Determining Riverine Surface Roughness at Fluvial Mesohabitat Level and Its Influence on UAV-Based Thermal Imaging Accuracy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. The Surface Roughness Measurement Device (SRMD)
2.3. Application of SRMD and Thermal Imaging
2.4. Data Analysis
3. Results
4. Discussion
4.1. Reliability of SRMDs Concept
4.2. Influence of Surface Roughness Linked to Thermal Imaging Accuracy
4.3. Limitations, Potential Error Sources and Future Improvements
4.4. Potential Future Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terrestrial and Freshwater Ecosystems and Their Services. In Climate Change 2022—Impacts, Adaptation and Vulnerability; IPCC (Ed.) Cambridge University Press: Cambridge, UK, 2023; pp. 197–378. ISBN 9781009325844. [Google Scholar]
- Capon, S.J.; Stewart-Koster, B.; Bunn, S.E. Future of Freshwater Ecosystems in a 1.5 °C Warmer World. Front. Environ. Sci. 2021, 9, 41. [Google Scholar] [CrossRef]
- Pander, J.; Kuhn, J.; Casas-Mulet, R.; Habersetzer, L.; Geist, J. Diurnal patterns of spatial stream temperature variations reveal the need for integrating thermal heterogeneity in riverscape habitat restoration. Sci. Total Environ. 2024, 918, 170786. [Google Scholar] [CrossRef] [PubMed]
- Smialek, N.; Pander, J.; Mueller, M.; van Treeck, R.; Wolter, C.; Geist, J. Do We Know Enough to Save European Riverine Fish?—A Systematic Review on Autecological Requirements During Critical Life Stages of 10 Rheophilic Species at Risk. Sustainability 2019, 11, 5011. [Google Scholar] [CrossRef]
- Linnansaari, T.; O’Sullivan, A.M.; Breau, C.; Corey, E.M.; Collet, E.N.; Curry, R.A.; Cunjak, R.A. The Role of Cold-Water Thermal Refuges for Stream Salmonids in a Changing Climate—Experiences from Atlantic Canada. Fishes 2023, 8, 471. [Google Scholar] [CrossRef]
- Kuhn, J.; Casas-Mulet, R.; Pander, J.; Geist, J. Assessing Stream Thermal Heterogeneity and Cold-Water Patches from UAV-Based Imagery: A Matter of Classification Methods and Metrics. Remote Sens. 2021, 13, 1379. [Google Scholar] [CrossRef]
- Caissie, D. The thermal regime of rivers: A review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Casas-Mulet, R.; Pander, J.; Ryu, D.; Stewardson, M.J.; Geist, J. Unmanned Aerial Vehicle (UAV)-Based Thermal Infra-Red (TIR) and Optical Imagery Reveals Multi-Spatial Scale Controls of Cold-Water Areas Over a Groundwater-Dominated Riverscape. Front. Environ. Sci. 2020, 8, 257. [Google Scholar] [CrossRef]
- Irani Rahaghi, A.; Lemmin, U.; Barry, D.A. Surface Water Temperature Heterogeneity at Subpixel Satellite Scales and Its Effect on the Surface Cooling Estimates of a Large Lake: Airborne Remote Sensing Results from Lake Geneva. JGR Oceans 2019, 124, 635–651. [Google Scholar] [CrossRef]
- Dugdale, S.J. A practitioner’s guide to thermal infrared remote sensing of rivers and streams: Recent advances, precautions and considerations. WIREs Water 2016, 3, 251–268. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Kelleher, C.A.; Malcolm, I.A.; Caldwell, S.; Hannah, D.M. Assessing the potential of drone-based thermal infrared imagery for quantifying river temperature heterogeneity. Hydrol. Process. 2019, 33, 1152–1163. [Google Scholar] [CrossRef]
- Fullerton, A.H.; Torgersen, C.E.; Lawler, J.J.; Faux, R.N.; Steel, E.A.; Beechie, T.J.; Ebersole, J.L.; Leibowitz, S.G. Rethinking the longitudinal stream temperature paradigm: Region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrol. Process. 2015, 29, 4719–4737. [Google Scholar] [CrossRef]
- Webb, B.W.; Hannah, D.M.; Moore, R.D.; Brown, L.E.; Nobilis, F. Recent advances in stream and river temperature research. Hydrol. Process. 2008, 22, 902–918. [Google Scholar] [CrossRef]
