Changes in Qinghai Lake Area and Their Interactions with Climatic Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Observational Hydrological and Meteorological Data
2.2.3. Climate Factors
2.3. Methodology
2.3.1. Linear Trend Analysis
2.3.2. Noise Assisted–Multivariate Empirical Mode Decomposition (NA-MEMD)
2.3.3. Wavelet Coherence Analysis Method
2.4. Extraction of Lake Surface Area
- Landsat TM 4-5: Employed the green, near-infrared (NIR), and shortwave infrared (SWIR) bands.
- Landsat 7 ETM SLC-off: Utilized Band2, Band4, and Band7.
- Landsat 8-9 OLI/TIRS C2 L2: Utilized Band3, Band5, and Band7.
- (i)
- Importing the original remote sensing image of the water bodies into ArcGIS. Utilizing the raster calculator within map algebra, the Normalized Difference Water Index (NDWI) was computed, generating NDWI data spanning from 1986 to 2022.
- (ii)
- Reclassifying the NDWI data obtained in the previous step. Setting the category as 2 with a breakpoint value of 0.1, assigning values of 0–1 to 1, and marking other values as Nodata. Subsequently, handling any missing data by converting it to Nodata. The reclassified results were projected onto the surface, allowing for visualization and assessment. The attribute table of the resulting file was reviewed to select the regions of interest, enabling the determination of each lake’s area for the corresponding year. The date and area were recorded in square kilometers, with precision to 0.01.
3. Results and Discussions
3.1. Evaluation of Satellite-Derived Lake Area Data
3.2. Seasonal Variation in Lake Area and Meteorological Elements
3.3. Anomalies in Lake Area and Meteorological Elements
3.4. Relationship between Lake Area and Meteorological Elements
3.5. Intra-Year Variability of Lake Area and Meteorological Elements
3.6. NA-MEMD Result of Monthly Lake Area and Related Meteorological Elements
3.7. Wavelet Analysis
4. Conclusions
- From 1986 to 2004, a decline in the surface area of Qinghai Lake was observed, followed by an expansion trend leading up to 2022, marked by shrinkage at a rate of −6.21 km2/a and subsequent growth at a rate of 19.52 km2/a. Coinciding with this trend, there has been a consistent increase in precipitation, temperature, and ET over the same period.
- There is a moderate positive correlation between the lake area and both precipitation and runoff, with a stronger link to runoff. Precipitation shows a moderate positive correlation with temperature and runoff, but a strong negative correlation with ice depth and the freezing period. An increase in temperature is closely related to an increase in ET, and is likely to lead to reduced ice depth and shorter freezing periods.
- The highest correlation coefficients are observed when runoff and precipitation are leading by 1–2 years. This indicates that precipitation and runoff experiences in a given year may have their most significant impact on the lake’s area in the subsequent 1 or 2 years. The correlation coefficient between temperature and lake area shows a varied pattern—initially negative, followed by a positive trend. This pattern suggests a two-way influence over different time spans: the lake area in a given year may influence the temperature approximately 6 years later, and the temperature in a given year may have an impact on the lake area after a lag of 2–3 years.
- Qinghai Lake reaches its largest size in September and its smallest in April. Correspondingly, the precipitation, temperature, and ET peak in July, July–August, and July–August, respectively.
