Edge-Preserved Low-Rank Representation via Multi-Level Knowledge Incorporation for Remote Sensing Image Denoising
Abstract
:1. Introduction
- Different from conventional LRR-based denoising methods, we took a very different way to deal with low-rank residues, i.e., we did not simply discard them, but viewed those residues as a combination, which includes both edge information and the noisy part. By taking this different view, we tried to extract structural edge information in the residues to enrich the details of remote sensing images. To our best knowledge, this is the first time that the edge part in the residues has been valued and fully utilized.
- In order to better learn the edge information from the residues, we designed a new multi-level prior knowledge regulation. By incorporating it, our proposed method can further separate the edge part from the noise part. Thus, the structural edge information can be further discovered by the manifold learning framework, which can find the structural similarity of the edge part in the enhanced low-rank part of the residues. This enabled our algorithm to preserve more high-frequency edge components.
- Several experiments were conducted to prove the effectiveness of EPLRR-RSID. According to the experimental results, EPLRR-RSID had an outstanding advantage in preserving image edges, which made our method more competitive.
2. Related Works
3. Methodology
3.1. Model Formulation
3.2. Design of Multi-Level Knowledge
3.3. Optimization Procedure
Algorithm 1 The proposed EPLRR-RSID algorithm. |
|
4. Results and Analysis
4.1. Experimental Settings
4.2. Experiments on Simulated Data
4.3. Experiments on Real HSIs
- 1
- AVIRIS Indian Pines Dataset (Available: http://www.ehu.es/ccwintco/index.php/Hyperspectral$_$Remote$_$Sensing$_$Scenes (accessed on 15 November 2022): This dataset was acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over the Indian Pines test site in Northwestern Indiana in 1992. The size of the data is 145 × 145 × 220, and the false-color image is presented in Figure 5a. Several bands contained a mixture of water absorption, impulse noise, and Gaussian noise.
- 2
- HYDICE Urban Dataset (Available: http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/610433/hypercube/ (accessed on 15 November 2022): This dataset was acquired by the HYDICE sensor, whose size is 307 × 307 × 210. This dataset includes roads, roofs, grass, and trees. A subimage of size 200 × 200 × 210 was chosen in our experiments, and the false-color image is presented in Figure 5b.
4.4. Parameter Sensitivity
4.5. Complexity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, P.; Huang, F.; Li, G.; Liu, Z. Remote-sensing image denoising using partial differential equations and auxiliary images as priors. IEEE Geosci. Remote Sens. Lett. 2011, 9, 358–362. [Google Scholar] [CrossRef]
- Liu, S.; Liu, M.; Li, P.; Zhao, J.; Zhu, Z.; Wang, X. SAR image denoising via sparse representation in shearlet domain based on continuous cycle spinning. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2985–2992. [Google Scholar] [CrossRef]
- Li, L.; Hu, J.; Wu, F.; Zhao, J. A research and strategy of remote sensing image denoising algorithms. In Proceedings of the Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery: Volume 2; Springer: Berlin/Heidelberg, Germany, 2020; pp. 704–712. [Google Scholar]
- Aurich, V.; Weule, J. Non-linear Gaussian filters performing edge preserving diffusion. In Proceedings of the Mustererkennung 1995: Verstehen Akustischer und Visueller Informationen; Springer: Berlin/Heidelberg, Germany, 1995; pp. 538–545. [Google Scholar]
- Paris, S.; Kornprobst, P.; Tumblin, J.; Durand, F. Bilateral filtering: Theory and applications. Found. Trends Comput. Graph. Vis. 2009, 4, 1–73. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Buades, A.; Coll, B.; Morel, J.M. A nonlocal algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 2, pp. 60–65. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Adv. Neural Inf. Process. Syst. 2009, 22. [Google Scholar] [CrossRef]
