annual Temperature (°C) | MAT | 0.40 | 3.5 | 5.3 | 6.8 | 2.0 |
Mean Warmest month Temperature (°C) | MWMT | −0.05 | 11.8 | 13.3 | 14.8 | 13.4 |
Mean Coldest month Temperature (°C) | MCMT | 0.51 | −4.8 | −2.3 | −0.3 | −10.9 |
Continentality (°C) | TD | −0.56 | 16.7 | 15.6 | 15.1 | 24.3 |
Mean Annual Precipitation (mm) | MAP | 0.53 | 3067 | 3196 | 2945 | 689 |
Mean Summer Precipitation (mm) | MSP | 0.36 | 1008 | 869 | 622 | 272 |
Annual heat-moisture index (°C/mm) | AHM | −0.55 | 5 | 5 | 7 | 19 |
Summer heat-moisture index (°C/mm) | SHM | −0.48 | 15 | 18 | 30 | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, Z.; Hamann, A. A Record-Setting 2021 Heat Wave in Western Canada Had a Significant Temporary Impact on Greenness of the World’s Largest Protected Temperate Rainforest. Remote Sens. 2023, 15, 2162. https://doi.org/10.3390/rs15082162
Sang Z, Hamann A. A Record-Setting 2021 Heat Wave in Western Canada Had a Significant Temporary Impact on Greenness of the World’s Largest Protected Temperate Rainforest. Remote Sensing. 2023; 15(8):2162. https://doi.org/10.3390/rs15082162
Chicago/Turabian StyleSang, Zihaohan, and Andreas Hamann. 2023. "A Record-Setting 2021 Heat Wave in Western Canada Had a Significant Temporary Impact on Greenness of the World’s Largest Protected Temperate Rainforest" Remote Sensing 15, no. 8: 2162. https://doi.org/10.3390/rs15082162
APA StyleSang, Z., & Hamann, A. (2023). A Record-Setting 2021 Heat Wave in Western Canada Had a Significant Temporary Impact on Greenness of the World’s Largest Protected Temperate Rainforest. Remote Sensing, 15(8), 2162. https://doi.org/10.3390/rs15082162