- The lake’s surface area exhibited inconsistent periodic characteristics, particularly during certain years (1988, 1991, 1995–1996, 2015, and 2020), with short-term oscillations ranging from 0 to 8 months. There was a pronounced 8–16 month oscillation in meteorological factors like precipitation, temperature, and ET. Notably, changes in the lake’s area exhibited a 3-month delay in response to variations in precipitation and temperature, and a 3–6 month delay in influencing ET.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Nasiri, A.; Khosravian, M.; Zandi, R.; Entezari, A.; Baaghide, M. Analysis of physical changes in Fars province water zones related to climatic parameters using remote sensing, Bakhtegan, Tashk, Iran. Egypt. J. Remote Sens. 2023, 26, 851–861. [Google Scholar] [CrossRef]
- Wang, L.M.; Wang, J.X.; Wang, L.C.; Zhu, L.P.; Li, X.G. Lake Evaporation and Its Effects on Basin Evapotranspiration and Lake Water Storage on the Inner Tibetan Plateau. Water Resour. Res. 2023, 59, e2022WR034030. [Google Scholar] [CrossRef]
- Qu, L.L.; Liu, Y.S.; Li, Y.R.; Wang, J.Y.; Yang, F.; Wang, Y.S. Sustainable use of gully agricultural land and water resources for sustainable development goals: A case study in the Loess Plateau of China. Land Degrad. Dev. 2023, 34, 4935–4949. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yang, K.; Jia, T.F.; Luo, Y. Influence of natural factors and land use change on changes in the main lake area in China over the past 30 years. Ecol. Indic. 2023, 155, 111005. [Google Scholar] [CrossRef]
- Wu, Z.H.; Feng, J.X.; Qiao, F.L.; Tan, Z.M. Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets. Philos. Trans. R. Soc. A 2016, 374, 20150197. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Y.; Wang, Y.X.; Teng, M.J.; Wang, P.C.; Yan, Z.G.; Wang, H. Ecosystem services of lake-wetlands exhibit significant spatiotemporal heterogeneity and scale effects in a multi-lake megacity. Ecol. Indic. 2023, 154, 110843. [Google Scholar] [CrossRef]
- Ma, Y.J.; Li, X.Y.; Liu, L.; Yang, X.F.; Wu, X.C.; Wang, P.; Lin, H.; Zhang, G.H.; Miao, C.Y. Evapotranspiration and its dominant controls along an elevation gradient in the Qinghai Lake watershed, northeast Qinghai-Tibet Plateau. J. Hydrol. 2019, 575, 257–268. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, L.P.; Wang, J.B.; Ju, J.T.; Ma, Q.F.; Kou, Q.Q. The decrease of salinity in lakes on the Tibetan Plateau between 2000 and 2019 based on remote sensing model inversions. Int. J. Digit. Earth 2023, 16, 2644–2659. [Google Scholar] [CrossRef]
- Pang, S.Y.; Zhu, L.P.; Yang, R.M. Interannual Variation in the Area and Water Volume of Lakes in Different Regions of the Tibet Plateau and Their Responses to Climate Change. Front. Earth Sci. 2021, 9, 738018. [Google Scholar] [CrossRef]
- Paul, M.J.; Coffey, R.; Stamp, J.; Johnson, T. A Review of Water Quality Responses to Air Temperature and Precipitation Changes 1: Flow, Water Temperature, Saltwater Intrusion. J. Am. Water Resour. Assoc. 2019, 55, 824–843. [Google Scholar] [CrossRef]
- Wang, W.S.; Sun, M.P.; Che, Y.J.; Yao, X.J.; Zhang, M.J.; Niu, S.T. Micrometeorological Analysis and Glacier Ablation Simulation in East Kunlun. Water 2023, 15, 3517. [Google Scholar] [CrossRef]
- Li, H.; Luo, Z.L.; Xu, Y.; Zhu, S.Y.; Chen, X.; Geng, X.Z.; Xiao, L.; Wan, W.; Cui, Y.K. A remote sensing-based area dataset for approximately 40 years that reveals the hydrological asynchrony of Lake Chad based on Google Earth Engine. J. Hydrol. 2021, 603, 126934. [Google Scholar] [CrossRef]
- Ren, L.; Xiang, X.Y.; Ni, J.J. Research of the relationship between the water area and water level of Poyang Lake based on remote sensing image. Iahs-Aish Publ. 2011, 350, 660–665. [Google Scholar]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Liu, T.Y.; Dai, J.J.; Zhao, Y.Y.; Tian, S.F.; Nie, Z.; Ye, C.Y. Using remote sensing technology to monitor salt lake changes caused by climate change and melting glaciers: Insights from Zabuye Salt Lake in Xizang. J. Oceanol. Limnol. 2023, 41, 1258–1276. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C. Satellites: Make Earth observations open access. Nature 2014, 513, 30–31. [Google Scholar] [CrossRef]
- Gao, H.L. Satellite remote sensing of large lakes and reservoirs: From elevation and area to storage. Wiley Interdiscip. Rev.-Water 2015, 2, 147–157. [Google Scholar] [CrossRef]