- Wawrzyniak, V.; Piégay, H.; Allemand, P.; Vaudor, L.; Goma, R.; Grandjean, P. Effects of geomorphology and groundwater level on the spatio-temporal variability of riverine cold water patches assessed using thermal infrared (TIR) remote sensing. Remote Sens. Environ. 2016, 175, 337–348. [Google Scholar] [CrossRef]
- Eschbach, D.; Piasny, G.; Schmitt, L.; Pfister, L.; Grussenmeyer, P.; Koehl, M.; Skupinski, G.; Serradj, A. Thermal-infrared remote sensing of surface water–groundwater exchanges in a restored anastomosing channel (Upper Rhine River, France). Hydrol. Process. 2017, 31, 1113–1124. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Bergeron, N.E.; St-Hilaire, A. Temporal variability of thermal refuges and water temperature patterns in an Atlantic salmon river. Remote Sens. Environ. 2013, 136, 358–373. [Google Scholar] [CrossRef]
- Frechette, D.M.; Dugdale, S.J.; Dodson, J.J.; Bergeron, N.E. Understanding summertime thermal refuge use by adult Atlantic salmon using remote sensing, river temperature monitoring, and acoustic telemetry. Can. J. Fish. Aquat. Sci. 2018, 75, 1999–2010. [Google Scholar] [CrossRef]
- Micieli, M.; Botter, G.; Mendicino, G.; Senatore, A. UAV Thermal Images for Water Presence Detection in a Mediterranean Headwater Catchment. Remote Sens. 2022, 14, 108. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Klaus, J.; Hannah, D.M. Looking to the Skies: Realising the Combined Potential of Drones and Thermal Infrared Imagery to Advance Hydrological Process Understanding in Headwaters. Water Resour. Res. 2022, 58, 226. [Google Scholar] [CrossRef]
- Lee, E.; Yoon, H.; Hyun, S.P.; Burnett, W.C.; Koh, D.-C.; Ha, K.; Kim, D.-J.; Kim, Y.; Kang, K.-M. Unmanned aerial vehicles (UAVs)-based thermal infrared (TIR) mapping, a novel approach to assess groundwater discharge into the coastal zone. Limnol. Oceanogr. Methods 2016, 14, 725–735. [Google Scholar] [CrossRef]
- Karisallen, J.J.; Kurylyk, B.L. Drone-based characterization of intertidal spring cold-water plume dynamics. Hydrol. Process. 2021, 35, e2295. [Google Scholar] [CrossRef]
- Niwa, H. Comparison of the accuracy of two UAV-mounted uncooled thermal infrared sensors in predicting river water temperature. River Res. Apps 2022, 38, 1660–1667. [Google Scholar] [CrossRef]
- Caldwell, S.H.; Kelleher, C.; Baker, E.A.; Lautz, L.K. Relative information from thermal infrared imagery via unoccupied aerial vehicle informs simulations and spatially-distributed assessments of stream temperature. Sci. Total Environ. 2019, 661, 364–374. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, A.M.; Kurylyk, B.L. Limiting External Absorptivity of UAV-Based Uncooled Thermal Infrared Sensors Increases Water Temperature Measurement Accuracy. Remote Sens. 2022, 14, 6356. [Google Scholar] [CrossRef]
- Handcock, R.N.; Gillespie, A.R.; Cherkauer, K.A.; Kay, J.E.; Burges, S.J.; Kampf, S.K. Accuracy and uncertainty of thermal-infrared remote sensing of stream temperatures at multiple spatial scales. Remote Sens. Environ. 2006, 100, 427–440. [Google Scholar] [CrossRef]
- Virtue, J.; Turner, D.; Williams, G.; Zeliadt, S.; McCabe, M.; Lucieer, A. Thermal Sensor Calibration for Unmanned Aerial Systems Using an External Heated Shutter. Drones 2021, 5, 119. [Google Scholar] [CrossRef]
- Loerke, E.; Pohle, I.; Drummond, D.; Miller, P.E.; Geris, J. Surface Measure to Depth (SMeTD): A new low-budget system for 3D water temperature measurements for combining with UAV-based thermal infrared imagery. Environ. Monit. Assess. 2023, 195, 1533. [Google Scholar] [CrossRef] [PubMed]
- Redana, M.; Lancaster, L.T.; Chong, X.Y.; Lip, Y.Y.; Gibbins, C. An open-source method for producing reliable water temperature maps for ecological applications using non-radiometric sensors. Remote Sens. Appl. Soc. Environ. 2024, 34, 101184. [Google Scholar] [CrossRef]