- Guan, D.; Xiang, D.; Tang, X.; Kuang, G. SAR image despeckling based on nonlocal low-rank regularization. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3472–3489. [Google Scholar] [CrossRef]
- Chen, G.; Li, G.; Liu, Y.; Zhang, X.P.; Zhang, L. SAR image despeckling based on combination of fractional-order total variation and nonlocal low rank regularization. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2056–2070. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3050–3061. [Google Scholar] [CrossRef]
- Ma, T.H.; Xu, Z.; Meng, D. Remote sensing image denoising via low-rank tensor approximation and robust noise modeling. Remote Sens. 2020, 12, 1278. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; He, W.; Zhang, L. Hyperspectral image denoising with total variation regularization and nonlocal low-rank tensor decomposition. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3071–3084. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Huang, J.; Mei, X.; Ma, J. Hyperspectral image denoising using the robust low-rank tensor recovery. JOSA A 2015, 32, 1604–1612. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhao, X.L.; Ma, T.H.; Chen, Y.; Huang, T.Z.; Ding, M. Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J. Comput. Appl. Math. 2020, 363, 124–144. [Google Scholar] [CrossRef]
- Cao, W.; Chang, Y.; Han, G.; Li, J. Destriping remote sensing image via low-rank approximation and nonlocal total variation. IEEE Geosci. Remote Sens. Lett. 2018, 15, 848–852. [Google Scholar] [CrossRef]
- Sun, L.; Zhan, T.; Wu, Z.; Xiao, L.; Jeon, B. Hyperspectral mixed denoising via spectral difference-induced total variation and low-rank approximation. Remote Sens. 2018, 10, 1956. [Google Scholar] [CrossRef]
- Fan, H.; Li, C.; Guo, Y.; Kuang, G.; Ma, J. Spatial–spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6196–6213. [Google Scholar] [CrossRef]
- Zhang, M.; Desrosiers, C. Structure preserving image denoising based on low-rank reconstruction and gradient histograms. Comput. Vis. Image Underst. 2018, 171, 48–60. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Chanussot, J. L 0 Gradient Regularized Low-Rank Tensor Model for Hyperspectral Image Denoising. In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Liu, P.; Wang, M.; Wang, L.; Han, W. Remote-sensing image denoising with multi-sourced information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 660–674. [Google Scholar] [CrossRef]
- Han, L.; Zhao, Y.; Lv, H.; Zhang, Y.; Liu, H.; Bi, G. Remote sensing image denoising based on deep and shallow feature fusion and attention mechanism. Remote Sens. 2022, 14, 1243. [Google Scholar] [CrossRef]
- Wang, Z.; Ng, M.K.; Zhuang, L.; Gao, L.; Zhang, B. Nonlocal self-similarity-based hyperspectral remote sensing image denoising with 3-d convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Zeng, H.; Xie, X.; Cui, H.; Yin, H.; Ning, J. Hyperspectral image restoration via global L 1-2 spatial–spectral total variation regularized local low-rank tensor recovery. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3309–3325. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Chanussot, J. Tensor low-rank constraint and l_0 total variation for hyperspectral image mixed noise removal. IEEE J. Sel. Top. Signal Process. 2021, 15, 718–733. [Google Scholar] [CrossRef]
- Sun, L.; He, C. Hyperspectral Image Mixed Denoising Using Difference Continuity-Regularized Nonlocal Tensor Subspace Low-Rank Learning. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Lei, S.; Lu, M.; Lin, J.; Zhou, X.; Yang, X. Remote sensing image denoising based on improved semi-soft threshold. Signal Image Video Process. 2021, 15, 73–81. [Google Scholar] [CrossRef]
