Evaluation of the CRTM Land Emissivity Model over Grass and Sand Surfaces Using Ground-Based Measurements
Abstract
:1. Introduction
2. The Model and Ground-Based Measurements
2.1. CRTM Land Emissivity Model
2.2. The Ground-Based Measurements
3. Results
3.1. The Simulations and Measurements over Grass and Sand Surfaces
3.2. Corrections of the Emissivity Model for Bare Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McNally, A.P.; Derber, J.C.; Wu, W.; Katz, B.B. The use of TOVS level-1b radiances in the NCEP SSI analysis system. Q. J. R. Meteorol. Soc. 2000, 126, 689–724. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Liu, Z.; Chen, Y.; Huang, X.-Y. Impact of Assimilating Microwave Radiances with a Limited-Area Ensemble Data Assimilation System on Forecasts of Typhoon Morakot. Weather Forecast. 2012, 27, 424–437. [Google Scholar] [CrossRef]
- Karbou, F.; Aires, F.; Prigent, C.; Eymard, L. Potential of Advanced Microwave Sounding Unit-A (AMSU-A) and AMSU-B measurements for atmospheric temperature and humidity profiling over land. J. Geophys. Res. Atmos. 2005, 110, D07109. [Google Scholar] [CrossRef]
- David, L.; Fawwaz, U. Microwave Radar and Radiometric Remote Sensing; Artech: Boston, MA, USA, 2015; pp. 246–254. [Google Scholar]
- Wigneron, J.-P.; Laguerre, L.; Kerr, Y. A simple parameterization of the L-band microwave emission from rough agricultural soils. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1697–1707. [Google Scholar] [CrossRef]
- Wang, J.R.; Neill, P.E.O.; Jackson, T.J.; Engman, E.T. Multifrequency Measurements of the Effects of Soil Moisture, Soil Texture, And Surface Roughness. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 44–51. [Google Scholar] [CrossRef]
- Coppo, P.; Luzi, G.; Paloscia, S.; Pampaloni, P. Effect of soil roughness on microwave emission: Comparison between experimental data and models. In Proceedings of the IGARSS’91 Remote Sensing: Global Monitoring for Earth Management, Espoo, Finland, 3–6 June 1991; pp. 1167–1170. [Google Scholar]
- Weng, F.; Yan, B.; Grody, N.C. A microwave land emissivity model. J. Geophys. Res. Atmos. 2001, 106, 20115–20123. [Google Scholar] [CrossRef]
- Pellarin, T.; Wigneron, J.-P.; Calvet, J.-C.; Waldteufel, P. Global soil moisture retrieval from a synthetic L-band brightness temperature data set. J. Geophys. Res. Atmos. 2003, 108, 4364. [Google Scholar] [CrossRef]
- Jiang, L.; Shi, J.; Tjuatja, S.; Dozier, J.; Chen, K.; Zhang, L. A parameterized multiple-scattering model for microwave emission from dry snow. Remote Sens. Environ. 2007, 111, 357–366. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, J.; Ji, D.; Zhong, J.; Fan, S. A Parameterized Microwave Emissivity Model for Bare Soil Surfaces. Remote Sens. 2017, 9, 155. [Google Scholar] [CrossRef]
- Zhang, Q.; Chai, L. A parameterized multiple-scattering model for microwave emission from vegetation. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 645–648. [Google Scholar]
- Wang, J.R.; Schmugge, T.J. An Empirical Model for the Complex Dielectric Permittivity of Soils as a Function of Water Content. IEEE Trans. Geosci. Remote Sens. 1980, GE-18, 288–295. [Google Scholar] [CrossRef]
- Isaacs, R.G.; Jin, Y.Q.; Worsham, R.D.; Deblonde, G.; Falcone, V.J. The RADTRAN microwave surface emission models. IEEE Trans. Geosci. Remote Sens. 1989, 27, 433–440. [Google Scholar] [CrossRef]
- Moncet, J.-L.; Liang, P.; Galantowicz, J.F.; Lipton, A.E.; Uymin, G.; Prigent, C.; Grassotti, C. Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control. J. Geophys. Res. Atmos. 2011, 116, D16104. [Google Scholar] [CrossRef]
- Prigent, C.; Wigneron, J.P.; Rossow, W.B.; Pardo-Carrion, J.R. Frequency and angular variations of land surface microwave emissivities: Can we estimate SSM/T and AMSU emissivities from SSM/I emissivities? IEEE Trans. Geosci. Remote Sens. 2000, 38, 2373–2386. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z. Microwave Emissivity of Typical Vegetated Land Types Based on AMSR2. Remote Sens. 2022, 14, 4276. [Google Scholar] [CrossRef]
- Li, R.; Hu, J.; Wu, S.; Zhang, P.; Letu, H.; Wang, Y.; Wang, X.; Fu, Y.; Zhou, R.; Sun, L. Spatiotemporal Variations of Microwave Land Surface Emissivity (MLSE) over China Derived from Four-Year Recalibrated Fengyun 3B MWRI Data. Adv. Atmos. Sci. 2022, 39, 1535–1560. [Google Scholar] [CrossRef]
- Hu, J.; Fu, Y.; Zhang, P.; Min, Q.; Gao, Z.; Wu, S.; Li, R. remote sensing Satellite Retrieval of Microwave Land Surface Emissivity under Clear and Cloudy Skies in China Using Observations from AMSR-E and MODIS. Remote Sens. 2021, 13, 3980. [Google Scholar] [CrossRef]
