Fast and Accurate Hyperspectral Image Classification with Window Shape Adaptive Singular Spectrum Analysis
Abstract
:1. Introduction
2. Related Work
3. Proposed Method
3.1. Region Division Based on Spatial Information
3.2. WSA-SSA
3.3. Classifier
4. Experiments and Analysis
4.1. Data Set
4.2. Parameter Sensitivity Analysis
4.3. Comparison Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- AVHYAS: A Free and Open Source QGIS Plugin for Advanced Hyperspectral Image Analysis. In Proceedings of the 2021 International Conference on Emerging Techniques in Computational Intelligence (ICETCI), Hyderabad, India, 25–27 August 2021; pp. 71–76.
- Song, X.; Sunil, A.; Kai, M.T.; Zhen, L.; Bin, H. Spectral-Spatial Anomaly Detection of Hyperspectral Data Based on Improved Isolation Forest. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Li, H. An Overview on Remote Sensing Image Classification Methods with a Focus on Support Vector Machine. In Proceedings of the 2021 International Conference on Signal Processing and Machine Learning (CONF-SPML), Stanford, CA, USA, 14 November 2021; pp. 50–56. [Google Scholar]
- Liu, H.; Li, W.; Xia, X.-G.; Zhang, M.; Gao, C.-Z.; Tao, R. Central Attention Network for Hyperspectral Imagery Classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 8989–9003. [Google Scholar] [CrossRef] [PubMed]
- Rasti, B.; Hong, D.; Hang, R.; Ghamisi, P.; Kang, X.; Chanussot, J.; Benediktsson, J.A. Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox. IEEE Geosci. Remote Sens. Mag. 2020, 8, 60–88. [Google Scholar] [CrossRef]
- Peng, J.; Sun, W.; Du, Q. Self-paced joint sparse representation for the classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1183–1194. [Google Scholar] [CrossRef]
- Su, H.; Yong, B.; Du, P.; Liu, H.; Chen, C.; Liu, K. Dynamic classifier selection using spectral-spatial information for hyperspectral image classification. J. Appl. Remote Sens. 2014, 8, 085095. [Google Scholar] [CrossRef]
- Tyo, J.S.; Konsolakis, A.; Diersen, D.I.; Olsen, R.C. Principal-components-based display strategy for spectral imagery. IEEE Trans. Geosci. Remote Sens. 2003, 41, 708–718. [Google Scholar] [CrossRef]
- Chiu, S.-H.; Lu, C.-P.; Wu, D.-C.; Wen, C.-Y. A histogram based data-reducing algorithm for the fixed-point independent component analysis. Pattern Recognit. Lett. 2008, 29, 370–376. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Q.; Li, X. Discriminant Analysis with Graph Learning for Hyperspectral Image Classification. Remote. Sens. 2018, 10, 836. [Google Scholar] [CrossRef]
- Guan, L.; Xie, W.; Pei, J. Segmented minimum noise fraction transformation for efficient feature extraction of hyperspectral images. BPRA Int. Conf. Pattern Recognit. 2015, 48, 3216–3226. [Google Scholar]
- Bachmann, C.M.; Ainsworth, T.L.; Fusina, R.A. Exploiting manifold geometry in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 441–454. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.-R.; Zhang, X.-L. A survey on Laplacian eigenmaps based manifold learning methods. Neurocomputing 2019, 335, 336–351. [Google Scholar] [CrossRef]
- Roweis, S.T.; Saul, L.K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [PubMed]
- Zabalza, J.; Ren, J.; Wang, Z.; Marshall, S.; Wang, J. Singular Spectrum Analysis for Effective Feature Extraction in Hyperspectral Imaging. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1886–1890. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Pesaresi, M.; Arnason, K. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1940–1949. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Mauro, D.M.; Jon, A.B.; Björn, W.; Lorenzo, B. Morphological Attribute Profiles for the Analysis of Very High Resolution Images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar]
- Mauro, D.M.; Alberto, V.; Jon, A.B.; Jocelyn, C.; Lorenzo, B. Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis. IEEE Geosci. Remote Sens. Lett. 2011, 8, 542–546. [Google Scholar]
- Welch, R.M.; Sengupta, S.K.; Chen, D.W. Cloud field classification based upon high spatial resolution textural features: 1. Gray level co-occurrence matrix approach. J. Geophys. Res. 1988, 93, 12663–12681. [Google Scholar] [CrossRef]