- Liang, Y.T.; Wen, X.F.; Liu, K.Q.; Tan, D.B.; Cao, B. Dynamics Change of Water Surface Area and its Driving Force Analysis for Honghu Lake in Recent 40 Years Based on Remote Sensing Technique. In Proceedings of the 2013 Fifth International Conference on Measuring Technology and Mechatronics Automation, Hong Kong, China, 16–17 January 2013; pp. 500–506. [Google Scholar] [CrossRef]
- Liu, X.L.; Shi, Z.T.; Huang, G.C.; Bo, Y.C.; Chen, G.J. Time Series Remote Sensing Data-Based Identification of the Dominant Factor for Inland Lake Surface Area Change: Anthropogenic Activities or Natural Events? Remote Sens. 2020, 12, 612. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Kang, S.; Yi, D.; Ackley, S.F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2014, 150, 82–95. [Google Scholar] [CrossRef]
- Kameyama, S.; Zhang, J.; Wang, Q.; Xu, K.; Katoh, T.; Watanabe, M. An approach to Estimate the Water Level and Volume of Dongting Lake Using Terra/MODIS Data. ACTA Geogr. Sin. 2004, 59, 88–94. [Google Scholar]
- Li, J.; Li, J.; Huang, S.; Zuo, C. Application of Terr/MODIS Time Series Dat in Dynamic Monitoring of Lke Water Area Variations. J. Nat. Resour. 2009, 24, 923–933. [Google Scholar]
- Wu, M.; Zhang, W.; Wang, X.J.; Luo, D.G. Application of MODIS satellite data in monitoring water quality parameters of Chaohu Lake in China. Environ. Monit. Assess. 2009, 148, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Crétaux, J.F.; Abarca-del-Río, R.; Berge-Nguyen, M.; Arsen, A.; Drolon, V.; Clos, G.; Maisongrande, P. Lake volume monitoring from space. Surv. Geophys. 2016, 37, 269–305. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Neelmeijer, J.; Motagh, M.; Wetzel, H.-U. Estimating Spatial and Temporal Variability in Surface Kinematics of the Inylchek Glacier, Central Asia, using TerraSAR–X Data. Remote Sens. 2014, 6, 9239–9259. [Google Scholar] [CrossRef]
- Cai, X.; Gan, W.; Wei, J.; Zhao, X.; Wang, X.; Chen, X. Optimizing remote sensing-based level-area modeling of large lake wetlands: Case study of poyang lake. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 471–479. [Google Scholar] [CrossRef]
- Ma, M.; Wang, X.; Veroustraete, F.; Dong, L. Change in area of Ebinur Lake during the 1998–2005 period. Int. J. Remote Sens. 2007, 28, 5523–5533. [Google Scholar] [CrossRef]
- Bian, D.; Bian, B.; La, B.; Wang, C.Y.; Chen, T. The Response of Water Level of Selin Co to Climate Change during 1975–2008. ACTA Geogr. Sin. 2010, 65, 313–319. [Google Scholar]
- El-Asmar, H.M.; Hereher, M.E. Change detection of the coastal zone east of the Nile Delta using remote sensing. Environ. Earth Sci. 2011, 62, 769–777. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Wang, J.R.; Cai, X.B.; Zhao, J.L.; Zhang, H.W.; Zhang, Y.; Wang, C.S. Hydrological Characteristics Change of Hala Lake and Its Response to Climate Change, 1987–2018. Remote Sens. 2022, 14, 2886. [Google Scholar] [CrossRef]
- Aznarez, C.; Jimeno-Sáez, P.; López-Ballesteros, A.; Pacheco, J.P.; Senent-Aparicio, J. Analysing the Impact of Climate Change on Hydrological Ecosystem Services in Laguna del Sauce (Uruguay) Using the SWAT Model and Remote Sensing Data. Remote Sens. 2021, 13, 2014. [Google Scholar] [CrossRef]
- Koebsch, F.; Jurasinski, G.; Koch, M.; Hofmann, J.; Glatzel, S. Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agric. For. Meteorol. 2015, 204, 94–105. [Google Scholar] [CrossRef]
- Lane, R.R.; Day, J.W.; Shaffer, G.P.; Hunter, R.G.; Day, J.N.; Wood, W.B.; Settoon, P. Hydrology and water budget analysis of the East Joyce wetlands: Past history and prospects for the future. Ecol. Eng. 2016, 87, 34–44. [Google Scholar] [CrossRef]
- de Sousa, A.M.L.; Castro, N.M.R.; Canales, F.A.; Louzada, J.A.S.; Vitorino, M.I.; de Souza, E.B. Multiscale variability of the evapotranspiration in eastern Amazonia. Atmos. Sci. Lett. 2010, 11, 192–198. [Google Scholar] [CrossRef]
- Pan, X.; Liu, S.Y.; Tansey, K.; Fan, X.W.; Yang, Z.; Yuan, J.; Wang, Z.C.; Yang, Y.B.; Liu, Y.B. Spatio-temporal variation of evapotranspiration and its linkage with environmental factors in the largest freshwater lake wetland in China. J. Hydrol.-Reg. Stud. 2023, 47, 101424. [Google Scholar] [CrossRef]
- Torres-Batlló, J.; Martí-Cardona, B.; Pillco-Zolá, R. Mapping Evapotranspiration, Vegetation and Precipitation Trends in the Catchment of the Shrinking Lake Poopo. Remote Sens. 2020, 12, 73. [Google Scholar] [CrossRef]
- Yue, H.; Liu, Y.; Wang, H.R.; Zhang, W. Dynamic Analysis of Water Level and Area of Typical Lakes in Qinghai-Tibet Plateau. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6807–6810. [Google Scholar] [CrossRef]
- Available online: http://www.geodata.cn/data/datadetails.html?dataguid=34628698652201&docid=2887 (accessed on 10 October 2023).