- He, W.; Chen, H.; Xuan, Y.; Li, J.; Duan, M.; Nan, W. Ground mobile observation system for measuring multisurface microwave emissivity. Atmos. Meas. Tech. 2021, 14, 7069–7078. [Google Scholar] [CrossRef]
- Prigent, C.; Liang, P.; Tian, Y.; Aires, F.; Moncet, J.L.; Boukabara, S.A. Evaluation of modeled microwave land surface emissivities with satellite-based estimates. J. Geophys. Res. Atmos. 2015, 120, 2706–2718. [Google Scholar] [CrossRef]
- Aires, F.; Prigent, C.; Bernardo, F.; Jiménez, C.; Saunders, R.; Brunel, P. A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Q. J. R. Meteorol. Soc. 2011, 137, 690–699. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-rayes, M.A. Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 35–46. [Google Scholar] [CrossRef]
- Wegmuller, U.; Mätzler, C.; Njoku, E. Canopy opacity models. In Passive Microwave Remote Sensing of Land-Atmosphere Interactions. In Proceedings of the ESA/NASA International Workshop, Saint Lary, France, 11–15 January 1993; De Gruyter: Berlin, Germany, 1995; pp. 375–388. [Google Scholar]
- Czekala, H.; Crewell, S.; Simmer, C.; Thiele, A. Discrimination of cloud and rain liquid water path by groundbased polarized microwave radiometry. Geophys. Res. Lett. 2001, 28, 267–270. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Schmugge, T.J.; Chang, A.; Newton, R.W. Effect of surface roughness on the microwave emission from soils. J. Geophys. Res. Oceans 1979, 84, 5699–5706. [Google Scholar] [CrossRef]
- Shi, J.C.; Jiang, L.M.; Zhang, L.X.; Chen, K.S.; Wigneron, J.P.; Chanzy, A. A parameterized multifrequency-polarization surface emission model. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2831–2841. [Google Scholar] [CrossRef]
- Mo, T.; Schmugge, T.J. A Parameterization of the Effect of Surface Roughness on Microwave Emission. IEEE Trans. Geosci. Remote Sens. 1987, GE-25, 481–486. [Google Scholar] [CrossRef]
- Wegmuller, U.; Matzler, C. Rough bare soil reflectivity model. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1391–1395. [Google Scholar] [CrossRef]
- Wang, J.R.; Choudhury, B.J. Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency. J. Geophys. Res. Oceans 1981, 86, 5277–5282. [Google Scholar] [CrossRef]
- Wigneron, J.P.; Chanzy, A.; Kerr, Y.H.; Lawrence, H.; Shi, J.; Escorihuela, M.J.; Mironov, V.; Mialon, A.; Demontoux, F.; de Rosnay, P.; et al. Evaluating an Improved Parameterization of the Soil Emission in L-MEB. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1177–1189. [Google Scholar] [CrossRef]
- Escorihuela, M.J.; Kerr, Y.H.; de Rosnay, P.; Wigneron, J.P.; Calvet, J.C.; Lemaitre, F. A Simple Model of the Bare Soil Microwave Emission at L-Band. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1978–1987. [Google Scholar] [CrossRef]
- Wu, Y.; Weng, F.Z.; Wang, Z.H.; Yan, B.H. Analysis on the Relationship between Microwave Land Surface Emissivity and Soil Texture in Desert Region. Plateau Meteorol. 2013, 32, 481. [Google Scholar]
Surface | Incidence Angle (°) | Frequency (GHz) | Vegetation Fraction | Soil Type | Vegetation Type | Surface Temperature (°C) | Soil Temperature (°C) | SMC (g/cm3) |
---|---|---|---|---|---|---|---|---|
Sand | 25–65 | 18.7/36.5 | 0 | loamy sand | Bare soil | Measured from Infrared sensor over sand and grass | Measured from probe at 5 cm of soil in sand and grass field | Measured from probe at 5 cm of soil in sand and grass field |
Grass | 0.8 | sandy clay | Short grass |
Definition Formula | Relevant Parameters and Settings | Note | |
Q/H | Roughness: rms height (s) = 0.5 | All surface | |
Qp | Roughness: rms slope (s/l) = 0.25 | Bare soil |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, W.; Duan, M.; Liu, H.; Chen, H.; Han, C.; Nan, W. Evaluation of the CRTM Land Emissivity Model over Grass and Sand Surfaces Using Ground-Based Measurements. Remote Sens. 2024, 16, 95. https://doi.org/10.3390/rs16010095
Wang Y, He W, Duan M, Liu H, Chen H, Han C, Nan W. Evaluation of the CRTM Land Emissivity Model over Grass and Sand Surfaces Using Ground-Based Measurements. Remote Sensing. 2024; 16(1):95. https://doi.org/10.3390/rs16010095
Chicago/Turabian StyleWang, Yidan, Wenying He, Minzheng Duan, Hailei Liu, Hongbin Chen, Congzhen Han, and Weidong Nan. 2024. "Evaluation of the CRTM Land Emissivity Model over Grass and Sand Surfaces Using Ground-Based Measurements" Remote Sensing 16, no. 1: 95. https://doi.org/10.3390/rs16010095
APA StyleWang, Y., He, W., Duan, M., Liu, H., Chen, H., Han, C., & Nan, W. (2024). Evaluation of the CRTM Land Emissivity Model over Grass and Sand Surfaces Using Ground-Based Measurements. Remote Sensing, 16(1), 95. https://doi.org/10.3390/rs16010095