Attention-Guided Fusion and Classification for Hyperspectral and LiDAR Data
Abstract
:1. Introduction
- We design a dual-branch CNN fusion classification network named as AFC-CNN, which consists of a 2D-CNN for spatial features extraction in LiDAR data, and a novel 3D-CNN incorporated with a multi-scale structure for spatial-spectral features in HSI.
- AFC-CNN utilizes the spectral attention mechanism to strengthen the important features from spectral channels of HSI. Additionally, a cross attention mechanism module is introduced to enhance the inherent correlation between HSI and LiDAR.
- In the feature fusion module, AFC-CNN employs the depth separable convolutions connected through residual structure to extract the advanced features of the fusion information. Compared with the traditional 2D-CNN, the use of depth separable convolutions reduces computational complexity while maintaining high performance.
- Experimental results demonstrate that, the proposed algorithm AFC-CNN is more effective than the state-of-the-art methods in terms of the evaluation metrics and visual effects.
2. Proposed Fusion and Classification Framework
2.1. HSI Feature Extraction Module
2.2. LiDAR Feature Extraction Module
2.3. Attention Mechanism Module
2.4. Feature Fusion Module
2.5. Linear Classification Module
3. Experimental Results and Analysis
3.1. Datasets
3.2. Evaluation Criteria
3.3. Experimental Setting
3.4. Ablation Experiment
3.5. Complexity Analysis
3.6. Comparative Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, H.; Mountrakis, G. Fusion of optical, radar and waveform LiDAR observations for land cover classification. ISPRS J. Photogramm. Remote Sens. 2022, 187, 171–190. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C. Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sens. Environ. 2022, 268, 112780. [Google Scholar] [CrossRef]
- Taiwo, B.E.; Kafy, A.A.; Samuel, A.A.; Rahaman, Z.A.; Ayowole, O.E.; Shahrier, M.; Duti, B.M.; Rahman, M.T.; Peter, O.T.; Abosede, O.O. Monitoring and predicting the influences of land use/land cover change on cropland characteristics and drought severity using remote sensing techniques. Environ. Sustain. Indic. 2023, 18, 100248. [Google Scholar] [CrossRef]
- Dian, R.; Li, S.; Sun, B.; Guo, A. Recent advances and new guidelines on hyperspectral and multispectral image fusion. Inf. Fusion 2021, 69, 40–51. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Kang, X.; Luo, J.; Fan, S. Interactformer: Interactive transformer and CNN for hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Ghamisi, P.; Höfle, B.; Zhu, X.X. Hyperspectral and LiDAR data fusion using extinction profiles and deep convolutional neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 3011–3024. [Google Scholar] [CrossRef]
- Xu, Y.; Du, B.; Zhang, L.; Cerra, D.; Pato, M.; Carmona, E.; Prasad, S.; Yokoya, N.; Hänsch, R.; Le Saux, B. Advanced multi-sensor optical remote sensing for urban land use and land cover classification: Outcome of the 2018 IEEE GRSS data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1709–1724. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Tao, R.; Li, H.; Du, Q. Information fusion for classification of hyperspectral and LiDAR data using IP-CNN. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar]
- Roy, S.K.; Deria, A.; Hong, D.; Ahmad, M.; Plaza, A.; Chanussot, J. Hyperspectral and LiDAR data classification using joint CNNs and morphological feature learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Song, R.; Mu, Z.; Song, C. Multi-attentive hierarchical dense fusion net for fusion classification of hyperspectral and LiDAR data. Inf. Fusion 2022, 82, 1–18. [Google Scholar] [CrossRef]
- Song, W.; Li, S.; Fang, L.; Lu, T. Hyperspectral image classification with deep feature fusion network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3173–3184. [Google Scholar] [CrossRef]
- Imani, M.; Ghassemian, H. An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges. Inf. Fusion 2020, 59, 59–83. [Google Scholar] [CrossRef]
- Wu, H.; Dai, S.; Liu, C.; Wang, A.; Iwahori, Y. A novel dual-encoder model for hyperspectral and LiDAR joint classification via contrastive learning. Remote Sens. 2023, 15, 924. [Google Scholar] [CrossRef]
