D-Net: A Density-Based Convolutional Neural Network for Mobile LiDAR Point Clouds Classification in Urban Areas
Abstract
:1. Introduction
2. Point Cloud Classification
2.1. Descriptor-Based Methods
2.2. Deep Learning Based Methods
2.3. Summary of the Previous Works
3. Proposed D-Net Method
3.1. Pre-Processing
3.2. Network Architecture
4. Experiments and Results
4.1. MLS Dataset
4.2. Training Data Collection
4.3. Parameter Tuning
4.3.1. Voxel Size
4.3.2. Input Patch Size
4.3.3. Optimizing Methods
4.4. Classification Results
4.5. Accuracy Assessment
5. Discussion
5.1. Dataset
5.2. Network Structure
5.3. Comparison with Descriptor-Based Methods
5.4. Comparison with DL-Based Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Meng, W.; Xi, R.; Zhang, Y.; Ma, C.; Lu, L.; Zhang, X. 3D Point Cloud Analysis and Classification in Large-Scale Scene Based on Deep Learning. IEEE Access 2019, 7, 55649–55658. [Google Scholar] [CrossRef]
- Lehtomäki, M.; Jaakkola, A.; Hyyppä, J.; Lampinen, J.; Kaartinen, H.; Kukko, A.; Puttonen, E.; Hyyppä, H. Object Classification and Recognition from Mobile Laser Scanning Point Clouds in a Road Environment. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1226–1239. [Google Scholar] [CrossRef] [Green Version]
- Shokri, D.; Rastiveis, H.; Sarasua, W.A.; Shams, A.; Homayouni, S. A Robust and Efficient Method for Power Lines Extraction from Mobile LiDAR Point Clouds. PFG J. Photogramm. Remote Sens. Geoinform. Sci. 2021, 89, 209–232. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation; IEEE: New York, NY, USA, 2017; pp. 652–660. [Google Scholar]
- Li, X.; Wang, L.; Wang, M.; Wen, C.; Fang, Y. DANCE-NET: Density-aware convolution networks with context encoding for airborne LiDAR point cloud classification. ISPRS J. Photogramm. Remote Sens. 2020, 166, 128–139. [Google Scholar] [CrossRef]
- Han, X.; Dong, Z.; Yang, B. A Point-Based Deep Learning Network for Semantic Segmentation of MLS Point Clouds. ISPRS J. Photogramm. Remote Sens. 2021, 175, 199–214. [Google Scholar] [CrossRef]
- Yang, B.; Dong, Z.; Zhao, G.; Dai, W. Hierarchical Extraction of Urban Objects from Mobile Laser Scanning Data. ISPRS J. Photogramm. Remote Sens. 2015, 99, 45–57. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, Y.; Hoegner, L.; Stilla, U. Classification of mls point clouds in urban scenes using detrended geometric features from supervoxel-based local contexts. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, IV-2, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Günen, M.A. Adaptive Neighborhood Size and Effective Geometric Features Selection for 3D Scattered Point Cloud Classification. Appl. Soft Comput. 2022, 115, 108196. [Google Scholar] [CrossRef]
- Zolanvari, S.I.; Laefer, D.F.; Natanzi, A.S. Three-dimensional building façade segmentation and opening area detection from point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 143, 134–149. [Google Scholar] [CrossRef]
- Huang, J.; You, S. Point Cloud Labeling Using 3D Convolutional Neural Network. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2670–2675. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Yao, X.; Guo, J.; Hu, J.; Cao, Q. Using Deep Learning in Semantic Classification for Point Cloud Data. IEEE Access 2019, 7, 37121–37130. [Google Scholar] [CrossRef]
- Wen, C.; Yang, L.; Li, X.; Peng, L.; Chi, T. Directionally Constrained Fully Convolutional Neural Network for Airborne LiDAR Point Cloud Classification. ISPRS J. Photogramm. Remote Sens. 2020, 162, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Classification of Point Cloud for Road Scene Understanding with Multiscale Voxel Deep Network—Archive Ouverte HAL. Available online: https://hal.science/hal-01763469/ (accessed on 11 April 2023).