- Kim, S.-D.; Udpa, S. Texture classification using rotated wavelet filters. IEEE Trans. Syst. Man Cybern. Syst. 2000, 30, 847–852. [Google Scholar]
- Jia, S.; Lin, Z.; Deng, B.; Zhu, J.; Li, Q. Cascade Superpixel Regularized Gabor Feature Fusion for Hyperspectral Image Classification. IEEE Trans. Neural Netw. 2020, 31, 1638–1652. [Google Scholar] [CrossRef]
- Yan, S.; Xu, D.; Zhang, B.; Zhang, H.J.; Yang, Q.; Lin, S. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Zabalza, J.; Ren, J.; Zheng, J.; Han, J.; Zhao, H.; Li, S.; Marshall, S. Novel Two-Dimensional Singular Spectrum Analysis for Effective Feature Extraction and Data Classification in Hyperspectral Imaging. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4418–4433. [Google Scholar] [CrossRef]
- Hang, F.; Sun, G.; Zabalza, J.; Zhang, A.; Ren, J.; Jia, X. A Novel Spectral-Spatial Singular Spectrum Analysis Technique for Near Real-Time In Situ Feature Extraction in Hyperspectral Imaging. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2214–2225. [Google Scholar]
- Hang, F.; Sun, G.; Ren, J.; Zhang, A.; Jia, X. Fusion of PCA and Segmented-PCA Domain Multiscale 2-D-SSA for Effective Spectral-Spatial Feature Extraction and Data Classification in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar]
- Sun, G.; Hang, F.; Ren, J.; Zhang, A.; Zabalza, J.; Jia, X.; Zhao, H. SpaSSA: Superpixelwise Adaptive SSA for Unsupervised Spatial–Spectral Feature Extraction in Hyperspectral Image. IEEE Trans. Cybern. 2022, 52, 6158–6169. [Google Scholar] [CrossRef] [PubMed]
- Swalpa, K.R.; Gopal, K.; Shiv, R.D.; Bidyut, B.C. HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification. Comput. Res. Repos. 2020, 17, 277–281. [Google Scholar]
- Hang, R.; Li, Z.; Liu, Q.; Ghamisi, P.; Bhattacharyya, S.S. Hyperspectral Image Classification with Attention-Aided CNNs. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2281–2293. [Google Scholar] [CrossRef]
- Mei, X.; Pan, E.; Ma, Y.; Dai, X.; Huang, J.; Fan, F.; Du, Q.; Zheng, H.; Ma, J. Spectral-Spatial Attention Networks for Hyperspectral Image Classification. Remote Sens. 2019, 11, 963. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Going Deeper with Contextual CNN for Hyperspectral Image Classification. IEEE Trans. Image Process. 2017, 26, 4843–4855. [Google Scholar] [CrossRef]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking Hyperspectral Image Classification with Transformers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom. 1992, 58, 95–126. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, Y.; Ma, L.; Li, J.; Zheng, W.S. Spectral–spatial transformer network for hyperspectral image classification: A factorized architecture search framework. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Danilov, D.; Zhiglyavskii, A. Principal Components of Time Series: The ‘Caterpillar’ Method; St. Petersburg University: Saint Petersburg, Russia, 1997; Available online: http://www.gistatgroup.com/cat/books.html (accessed on 1 October 2022). (In Russian)
- Golyandina, N.E.; Usevich, K.D. 2D-extension of Singular Spectrum Analysis: Algorithm and elements of theory. In Matrix Methods: Theory, Algorithms and Applications: Dedicated to the Memory of Gene Golub; World Scientific: Singapore, 2010; pp. 449–473. [Google Scholar]
- Rodríguez-Aragón, L.J.; Zhigljavsky, A. Singular spectrum analysis for image processing. Stat. Its Interface 2010, 3, 419–426. [Google Scholar] [CrossRef]
- Ren, X.; Malik, J. Learning a classification model for segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; Volume 1, pp. 10–17. [Google Scholar]
- Liu, M.-Y.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. Comput. Vis. Pattern Recognit. 2011, 2011, 2097–2104. [Google Scholar]
- Luo, F.; Zhang, L.; Zhou, X.; Guo, T.; Cheng, Y.; Yin, T. Sparse-Adaptive Hypergraph Discriminant Analysis for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1082–1086. [Google Scholar] [CrossRef]
- Archibald, R.; Fann, G. Feature Selection and Classification of Hyperspectral Images with Support Vector Machines. IEEE Geosci. Remote Sens. Lett. 2007, 4, 674–677. [Google Scholar] [CrossRef]
- Hyperspectral Data Set [OL]. Available online: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes (accessed on 1 October 2022).