- Sugumaran, R.; Voss, M. Object-oriented classification of LiDAR-fused hyperspectral imagery for tree species identification in an urban environment. In Proceedings of the 2007 Urban Remote Sensing Joint Event, Paris, France, 11–13 April 2007; pp. 1–6. [Google Scholar]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of hyperspectral and LiDAR remote sensing data for classification of complex forest areas. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1416–1427. [Google Scholar] [CrossRef]
- Puttonen, E.; Jaakkola, A.; Litkey, P.; Hyyppä, J. Tree classification with fused mobile laser scanning and hyperspectral data. Sensors 2011, 11, 5158–5182. [Google Scholar] [CrossRef]
- Pedergnana, M.; Marpu, P.R.; Dalla Mura, M.; Benediktsson, J.A.; Bruzzone, L. Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE J. Sel. Top. Signal Process. 2012, 6, 856–865. [Google Scholar] [CrossRef]
- Ghamisi, P.; Souza, R.; Benediktsson, J.A.; Zhu, X.X.; Rittner, L.; Lotufo, R.A. Extinction profiles for the classification of remote sensing data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5631–5645. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Q.; Jia, X.; Benediktsson, J.A. A novel MKL model of integrating LiDAR data and MSI for urban area classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5312–5326. [Google Scholar]
- Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource remote sensing data classification based on convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2017, 56, 937–949. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Du, Q.; Gao, L.; Zhang, B. Feature extraction for classification of hyperspectral and LiDAR data using patch-to-patch CNN. IEEE Trans. Cybern. 2018, 50, 100–111. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, B.; Song, Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens. Environ. 2018, 214, 73–86. [Google Scholar] [CrossRef]
- Feng, Q.; Zhu, D.; Yang, J.; Li, B. Multisource hyperspectral and LiDAR data fusion for urban land-use mapping based on a modified two-branch convolutional neural network. ISPRS Int. J.-Geo-Inf. 2019, 8, 28. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Ghamisi, P.; Jia, X.; Gu, Y. Deep fusion of remote sensing data for accurate classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1253–1257. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Guo, Q.; Li, T. Fusion of hyperspectral and lidar data based on dual-branch convolutional neural network. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3388–3391. [Google Scholar]
- Ge, Z.; Cao, G.; Li, X.; Fu, P. Hyperspectral image classification method based on 2D–3D CNN and multibranch feature fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5776–5788. [Google Scholar] [CrossRef]
- Keceli, A.S.; Kaya, A. Violent activity classification with transferred deep features and 3D-CNN. Signal Image Video Process. 2023, 17, 139–146. [Google Scholar] [CrossRef]
- Mohla, S.; Pande, S.; Banerjee, B.; Chaudhuri, S. FusAtNet: Dual attention based spectrospatial multimodal fusion network for hyperspectral and LiDAR classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 92–93. [Google Scholar]
- Li, H.C.; Hu, W.S.; Li, W.; Li, J.; Du, Q.; Plaza, A. A3CLNN: Spatial, spectral and multiscale attention convLSTM neural network for multisource remote sensing data classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 747–761. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Song, R.; Xi, B.; Hong, D.; Du, Q. A triplet semisupervised deep network for fusion classification of hyperspectral and LiDAR data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Xiu, D.; Pan, Z.; Wu, Y.; Hu, Y. MAGE: Multisource attention network with discriminative graph and informative entities for classification of hyperspectral and LiDAR data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Gader, P.; Zare, A.; Close, R.; Aitken, J.; Tuell, G. MUUFL Gulfport Hyperspectral and LiDAR Airborne Data Set. Univ. Florida, Gainesville, FL, USA, Tech. Rep. REP-2013-570. 2013. Available online: https://github.com/GatorSense/MUUFLGulfport/ (accessed on 7 January 2023).