- Das, S.; Chakravortty, S. Spectral-spatial 3D dynamic trimmed median filter for removal of impulse noise in remotely sensed images. Multimed. Tools Appl. 2022, 82, 15945–15982. [Google Scholar] [CrossRef]
- Pandey, S.; Miri, R.; Sinha, G.; Raja, R. AFD filter and E2N2 classifier for improving visualization of crop image and crop classification in remote sensing image. Int. J. Remote Sens. 2022, 43, 5848–5873. [Google Scholar] [CrossRef]
- Geng, J.; Fan, J.; Ma, X.; Wang, H.; Cao, K. An iterative low-rank representation for SAR image despeckling. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 72–75. [Google Scholar]
- Xue, J.; Zhao, Y.; Liao, W.; Kong, S.G. Joint spatial and spectral low-rank regularization for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1940–1958. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Zhong, S. Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 21–26 July 2017; pp. 4260–4268. [Google Scholar]
- Chen, F.; Zhang, L.; Yu, H. External patch prior guided internal clustering for image denoising. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 603–611. [Google Scholar]
- Xie, M.; Liu, X.; Yang, X. Novel hybrid low-rank tensor approximation for hyperspectral image mixed denoising based on global-guided-nonlocal prior mechanism. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Tang, C.; Cao, L.; Chen, J.; Zheng, X. Speckle noise reduction for optical coherence tomography images via nonlocal weighted group low-rank representation. Laser Phys. Lett. 2017, 14, 056002. [Google Scholar] [CrossRef]
- Garnett, R.; Huegerich, T.; Chui, C.; He, W. A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 2005, 14, 1747–1754. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, C.; Zhang, Y.; Liu, H. An efficient SVD-based method for image denoising. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 868–880. [Google Scholar] [CrossRef]
- Dong, Y.; Chan, R.H.; Xu, S. A detection statistic for random-valued impulse noise. IEEE Trans. Image Process. 2007, 16, 1112–1120. [Google Scholar] [CrossRef]
- Yu, H.; Gao, J.; Li, A. Probability-based nonlocal means filter for speckle noise suppression in optical coherence tomography images. Opt. Lett. 2016, 41, 994–997. [Google Scholar] [CrossRef]
- Wang, H.; Cen, Y.; He, Z.; He, Z.; Zhao, R.; Zhang, F. Reweighted low-rank matrix analysis with structural smoothness for image denoising. IEEE Trans. Image Process. 2017, 27, 1777–1792. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Teboulle, M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 2009, 18, 2419–2434. [Google Scholar] [CrossRef]
- Renard, N.; Bourennane, S.; Blanc-Talon, J. Denoising and dimensionality reduction using multilinear tools for hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2008, 5, 138–142. [Google Scholar] [CrossRef]
- Manjón, J.V.; Coupé, P.; Martí-Bonmatí, L.; Collins, D.L.; Robles, M. Adaptive nonlocal means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 2010, 31, 192–203. [Google Scholar] [CrossRef]
- Maggioni, M.; Katkovnik, V.; Egiazarian, K.; Foi, A. Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 2012, 22, 119–133. [Google Scholar] [CrossRef]
- Peng, Y.; Meng, D.; Xu, Z.; Gao, C.; Yang, Y.; Zhang, B. Decomposable nonlocal tensor dictionary learning for multispectral image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2949–2956. [Google Scholar]
- Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z.; Gu, S.; Zuo, W.; Zhang, L. Multispectral images denoising by intrinsic tensor sparsity regularization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1692–1700. [Google Scholar]
- Cao, C.; Yu, J.; Zhou, C.; Hu, K.; Xiao, F.; Gao, X. Hyperspectral image denoising via subspace-based nonlocal low-rank and sparse factorization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 973–988. [Google Scholar] [CrossRef]