- Wang, L.; Huang, Y.; Shan, J.; He, L. MSNet: Multi-Scale Convolutional Network for Point Cloud Classification. Remote Sens. 2018, 10, 612. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, L.; Zhang, L.; Li, R.; Zheng, Y.; Zhu, Z. A Deep Neural Network With Spatial Pooling (DNNSP) for 3-D Point Cloud Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4594–4604. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Zhong, Z.; Cao, D.; Li, J. TGNet: Geometric Graph CNN on 3-D Point Cloud Segmentation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3588–3600. [Google Scholar] [CrossRef]
- Li, W.; Wang, F.-D.; Xia, G.-S. A Geometry-Attentional Network for ALS Point Cloud Classification. ISPRS J. Photogramm. Remote Sens. 2020, 164, 26–40. [Google Scholar] [CrossRef]
- Boulch, A. ConvPoint: Continuous Convolutions for Point Cloud Processing. Comput. Graph. 2020, 88, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Zhang, L.; Tian, Y.; Fong, S.; Liu, J.; Gozho, A. CNN-Based 3D Object Classification Using Hough Space of LiDAR Point Clouds. Hum. Cent. Comput. Inf. Sci. 2020, 10, 19. [Google Scholar] [CrossRef]
- Geng, X.; Ji, S.; Lu, M.; Zhao, L. Multi-Scale Attentive Aggregation for LiDAR Point Cloud Segmentation. Remote Sens. 2021, 13, 691. [Google Scholar] [CrossRef]
- Hoang, L.; Lee, S.-H.; Lee, E.-J.; Kwon, K.-R. GSV-NET: A Multi-Modal Deep Learning Network for 3D Point Cloud Classification. Appl. Sci. 2022, 12, 483. [Google Scholar] [CrossRef]
- Aijazi, A.K.; Checchin, P.; Trassoudaine, L. Segmentation Based Classification of 3D Urban Point Clouds: A Super-Voxel Based Approach with Evaluation. Remote Sens. 2013, 5, 1624–1650. [Google Scholar] [CrossRef] [Green Version]
- Weinmann, M.; Jutzi, B.; Mallet, C. Feature Relevance Assessment for the Semantic Interpretation of 3D Point Cloud Data. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. 2013, II-5/W2, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Jiang, W.; Xu, B.; Zhu, Q.; Jiang, S.; Huang, W. A Convolutional Neural Network-Based 3D Semantic Labeling Method for ALS Point Clouds. Remote Sens. 2017, 9, 936. [Google Scholar] [CrossRef] [Green Version]
- Boulch, A.; Guerry, J.; Le Saux, B.; Audebert, N. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks. Comput. Graph. 2018, 71, 189–198. [Google Scholar] [CrossRef]
- Shukor, S.A.A.; Rushforth, E.J. Adapting Histogram for Automatic Noise Data Removal in Building Interior Point Cloud Data. AIP Conf. Proc. 2015, 1660, 070074. [Google Scholar] [CrossRef]
- Griffiths, D.; Boehm, J. A Review on Deep Learning Techniques for 3D Sensed Data Classification. Remote Sens. 2019, 11, 1499. [Google Scholar] [CrossRef] [Green Version]
- Deep Learning—Ian Goodfellow, Yoshua Bengio, Aaron Courville—Google Books. Available online: https://books.google.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Goodfellow,+I.%3B+Bengio,+Y.%3B+Courville,+A.+Deep+learning%3B+MIT+press,+Cambridge,+Massachusetts,+London,+England:+2016&ots=MNU-bvmEQT&sig=0U23Gi-E3iJ82UHyrchZqKwto7s#v=onepage&q&f=false (accessed on 11 April 2023).
- Wichrowska, O.; Maheswaranathan, N.; Hoffman, M.W.; Colmenarejo, S.G.; Denil, M.; Freitas, N.; Sohl-Dickstein, J. Learned Optimizers That Scale and Generalize. In Proceedings of the 34th International Conference on Machine Learning, PMLR, Sydney, NSW, Australia, 6–11 August 2017; pp. 3751–3760. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- PointPAVGG: An Incremental Algorithm for Extraction of Points’ Positional Feature Using VGG on Point Clouds. SpringerLink. Available online: https://link.springer.com/chapter/10.1007/978-3-030-84529-2_60 (accessed on 11 April 2023).