- Rasti, B.; Ghamisi, P.; Gloaguen, R. Hyperspectral and LiDAR fusion using extinction profiles and total variation component analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3997–4007. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More diverse means better: Multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4340–4354. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Dataset | Pixel No. | Sample No. | Class No. | Sensor Type | Wavelength | Spatial Resolution | Band No. |
---|---|---|---|---|---|---|---|
Houston2013 | 664845 | 15209 | 15 | HSI | 0.38 –1.05 | 2.5 m | 144 |
LiDAR | / | 2.5 m | 1 | ||||
MUUFL | 71500 | 53687 | 12 | HSI | 0.38 –1.05 | 0.54 m × 1 m | 64 |
LiDAR | 1.06 | 0.6 m × 0.78 m | 2 | ||||
Trento | 99600 | 30214 | 6 | HSI | 0.42 –0.99 | 1 m | 63 |
LiDAR | / | 1 m | 1 |
Method | Parameters Setting |
---|---|
AFC-CNN | Training set: 10% of the datasets, Test set: 90% of the datasets, Patch size: 15 × 15, learning rate: 0.005, training epochs: 100 |
SVM | Training set: 30% of the datasets, Test set: 70% of the datasets |
FusAtNet | Training set: 10% of the datasets, Test set: 90% of the datasets, Patch size: 11 × 11, learning rate: 0.000005, training epochs: 1000 |
Method | Metric | Classification Accuracy | ||
---|---|---|---|---|
Houston | MUUFL | Trento | ||
No multiscale extraction module | OA | 0.943 | 0.934 | 0.988 |
AA | 0.926 | 0.839 | 0.976 | |
Kappa | 0.936 | 0.912 | 0.982 | |
No cross attention mechanism | OA | 0.927 | 0.939 | 0.992 |
AA | 0.916 | 0.854 | 0.983 | |
Kappa | 0.924 | 0.923 | 0.986 | |
No residual structure | OA | 0.912 | 0.946 | 0.995 |
AA | 0.907 | 0.852 | 0.986 | |
Kappa | 0.909 | 0.932 | 0.994 | |
No depthwise separable convolutions | OA | 0.924 | 0.938 | 0.989 |
AA | 0.937 | 0.825 | 0.972 | |
Kappa | 0.918 | 0.918 | 0.986 | |
The proposed framework | OA | 0.942 | 0.953 | 0.995 |
AA | 0.938 | 0.862 | 0.987 | |
Kappa | 0.938 | 0.938 | 0.994 |
Module | Type/Stride | Convolutional Kernel Size | Input Size | Parameters No. |
---|---|---|---|---|
Feature fusion module | Conv 2D/1 | 3 × 3 | 1152 × 11 × 11 | 3981746 |
Conv 2D/1 | 3 × 3 | 384 × 9 × 9 | 221248 | |
(Conv 2D/1) × 4 | 3 × 3 | 64 × 7 × 7 | 368128 | |
Feature fusion module | Conv DW/1 | 3 × 3 | 1152 × 11 × 11 | 10368 |
Conv PW/1 | 1 × 1152 | 1152 × 9 × 9 | 442368 | |
Conv DW/1 | 3 × 3 | 384 × 9 × 9 | 3456 | |
Conv PW/1 | 1 × 64 | 384 × 7 × 7 | 4096 | |
(Conv DW/1, | 3 × 3 | 64 × 7 × 7 | 576 | |
Conv PW/1) × 4 | 1 × 64 | 64 × 7 × 7 | 4096 |
Dataset | Metric | SVM | FusAtNet | AFC-CNN | |||
---|---|---|---|---|---|---|---|
H | H + L | H | H + L | H | H + L | ||
Houston | OA | 0.802 | 0.842 | 0.857 | 0.899 | 0.922 | 0.942 |
AA | 0.842 | 0.868 | 0.886 | 0.947 | 0.909 | 0.938 | |
Kappa | 0.783 | 0.829 | 0.845 | 0.891 | 0.915 | 0.938 | |
NUUFL | OA | 0.873 | 0.884 | 0.894 | 0.915 | 0.937 | 0.953 |
AA | 0.585 | 0.603 | 0.707 | 0.786 | 0.828 | 0.862 | |