- Fu, H.; Zhang, A.; Sun, G.; Ren, J.; Jia, X.; Pan, Z.; Ma, H. A Novel Band Selection and Spatial Noise Reduction Method for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5535713. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, K.; Gao, K.; Li, W. Hyperspectral Time-Series Target Detection Based on Spectral Perception and Spatial–Temporal Tensor Decomposition. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5520812. [Google Scholar] [CrossRef]
- Zhao, X.; Li, W.; Zhao, C.; Tao, R. Hyperspectral Target Detection Based on Weighted Cauchy Distance Graph and Local Adaptive Collaborative Representation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5527313. [Google Scholar] [CrossRef]
- Li, J.; Smithwick, Q.; Chu, D. Holobricks: Modular coarse integral holographic displays. Light Sci. Appl. 2022, 11, 57. [Google Scholar] [CrossRef]
- Li, J.; Smithwick, Q.; Chu, D. Bandwidth utilization improvement methods of Coarse Integral Holographic video displays. In Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest; Optica Publishing Group: Washington, DC, USA, 2018; Paper DTh3D.6. [Google Scholar]
- Li, J.; Liu, Z. Multispectral transforms using convolution neural networks for remote sensing multispectral image compression. Remote Sens. 2019, 11, 759. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z. Efficient compression algorithm using learning networks for remote sensing images. Appl. Soft Comput. 2021, 100, 106987. [Google Scholar] [CrossRef]
- Tehseen, R.; Ali, A.; Mane, M.; Ge, W.; Li, Y.; Zhang, Z.; Xu, J. Enhanced imaging through turbid water based on quadrature lock-in discrimination and retinex aided by adaptive gamma function for illumination correction. Chin. Opt. Lett. 2023, 21, 101102. [Google Scholar] [CrossRef]
- Park, Y.S.; Hong, J.; Choi, J. X-ray volumetric quantitative phase imaging by Foucault differential filtering with linear scanning. Chin. Opt. Lett. 2023, 21, 013401. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z. High-resolution dynamic inversion imaging with motion-aberrations-free using optical flow learning networks. Sci. Rep. 2019, 9, 11319. [Google Scholar] [CrossRef]
Data | Source | Wavelength Range | Size | Classes |
---|---|---|---|---|
Indian Pines | AVIRIS | 16 | ||
Pavia University | ROSIS-03 | 9 | ||
Salinas | AVIRIS | 16 |
Class | Samples | SVM | PCA | SSA | 2DSSA | MSF-PCs | SpaSSA | NGNMF- E2DSSA | 1.5D-SSA | Proposed | |
---|---|---|---|---|---|---|---|---|---|---|---|
Train Set (%) | Test Set (%) | ||||||||||
C1 | 8 | 92 | 11.9048 | 30.9524 | 76.1905 | 71.4286 | 95.2381 | 78.5714 | 88.0952 | 83.3333 | 97.619 |
C2 | 8 | 92 | 76.4661 | 67.4029 | 80.5788 | 92.3839 | 96.9535 | 93.6024 | 93.8309 | 92.3077 | 94.3524 |
C3 | 8 | 92 | 63.6959 | 54.5216 | 76.0157 | 93.4469 | 99.3447 | 95.675 | 96.3303 | 87.5491 | 97.0169 |
C4 | 8 | 92 | 31.6514 | 33.0275 | 53.6697 | 86.2385 | 99.5413 | 97.2477 | 88.0734 | 75.6881 | 99.0909 |
C5 | 8 | 92 | 83.1081 | 89.1892 | 93.6937 | 97.5225 | 99.7748 | 97.7477 | 98.6486 | 93.4685 | 95.7684 |