- Girija, S.S. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467v2. [Google Scholar]
- Zhang, M.; Lucas, J.; Ba, J.; Hinton, G.E. Lookahead Optimizer: K Steps Forward, 1 Step Back. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates, Inc.: New York, NY, USA, 2019; Volume 32. [Google Scholar]
- Zaboli, M.; Rastiveis, H.; Shams, A.; Hosseiny, B.; Sarasua, W. Classification Of Mobile Terrestrial Lidar Point Cloud in Urban Area Using Local Descriptors. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-4/W18, 1117–1122. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Qi, Z.; Fuxin, L. PointConv: Deep Convolutional Networks on 3D Point Clouds. arXiv 2019, arXiv:1811.07246v3. [Google Scholar]
- Wang, Y.; Shi, T.; Yun, P.; Tai, L.; Liu, M. PointSeg: Real-Time Semantic Segmentation Based on 3D LiDAR Point Cloud. arXiv 2018, arXiv:1807.06288. [Google Scholar]
- Tan, W.; Qin, N.; Ma, L.; Li, Y.; Du, J.; Cai, G.; Yang, K.; Li, J. Toronto-3D: A Large-Scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways. arXiv 2020, arXiv:2003.08284v3. [Google Scholar]
- Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. RangeNet++: Fast and Accurate LiDAR Semantic Segmentation. In In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), The Venetian Macao, Macau, 4–8 November 2019. [Google Scholar]
- Xiao, A.; Yang, X.; Lu, S.; Guan, D.; Huang, J. FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation. ISPRS J. Photogramm. Remote Sens. 2021, 176, 237–249. [Google Scholar] [CrossRef]
Authors | Area Type | Size (M pts.) | Point Cloud Type | Algorithm Details | Semantic Classes | Overall Accuracy (%) | |
---|---|---|---|---|---|---|---|
Descriptor-Based Methods | Weinmann et al. [25] | Urban Area | 0.027~0.11 | ALS and TLS | Points, feature-based | Building, Road, Tree, Pole, Car | 90.1~95.5 92.8~94.5 |
Lehtomäki et al. [2] | Road environment | 9 | MLS | Points, feature-based | Tree, Car, Pedestrian, Lamp post, Hoarding, Traffic pole, Undefined | 87.9 | |
Yang et al. [26] | Urban Area | 0.2 | MLS | Supervoxels, feature-based | Tree, Street lamp, Building, Utility poles, Enclosure, Car, Traffic sign, Other | 91.1, 92.3 | |
Han et al. [6] | Road infrastructure | - | MLS | Points, feature-based | Pole, Street Lamp, Sign Board, Direction Sign, | 94.3, 93.3 | |
Sun et al. [8] | Urban Area | ~50 | MLS | Points, feature-based | Buildings, Terrain, Scanning artifacts, Massive vegetation, Hardscape, Natural terrain, Cars | 92 | |
Deep-learning Methods | Qi and Yi [12] | Urban Area | - | ALS + MLS | Voxels, deep learning (CNN) | Plane, Tree, Building, Car, Pole, Wire, Others | 93 |
Boulch et al. [27] | Urban Area | ~0.75 | ALS | Points, deep learning (CNN) | Car, Powerline, Façade, Fence/Hedge, Low vegetation, Shrub, Impervious Surfaces, Tree, Roof | 82.3 | |
Shukor et al. [28] | Urban Area | - | ALS and TLS | Points, deep learning (CNN) (Snapnet) | Natural terrain, High vegetation, Scanning artifacts, Buildings, Hardscape, Cars, Man-made terrain, Low vegetation, | 88.6 | |