Kappa | 0.819 | 0.837 | 0.858 | 0.887 | 0.916 | 0.938 | |
Trento | OA | 0.906 | 0.924 | 0.985 | 0.991 | 0.987 | 0.995 |
AA | 0.718 | 0.873 | 0.976 | 0.985 | 0.982 | 0.987 | |
Kappa | 0.861 | 0.876 | 0.979 | 0.988 | 0.982 | 0.994 |
Class Name | SVM | FusAtNet | AFC-CNN | |||
---|---|---|---|---|---|---|
H | H + L | H | H + L | H | H + L | |
Healthy grass | 0.88 | 0.85 | 0.83 | 0.83 | 0.92 | 0.98 |
Stressed grass | 0.86 | 0.92 | 0.85 | 0.96 | 0.98 | 0.99 |
Synthetic grass | 0.99 | 0.99 | 1 | 1 | 0.97 | 1 |
Trees | 0.98 | 0.99 | 0.92 | 0.93 | 0.95 | 0.98 |
Soil | 0.98 | 0.96 | 0.97 | 0.99 | 0.98 | 0.99 |
Water | 0.99 | 0.98 | 1 | 1 | 0.6 | 1 |
Residential | 0.76 | 0.88 | 0.94 | 0.94 | 0.84 | 0.91 |
Commercial | 0.62 | 0.72 | 0.76 | 0.92 | 0.94 | 0.97 |
Road | 0.6 | 0.74 | 0.85 | 0.84 | 0.89 | 0.77 |
Highway | 0.62 | 0.92 | 0.63 | 0.64 | 0.96 | 0.98 |
Railway | 0.91 | 0.88 | 0.72 | 0.9 | 0.84 | 0.92 |
Parking Lot1 | 0.58 | 0.62 | 0.89 | 0.92 | 0.98 | 0.92 |
Parking Lot2 | 0.87 | 0.59 | 0.93 | 0.88 | 0.94 | 0.81 |
Tennis Court | 0.99 | 0.99 | 1 | 1 | 0.97 | 1 |
Runing Track | 1 | 0.99 | 1 | 0.99 | 0.98 | 1 |
Class Name | SVM | FusAtNet | AFC-CNN | |||
---|---|---|---|---|---|---|
H | H + L | H | H + L | H | H + L | |
Mostly grass | 0.68 | 0.72 | 0.64 | 0.72 | 0.92 | 0.93 |
Mixed ground surface | 0.77 | 0.79 | 0.86 | 0.87 | 0.87 | 0.95 |
Dirt and sand | 0.81 | 0.84 | 0.87 | 0.86 | 0.86 | 0.91 |
Road | 0.89 | 0.89 | 0.93 | 0.95 | 0.94 | 0.93 |
Water | 0 | 0 | 0.25 | 0.91 | 0.87 | 0.88 |
Building shadow | 0 | 0 | 0.73 | 0.74 | 0.91 | 0.93 |
Buildings | 0.85 | 0.86 | 0.96 | 0.98 | 0.96 | 0.96 |
Sidewalk | 0.56 | 0.62 | 0.56 | 0.6 | 0.82 | 0.85 |
Yellow curb | 0 | 0 | 0.07 | 0.09 | 0.26 | 0.37 |
Cloth panels | 0.91 | 0.94 | 0.92 | 0.93 | 0.87 | 0.74 |
Class Name | SVM | FusAtNet | AFC-CNN | |||
---|---|---|---|---|---|---|
H | H + L | H | H + L | H | H + L | |
Buildings | 0.8 | 0.81 | 0.97 | 0.98 | 0.98 | 0.99 |
Ground | 0 | 1 | 1 | 0.99 | 0.99 | 1 |
Woods | 0.99 | 0.99 | 1 | 1 | 1 | 1 |
Vineyard | 0.87 | 0.76 | 0.99 | 0.99 | 0.98 | 1 |
Roads | 0.82 | 0.86 | 0.89 | 0.93 | 0.94 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhang, Y.; Yang, F.; Chai, L. Attention-Guided Fusion and Classification for Hyperspectral and LiDAR Data. Remote Sens. 2024, 16, 94. https://doi.org/10.3390/rs16010094
Huang J, Zhang Y, Yang F, Chai L. Attention-Guided Fusion and Classification for Hyperspectral and LiDAR Data. Remote Sensing. 2024; 16(1):94. https://doi.org/10.3390/rs16010094
Chicago/Turabian StyleHuang, Jing, Yinghao Zhang, Fang Yang, and Li Chai. 2024. "Attention-Guided Fusion and Classification for Hyperspectral and LiDAR Data" Remote Sensing 16, no. 1: 94. https://doi.org/10.3390/rs16010094
APA StyleHuang, J., Zhang, Y., Yang, F., & Chai, L. (2024). Attention-Guided Fusion and Classification for Hyperspectral and LiDAR Data. Remote Sensing, 16(1), 94. https://doi.org/10.3390/rs16010094