C6 | 8 | 92 | 91.5052 | 85.693 | 90.9091 | 97.7645 | 99.7019 | 99.5529 | 98.6587 | 99.2548 | 99.8525 |
C7 | 8 | 92 | 72 | 76 | 84 | 88 | 96 | 100 | 92 | 84 | 96.1538 |
C8 | 8 | 92 | 99.0888 | 94.7608 | 99.3166 | 98.4055 | 100 | 100 | 100 | 97.2665 | 100 |
C9 | 8 | 92 | 33.3333 | 16.6667 | 55.5556 | 100 | 100 | 100 | 100 | 94.4444 | 100 |
C10 | 8 | 92 | 71.4765 | 53.5794 | 82.2148 | 92.5056 | 97.5391 | 94.519 | 93.6242 | 88.4787 | 96.3455 |
C11 | 8 | 92 | 81.9752 | 75.775 | 83.8795 | 95.6156 | 99.7786 | 98.4942 | 96.5456 | 92.6484 | 99.4306 |
C12 | 8 | 92 | 57.4312 | 34.8624 | 72.6606 | 92.1101 | 97.9817 | 95.7798 | 87.5229 | 81.2844 | 97.6407 |
C13 | 8 | 92 | 92.0213 | 90.4255 | 91.4894 | 98.9362 | 98.4043 | 99.4681 | 97.8723 | 98.4043 | 99.4737 |
C14 | 8 | 92 | 93.8091 | 94.411 | 94.8409 | 98.9682 | 100 | 99.742 | 98.7102 | 97.3345 | 96.2585 |
C15 | 8 | 92 | 53.5211 | 46.7606 | 46.4789 | 94.9296 | 100 | 99.7183 | 89.8592 | 80 | 98.8827 |
C16 | 8 | 92 | 78.8235 | 91.7647 | 89.4118 | 100 | 100 | 100 | 100 | 82.3529 | 97.6744 |
OA (%) | 77.8049 | 70.9797 | 83.0167 | 95.0218 | 99.0128 | 97.2827 | 95.5949 | 91.5296 | 97.5638 | ||
AA (%) | 68.2382 | 64.737 | 79.4316 | 93.641 | 98.7661 | 96.8824 | 94.9857 | 89.2385 | 97.8475 | ||
Kappa*100 | 74.5235 | 66.6872 | 80.6055 | 94.327 | 98.8738 | 96.901 | 94.9776 | 90.3257 | 97.2222 | ||
Time (s) | 2.235637 | 0.687991 | 4.153211 | 10.52716 | 10.69787 | 24.74259 | 13.23079 | 11.63065 | 1.133012 |
Class | Samples | SVM | PCA | SSA | 2DSSA | MSF-PCs | SpaSSA | NGNMF- E2DSSA | 1.5D-SSA | Proposed | |
---|---|---|---|---|---|---|---|---|---|---|---|
Train Set (%) | Test Set (%) | ||||||||||
C1 | 8 | 92 | 93.9672 | 94.3115 | 93.7377 | 99.1311 | 100 | 99.5246 | 99.541 | 99.0328 | 97.9344 |
C2 | 8 | 92 | 98.0591 | 96.9517 | 97.4588 | 100 | 100 | 99.9359 | 99.9942 | 99.761 | 99.7727 |
C3 | 8 | 92 | 80.5282 | 78.1978 | 78.3532 | 89.2284 | 99.0678 | 95.5463 | 90.2123 | 93.941 | 99.8446 |
C4 | 8 | 92 | 93.4705 | 89.5316 | 93.0092 | 97.0901 | 99.3612 | 92.1576 | 98.4031 | 99.3612 | 86.9056 |
C5 | 8 | 92 | 99.5958 | 99.8383 | 99.515 | 100 | 100 | 98.6257 | 99.3533 | 99.515 | 95.6346 |
C6 | 8 | 92 | 88.3485 | 89.6239 | 80.4367 | 99.7406 | 100 | 99.9135 | 98.0112 | 98.0329 | 99.8271 |
C7 | 8 | 92 | 87.408 | 83.8921 | 87.1627 | 95.4211 | 100 | 98.4464 | 95.3393 | 98.7735 | 100 |
C8 | 8 | 92 | 88.9283 | 84.0567 | 89.3416 | 96.5161 | 99.7638 | 97.0475 | 98.4057 | 97.2247 | 98.7009 |
C9 | 8 | 92 | 99.8852 | 100 | 99.8852 | 95.178 | 99.8852 | 92.1929 | 97.8186 | 99.8852 | 98.7371 |
OA (%) | 94.0661 | 92.8717 | 92.7243 | 98.5489 | 99.8856 | 98.5896 | 98.7471 | 98.8767 | 98.338 | ||
AA (%) | 92.2434 | 90.7115 | 90.9889 | 96.9228 | 99.7865 | 97.0434 | 97.4532 | 98.3919 | 97.4841 | ||
Kappa*100 | 92.1062 | 90.5243 | 90.2917 | 98.0746 | 99.8484 | 98.129 | 98.3371 | 98.5106 | 97.7937 | ||
Time (s) | 5.296865 | 1.694653 | 21.8372 | 48.03557 | 156.9282 | 175.7011 | 115.4543 | 64.09886 | 2.84225 |
Class | Samples | SVM | PCA | SSA | 2DSSA | MSF-PCs | SpaSSA | NGNMF- E2DSSA | 1.5D-SSA | Proposed | |