- Peng, J.; Wang, H.; Cao, X.; Liu, X.; Rui, X.; Meng, D. Fast Noise Removal in Hyperspectral Images via Representative Coefficient Total Variation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Wen, J.; Xu, Y.; Liu, H. Incomplete multiview spectral clustering with adaptive graph learning. IEEE Trans. Cybern. 2018, 50, 1418–1429. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed]
Definition | Notation | Value |
---|---|---|
Patch size | ||
The number of similar patches in each group matrix | 81 | |
The parameters in prior knowledge matrices | , | [0.001, 0.01, 0.1, 1] |
Hyperparameters | [0.0001, 0.01, …, 1000] |
Noise Variance | Evaluation Index | LRTA | ANLM3D | BM4D | TDL | ITSReg | SNLRSF | RCTV | EPLRR-RSID |
---|---|---|---|---|---|---|---|---|---|
0.02 | MPSNR | 42.0515 | 40.9386 | 43.2494 | 45.5021 | 43.4947 | 46.3958 | 37.3477 | 48.7693 |
MSSIM | 0.9875 | 0.9808 | 0.9917 | 0.9708 | 0.9950 | 0.9924 | 0.9930 | 0.9943 | |
ERGAS | 29.8352 | 33.8582 | 25.3636 | 21.0426 | 24.8458 | 18.4313 | 52.4070 | 18.0475 | |
MSAD | 0.0659 | 0.0532 | 0.0533 | 0.0388 | 0.0385 | 0.0358 | 0.0719 | 0.0336 | |
0.04 | MPSNR | 38.6549 | 33.9915 | 38.9835 | 41.4873 | 39.9658 | 42.6664 | 36.3351 | 45.8265 |
MSSIM | 0.9753 | 0.9189 | 0.9786 | 0.9878 | 0.9833 | 0.9908 | 0.9643 | 0.9927 | |
ERGAS | 43.4777 | 73.9060 | 41.3009 | 31.6011 | 37.1903 | 29.0053 | 57.0773 | 27.3846 | |
MSAD | 0.0822 | 0.0729 | 0.0784 | 0.0528 | 0.0495 | 0.0512 | 0.0773 | 0.0428 | |
0.06 | MPSNR | 36.2204 | 30.8091 | 36.5304 | 38.8493 | 37.8379 | 40.2668 | 34.6877 | 43.1284 |
MSSIM | 0.9588 | 0.8553 | 0.9630 | 0.9788 | 0.9738 | 0.9847 | 0.9490 | 0.9851 | |
ERGAS | 57.5013 | 105.6283 | 54.6983 | 42.5532 | 47.4484 | 38.5555 | 69.2007 | 35.1563 | |
MSAD | 0.1003 | 0.0845 | 0.0956 | 0.0626 | 0.0575 | 0.0638 | 0.0875 | 0.0532 | |
0.08 | MPSNR | 34.3290 | 29.0707 | 34.8010 | 37.0342 | 36.4610 | 38.4732 | 33.9440 | 40.2722 |
MSSIM | 0.9390 | 0.8028 | 0.9459 | 0.9692 | 0.9645 | 0.9777 | 0.9392 | 0.9806 | |
ERGAS | 71.1996 | 128.5255 | 66.6934 | 52.3320 | 55.4655 | 47.3746 | 75.4939 | 43.2758 | |
MSAD | 0.1178 | 0.0911 | 0.1095 | 0.0719 | 0.0637 | 0.0746 | 0.0929 | 0.0639 | |
0.1 | MPSNR | 33.0995 | 28.0036 | 33.4699 | 35.5897 | 35.5582 | 36.6549 | 33.1095 | 37.9364 |
MSSIM | 0.9225 | 0.7624 | 0.9278 | 0.9590 | 0.9572 | 0.9631 | 0.9290 | 0.9718 | |
ERGAS | 81.6941 | 145.0464 | 77.6982 | 61.8014 | 61.5646 | 58.2863 | 81.9037 | 56.7236 | |
MSAD | 0.1243 | 0.0958 | 0.1218 | 0.0787 | 0.0687 | 0.0795 | 0.0982 | 0.0675 |
LRTA | ANLM3D | BM4D | TDL | ITSReg | SNLRSF | RCTV | EPLRR-RSID | |
---|---|---|---|---|---|---|---|---|
Indian Pines | 114.97 | 115.82 | 115.94 | 114.84 | 116.16 | 95.47 | 116.23 | 91.60 |
HYDICE Urban | 96.11 | 99.26 | 101.26 | 96.16 | 100.56 | 97.56 | 101.14 | 86.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Tian, S.; Abhadiomhen, S.E.; Xu, Z.; Shen, X.; Wang, J.; Zhang, X.; Gao, W.; Zhang, H.; Wang, C. Edge-Preserved Low-Rank Representation via Multi-Level Knowledge Incorporation for Remote Sensing Image Denoising. Remote Sens. 2023, 15, 2318. https://doi.org/10.3390/rs15092318
Feng X, Tian S, Abhadiomhen SE, Xu Z, Shen X, Wang J, Zhang X, Gao W, Zhang H, Wang C. Edge-Preserved Low-Rank Representation via Multi-Level Knowledge Incorporation for Remote Sensing Image Denoising. Remote Sensing. 2023; 15(9):2318. https://doi.org/10.3390/rs15092318
Chicago/Turabian StyleFeng, Xiaolin, Sirui Tian, Stanley Ebhohimhen Abhadiomhen, Zhiyong Xu, Xiangjun Shen, Jing Wang, Xinming Zhang, Wenyun Gao, Hong Zhang, and Chao Wang. 2023. "Edge-Preserved Low-Rank Representation via Multi-Level Knowledge Incorporation for Remote Sensing Image Denoising" Remote Sensing 15, no. 9: 2318. https://doi.org/10.3390/rs15092318
APA StyleFeng, X., Tian, S., Abhadiomhen, S. E., Xu, Z., Shen, X., Wang, J., Zhang, X., Gao, W., Zhang, H., & Wang, C. (2023). Edge-Preserved Low-Rank Representation via Multi-Level Knowledge Incorporation for Remote Sensing Image Denoising. Remote Sensing, 15(9), 2318. https://doi.org/10.3390/rs15092318