Li et al. [18] | Urban Area | 7.5~8.1 | ALS and TLS | Points, deep learning (DNNSP) | Building, Low vegetation, Hardscape, Scanning artifacts, High vegetation, Cars, Natural Terrain, | 98.2 97.4 | |
Wang et al. [16] | Urban Area | 79.5 | ALS and oblique aerial photogrammetry | Points, deep learning, and machine learning | Natural terrain, Scanning artifacts, Low vegetation, Buildings, Hardscape, Man-made terrain, High vegetation, Cars | 84.8 | |
Li et al. [19] | Urban Area | 140 | ALS and TLS | Points, deep learning (TGNet) | Ground, Pedestrian, Car, Pole, Bollard, Barrier, Building, Natural, Trash can, | 96.97 | |
Wang et al. [1] | Urban Area | 1.36 | MLS | Points, deep learning (CNN) | Vegetation, Wire, Pole, Ground, Facade | 94.75 | |
Song [21] | Urban Area | 16 | TLS | Points, deep learning (continuous CNN) | High veg, Low veg, Natural, Man-made, Buildings, Cars, Hardscape, Artefacts | 93.4 | |
Geng et al. [22] | Urban Area | - | LiDAR Sensors | Rasters, deep learning (CNN) | Wall, Bush, Pedestrian, Tree | 93.3 | |
Reference [15] | Urban Area | 0.41 | ALS | Points, deep learning (CNN) | Power, Car, Shrub, Roof, Façade, Imp_surf, Fence_hedge, Low_veg, Tree | 82.2 | |
Yang et al. [7] | Urban Area | 80 | MLS | Points, deep learning | Natural, Building, Pole, Road, Road Markings, Car, Fence, Utility line, | 93.6 | |
Aijazi et al. [24] | Computer and Real-World Data | - | LiDAR Sensors | Points, deep learning | Airplane, Chair, Bottle, Bed, Bench, Bowl, Car, Bookshelf, Bathtub, Cone | 92.7 |
Optimizer | Adam |
---|---|
Learning rate | 0.00005 |
Epochs | <500 |
Mini-batch size | 32 |
Loss function | Categorical Cross-Entropy |
Conv. Filters | 448 (64 + 128 + 256) |
Dropout | 10% |
FC Neurons | 200 (100 + 100) |
Activation Function | ReLU |
Kernel size | 7 × 7, 5 × 5, 3 × 3 |
Batch Normalization | True |
Class Points | Cars | Vegetation | Poles | Powerlines | Asphalt road | Sidewalk | Buildings | Billboards | Total |
---|---|---|---|---|---|---|---|---|---|
Training | 24,722 | 46,337 | 24,153 | 21,200 | 1,614,692 | 546,699 | 125,033 | 49,952 | 2,452,788 |
Validation | 1766 | 3310 | 1725 | 1514 | 115,335 | 39,050 | 8931 | 3568 | 175,200 |
Test | 79,463 | 148,941 | 77,634 | 68,141 | 5,190,082 | 1,757,248 | 401,893 | 160,560 | 7,873,961 |
All | 105,951 | 198,588 | 103,512 | 90,855 | 6,920,109 | 2,342,997 | 535,857 | 214,080 | 10,501,949 |
Voxel Size (cm) | Processing Time Per Epoch (s) | Test Accuracy (%) |
---|---|---|
5 | 3 | 88.35 |
8 | 3 | 90.23 |
10 | 3 | 93.82 |
15 | 3 | 92.49 |
20 | 3 | 92.40 |
Patch Size | Processing Time Per Epoch (min) | Test Accuracy (%) |
---|---|---|
13 × 13 × 11 | 1.33 | 97.96 |
15 × 15 × 11 | 1.5 | 98.31 |
17 × 17 × 11 | 1.66 | 98.49 |
Patch Sizes | Measures | Classes (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Cars | Vegetation | Poles | Powerlines | Asphalt Road | Sidewalk | Buildings | Billboards | ||