---|---|---|---|---|---|---|---|---|---|---|---|
Train Set (%) | Test Set (%) | ||||||||||
C1 | 8 | 92 | 99.2965 | 99.2965 | 97.9978 | 100 | 100 | 100 | 99.5671 | 99.98918 | 100 |
C2 | 8 | 92 | 99.358 | 99.8249 | 99.358 | 99.8541 | 100 | 100 | 99.8249 | 99.9037 | 99.7666 |
C3 | 8 | 92 | 98.8442 | 99.0644 | 98.8442 | 99.8349 | 100 | 100 | 99.945 | 99.92845 | 100 |
C4 | 8 | 92 | 98.752 | 98.5179 | 98.2839 | 95.8658 | 97.5819 | 98.4399 | 99.22 | 99.39939 | 99.922 |
C5 | 8 | 92 | 99.6752 | 99.4316 | 99.7564 | 99.8782 | 100 | 99.8782 | 99.7158 | 99.25296 | 99.391 |
C6 | 8 | 92 | 99.7254 | 99.7529 | 99.6705 | 100 | 100 | 99.9725 | 99.8353 | 99.87369 | 99.9176 |
C7 | 8 | 92 | 99.9089 | 99.9696 | 99.9089 | 99.8177 | 100 | 99.9696 | 99.8785 | 99.76609 | 99.9089 |
C8 | 8 | 92 | 84.3572 | 87.7423 | 88.2149 | 99.4214 | 100 | 99.8264 | 95.2262 | 95.77392 | 100 |
C9 | 8 | 92 | 99.9299 | 99.9474 | 99.7897 | 100 | 100 | 100 | 100 | 99.7669 | 100 |
C10 | 8 | 92 | 96.9154 | 95.9536 | 97.0481 | 99.403 | 100 | 99.9005 | 98.5406 | 98.5373 | 99.1708 |
C11 | 8 | 92 | 98.0652 | 97.9633 | 98.4725 | 99.1853 | 100 | 99.8982 | 99.1853 | 99.18534 | 100 |
C12 | 8 | 92 | 99.5485 | 99.8871 | 99.5485 | 99.8307 | 100 | 100 | 100 | 99.98307 | 100 |
C13 | 8 | 92 | 99.6437 | 99.6437 | 99.2874 | 99.6437 | 100 | 97.1496 | 98.9311 | 99.12113 | 97.7435 |
C14 | 8 | 92 | 93.1911 | 97.1545 | 93.3943 | 99.8984 | 99.6951 | 97.8659 | 98.2724 | 98.32316 | 95.7317 |
C15 | 8 | 92 | 75.9198 | 70.4906 | 78.4026 | 99.2671 | 99.9701 | 99.8654 | 90.0688 | 93.4116 | 99.9103 |
C16 | 8 | 92 | 99.278 | 98.9771 | 99.278 | 99.1576 | 100 | 98.2551 | 98.8568 | 99.20578 | 100 |
OA (%) | 92.9081 | 92.9342 | 93.9826 | 99.5461 | 99.9277 | 99.7389 | 97.393 | 97.94192 | 99.755 | ||
AA (%) | 96.4006 | 96.4761 | 96.7035 | 99.4411 | 99.8279 | 99.4388 | 98.5667 | 98.83887 | 99.4664 | ||
Kappa*100 | 92.102 | 92.123 | 93.2961 | 99.4945 | 99.9195 | 99.7092 | 97.0958 | 97.7082 | 99.7271 | ||
Time (s) | 15.05047 | 3.013788 | 24.47528 | 54.02874 | 80.92167 | 203.3935 | 69.76287 | 58.79197 | 2.714727 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Qi, B.; Jin, L.; Li, G.; Li, J. Fast and Accurate Hyperspectral Image Classification with Window Shape Adaptive Singular Spectrum Analysis. Remote Sens. 2024, 16, 81. https://doi.org/10.3390/rs16010081
Bai X, Qi B, Jin L, Li G, Li J. Fast and Accurate Hyperspectral Image Classification with Window Shape Adaptive Singular Spectrum Analysis. Remote Sensing. 2024; 16(1):81. https://doi.org/10.3390/rs16010081
Chicago/Turabian StyleBai, Xiaotian, Biao Qi, Longxu Jin, Guoning Li, and Jin Li. 2024. "Fast and Accurate Hyperspectral Image Classification with Window Shape Adaptive Singular Spectrum Analysis" Remote Sensing 16, no. 1: 81. https://doi.org/10.3390/rs16010081
APA StyleBai, X., Qi, B., Jin, L., Li, G., & Li, J. (2024). Fast and Accurate Hyperspectral Image Classification with Window Shape Adaptive Singular Spectrum Analysis. Remote Sensing, 16(1), 81. https://doi.org/10.3390/rs16010081