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Available online: http://www.geodata.cn/data/datadetails.html?dataguid=164304785536614&docId=732 (accessed on 6 May 2023).
- Available online: http://www.geodata.cn/data/datadetails.html?dataguid=192891852410344&docId=518 (accessed on 6 May 2023).
- Ge, W.Y.; Han, J.Q.; Zhang, D.J.; Wang, F. Divergent impacts of droughts on vegetation phenology and productivity in the Yungui Plateau, southwest China. Ecol. Indic. 2021, 127, 107743. [Google Scholar] [CrossRef]
- Niu, L.; Zhang, Z.F.; Peng, Z.; Liang, Y.Z.; Liu, M.; Jiang, Y.Z.; Wei, J.; Tang, R.L. Identifying Surface Urban Heat Island Drivers and Their Spatial Heterogeneity in China’s 281 Cities: An Empirical Study Based on Multiscale Geographically Weighted Regression. Remote Sens. 2021, 13, 4428. [Google Scholar] [CrossRef]
- Yu, Z.; Ciais, P.; Piao, S.L.; Houghton, R.A.; Lu, C.Q.; Tian, H.Q.; Agathokleous, E.; Kattel, G.R.; Sitch, S.; Goll, D.; et al. Forest expansion dominates China’s land carbon sink since 1980. Nat. Commun. 2022, 13, 5374. [Google Scholar] [CrossRef]
- Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview (accessed on 8 April 2023).
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, E.H.; Zheng, Q.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. Lond. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble Empirical Mode Decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Rehman, N.U.; Mandic, D.P. Filter Bank Property of Multivariate Empirical Mode Decomposition. IEEE Trans. Signal Process. 2011, 59, 2421–2426. [Google Scholar] [CrossRef]
- Rehman, N.; Mandic, D.P. Multivariate empirical mode decomposition. Phys. Eng. Sci. 2010, 466, 1291–1302. [Google Scholar] [CrossRef]
- Liu, Q.; Hao, Y.H.; Stebler, E.; Tanaka, N.; Zou, C.B. Impact of Plant Functional Types on Coherence Between Precipitation and Soil Moisture: A Wavelet Analysis. Geophys. Res. Lett. 2017, 44, 12197–12207. [Google Scholar] [CrossRef]
- Gao, H.; Jin, J.X. Analysis of Water Yield Changes from 1981 to 2018 Using an Improved Mann-Kendall Test. Remote Sens. 2022, 14, 2009. [Google Scholar] [CrossRef]
- Yu, W.Z.; Fu, A.D.; Shao, L.; Liu, H.T.; Yao, X.; Chen, T.L.; Zhang, H.X.Y. Characteristics of Climate Change in the Lake Basin Area of Gangcha County. Cmc-Comput. Mater. Contin. 2022, 73, 363–379. [Google Scholar] [CrossRef]
- Zhu, D.T.; Cheng, X.J.; Li, W.H.; Niu, F.J.; Wen, J.H. Characteristic of water quality indicators and its response to climate conditions in the middle and lower reaches of Lijiang River, China. Environ. Monit. Assess. 2023, 195, 396. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Xu, H. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar]
Landsat TM 4-5 | Landsat 7 | Landsat 8-9 | |||
---|---|---|---|---|---|
Bands | Wavelength (μm) | Bands | Wavelength (μm) | Bands | Wavelength (μm) |