13 × 13 × 11 | Precision | 98.3 | 99.1 | 99.6 | 97.4 | 100.0 | 90.4 | 98.3 | 99.7 |
Recall | 90.8 | 99.3 | 97.3 | 99.6 | 98.4 | 98.9 | 99.4 | 99.4 | |
F1-score | 94.4 | 99.2 | 98.4 | 98.5 | 99.2 | 94.5 | 98.8 | 99.6 | |
15 × 15 × 11 | Precision | 98.6 | 98.4 | 100.0 | 95.8 | 100.0 | 92.3 | 99.6 | 100.0 |
Recall | 95.3 | 100.0 | 95.7 | 100.0 | 98.2 | 99.7 | 99.6 | 99.3 | |
F1-score | 96.9 | 99.2 | 97.8 | 97.9 | 99.1 | 95.9 | 99.6 | 99.7 | |
17 × 17 × 11 | Precision | 99.4 | 98.4 | 100.0 | 95.7 | 99.3 | 95.3 | 99.4 | 99.4 |
Recall | 94.8 | 98.9 | 95.4 | 100.0 | 99.7 | 96.4 | 100.0 | 99.5 | |
F1-score | 97.0 | 99.5 | 97.7 | 97.9 | 99.5 | 95.8 | 99.7 | 99.5 |
Patch Sizes | Accuracy | Classes (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Cars | Vegetation | Poles | Powerlines | Asphalt Road | Sidewalk | Buildings | Billboards | ||
Section 2 | Precision | 34.5 | 93.6 | 71.4 | 90.6 | 90.5 | 68.9 | 51.2 | 83.7 |
Recall | 43.8 | 69.3 | 72.2 | 91.3 | 93.2 | 67.4 | 77.3 | 60.2 | |
F1-score | 38.6 | 79.6 | 71.8 | 90.9 | 91.8 | 68.1 | 61.6 | 70.0 | |
Section 3 | Precision | 36.6 | 97.8 | 60.3 | 80.2 | 92.9 | 67.6 | 55.6 | 56.3 |
Recall | 43.2 | 74.6 | 85.3 | 87.3 | 91.6 | 73.3 | 82.7 | 60.4 | |
F1-score | 39.6 | 84.6 | 70.7 | 83.6 | 92.2 | 70.3 | 66.5 | 58.3 |
Measures | |||||
---|---|---|---|---|---|
Methods | mIOU | OA (%) | Pr. (%) | R. (%) | F1(%) |
PointNet++ | 47.2 | 90.8 | 91.5 | 91.9 | 92.8 |
PointConv | 48.3 | 91.3 | 91.9 | 91.4 | 92.5 |
PointSeg | 39.9 | 92.1 | 92.3 | 93.5 | 92.7 |
TGNet | 58.5 | 91.4 | 92.32 | 92.1 | 91.3 |
MS-TGNet | 61.2 | 93.3 | 94.69 | 93.2 | 92.9 |
RangeNet++ | 58.3 | 93 | 92.9 | 92.3 | 94.5 |
FPS-Net | 69.1 | 97.6 | 98.2 | 96.66 | 97.7 |
D-Net | 69.7 | 98 | 98.125 | 97.5 | 97.625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaboli, M.; Rastiveis, H.; Hosseiny, B.; Shokri, D.; Sarasua, W.A.; Homayouni, S. D-Net: A Density-Based Convolutional Neural Network for Mobile LiDAR Point Clouds Classification in Urban Areas. Remote Sens. 2023, 15, 2317. https://doi.org/10.3390/rs15092317
Zaboli M, Rastiveis H, Hosseiny B, Shokri D, Sarasua WA, Homayouni S. D-Net: A Density-Based Convolutional Neural Network for Mobile LiDAR Point Clouds Classification in Urban Areas. Remote Sensing. 2023; 15(9):2317. https://doi.org/10.3390/rs15092317
Chicago/Turabian StyleZaboli, Mahdiye, Heidar Rastiveis, Benyamin Hosseiny, Danesh Shokri, Wayne A. Sarasua, and Saeid Homayouni. 2023. "D-Net: A Density-Based Convolutional Neural Network for Mobile LiDAR Point Clouds Classification in Urban Areas" Remote Sensing 15, no. 9: 2317. https://doi.org/10.3390/rs15092317
APA StyleZaboli, M., Rastiveis, H., Hosseiny, B., Shokri, D., Sarasua, W. A., & Homayouni, S. (2023). D-Net: A Density-Based Convolutional Neural Network for Mobile LiDAR Point Clouds Classification in Urban Areas. Remote Sensing, 15(9), 2317. https://doi.org/10.3390/rs15092317