Band1-Blue | 0.45–0.52 | Band1-Blue | 0.45–0.52 | Band1-Coastal aerosol | 0.43–0.45 |
Band2-Green | 0.52–0.60 | Band2-Green | 0.52–0.60 | Band2-Blue | 0.45–0.51 |
Band3-Red | 0.63–0.69 | Band3-Red | 0.63–0.69 | Band3-Green | 0.53–0.59 |
Band4-NIR | 0.76–0.90 | Band4-NIR | 0.77–0.90 | Band4-Red | 0.64–0.67 |
Band5-SWIR1 | 1.55–1.75 | Band5-SWIR1 | 1.55–1.75 | Band5-NIR | 0.85–0.88 |
Band6-LWIR | 10.40–12.50 | Band6-TIRS | 10.40–12.50 | Band6-SWIR1 | 1.57–1.65 |
Band7-SWIR2 | 2.08–2.35 | Band7-SWIR2 | 2.08–2.35 | Band7-SWIR2 | 2.11–2.29 |
Band8-Panchromatic | 0.52–0.90 | Band8-Panchromatic | 0.50–0.68 | ||
Band9-Cirrus | 1.36–1.38 | ||||
Band10-TIRS1 | 10.60–11.19 | ||||
Band11-TIRS2 | 11.50–12.51 |
PERIODS | AREA (km2/Year) | Monthly Precipitation (mm/Year) | Temperature (°C/Year) | Monthly ET (mm/Year) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1986–2022 | 1986–2004 | 2004–2022 | 1986–2022 | 1986–2004 | 2004–2022 | 1986–2022 | 1986–2004 | 2004–2022 | 1986–2022 | 1986–2004 | 2004–2022 | |
ANNUAL | 4.984 | −6.213 | 19.010 | 0.118 | 0.053 | −0.129 | 0.026 | 0.030 | 0.023 | 0.029 | 0.074 | 0.002 |
MAM | 4.862 | −6.212 | 19.205 | 0.044 | 0.005 | 0.078 | 0.035 | 0.060 | 0.014 | 0.049 | 0.097 | 0.006 |
JJA | 5.242 | −5.747 | 19.408 | 0.101 | −0.486 | 0.040 | 0.037 | 0.040 | 0.051 | 0.068 | 0.095 | 0.205 |
SON | 5.426 | −6.724 | 19.607 | 0.322 | 0.702 | −0.613 | 0.026 | 0.053 | 0.035 | −0.020 | 0.090 | −0.231 |
DJF | 4.405 | −6.169 | 17.822 | 0.005 | −0.007 | −0.021 | 0.007 | −0.032 | −0.008 | 0.021 | 0.015 | 0.026 |
All Years | Lake Area | Precipitation | Temperature | LSWT | ET | RUNOFF | Ice Depth | Freezing Period |
---|---|---|---|---|---|---|---|---|
Lake Area | 1.00 | 0.41 * | 0.20 | 0.00 | 0.12 | 0.58 ** | −0.37 | −0.38 |
Precipitation | 1.00 | 0.41 * | 0.27 | 0.17 | 0.59 ** | −0.55 * | −0.68 ** | |
Temperature | 1.00 | 0.39 * | 0.62 ** | 0.39 * | −0.58 * | −0.74 ** | ||
LSWT | 1.00 | 0.16 | 0.33 | −0.31 | −0.36 | |||
ET | 1.00 | 0.23 | −0.29 | −0.16 | ||||
RUNOFF | 1.00 | −0.50 * | −0.63 * | |||||
Ice Depth | 1.00 | −0.42 * | ||||||
Freezing Period | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, X.; Tang, Z.; Gao, J.; Li, C.; Liu, W. Changes in Qinghai Lake Area and Their Interactions with Climatic Factors. Remote Sens. 2024, 16, 129. https://doi.org/10.3390/rs16010129
Ling X, Tang Z, Gao J, Li C, Liu W. Changes in Qinghai Lake Area and Their Interactions with Climatic Factors. Remote Sensing. 2024; 16(1):129. https://doi.org/10.3390/rs16010129
Chicago/Turabian StyleLing, Xiaolu, Zeyu Tang, Jian Gao, Chenggang Li, and Wenhao Liu. 2024. "Changes in Qinghai Lake Area and Their Interactions with Climatic Factors" Remote Sensing 16, no. 1: 129. https://doi.org/10.3390/rs16010129
APA StyleLing, X., Tang, Z., Gao, J., Li, C., & Liu, W. (2024). Changes in Qinghai Lake Area and Their Interactions with Climatic Factors. Remote Sensing, 16(1), 129. https://doi.org/10.3390/rs16010129