- Sedano-Cibrián, J.; Pérez-Álvarez, R.; de Luis-Ruiz, J.M.; Pereda-García, R.; Salas-Menocal, B.R. Thermal Water Prospection with UAV, Low-Cost Sensors and GIS. Application to the Case of La Hermida. Sensors 2022, 22, 6756. [Google Scholar] [CrossRef] [PubMed]
- Sima, O.; Tang, B.-H.; He, Z.-W.; Wang, D.; Zhao, J.-L. Retrieval of Plateau Lake Water Surface Temperature from UAV Thermal Infrared Data. Atmosphere 2024, 15, 99. [Google Scholar] [CrossRef]
- Shaw, J.; Marston, C. Polarized infrared emissivity for a rough water surface. Opt. Express 2000, 7, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.M.; Smith, J.A.; Glew, M.D.; Rogers, S.M.; Taylor, J.P. Temperature and salinity dependence of sea surface emissivity in the thermal infrared. Q. J. R. Meteorol. Soc. 2005, 131, 2539–2557. [Google Scholar] [CrossRef]
- Torgersen, C.E.; Faux, R.N.; McIntosh, B.A.; Poage, N.J.; Norton, D.J. Airborne thermal remote sensing for water temperature assessment in rivers and streams. Remote Sens. Environ. 2001, 76, 386–398. [Google Scholar] [CrossRef]
- Handcock, R.N.; Torgersen, C.E.; Cherkauer, K.A.; Gillespie, A.R.; Tockner, K.; Faux, R.N.; Tan, J. Thermal Infrared Remote Sensing of Water Temperature in Riverine Landscapes. In Fluvial Remote Sensing for Science and Management; Carbonneau, P.E., Piégay, H., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 85–113. ISBN 9780470714270. [Google Scholar]
- Feijt, A.J.; Kohsiek, W. The effect of emissivity variation on surface temperature determined by infrared radiometry. Bound.-Layer Meteorol. 1995, 72, 323–327. [Google Scholar] [CrossRef]
- Cheng, J.; Cheng, X.; Meng, X.; Zhou, G. A Monte Carlo Emissivity Model for Wind-Roughened Sea Surface. Sensors 2019, 19, 2166. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K.; Takashima, T.; Takayama, Y. Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ. 1988, 24, 313–329. [Google Scholar] [CrossRef]
- Hanafin, J.A.; Minnett, P.J. Measurements of the infrared emissivity of a wind-roughened sea surface. Appl. Opt. 2005, 44, 398–411. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.-A.; Wang, D.; Gong, F.; He, X.; Bai, Y. The Influence of Increasing Water Turbidity on Sea Surface Emissivity. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3501–3515. [Google Scholar] [CrossRef]
- Wenyao, L.; Field, R.T.; Gantt, R.G.; Klemas, V. Measurement of the surface emissivity of turbid waters. Chin. J. Ocean. Limnol. 1987, 5, 363–369. [Google Scholar] [CrossRef]
- Konda, M.; Imasato, N.; Nishi, K.; Toda, T. Measurement of the sea surface emissivity. J Oceanogr 1994, 50, 17–30. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter. J. Opt. Soc. Am. 1954, 44, 838. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, K.; Lou, X.; Li, Y.; Zheng, G.; Wang, J.; Wang, X.; Ren, L.; Li, D.; Shi, A. Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor. Remote Sens. Environ. 2018, 208, 97–108. [Google Scholar] [CrossRef]
- Høeg, P.; Carlström, A. Sea Surface Roughness Determination from Grazing Angle GPS Ocean Observations and Scatterometry Simulations. Remote Sens. 2023, 15, 3794. [Google Scholar] [CrossRef]
- Fu, S.; Huang, W.; Luo, J.; Yang, Z.; Fu, H.; Luo, Y.; Wang, B. Deep Learning-Based Sea Surface Roughness Parameterization Scheme Improves Sea Surface Wind Forecast. Geophys. Res. Lett. 2023, 50, 145. [Google Scholar] [CrossRef]
- Stammel, B.; Cyffka, B.; Geist, J.; Müller, M.; Pander, J.; Blasch, G.; Fischer, P.; Gruppe, A.; Haas, F.; Kilg, M.; et al. Floodplain restoration on the Upper Danube (Germany) by re-establishing water and sediment dynamics: A scientific monitoring as part of the implementation. River Syst. 2012, 20, 55–70. [Google Scholar] [CrossRef]
- Fischer, P.; Cyffka, B. Floodplain restoration on the Upper Danube by re-establishing back water dynamics: First results of the hydrological monitoring. Erdkunde 2014, 68, 3–18. [Google Scholar] [CrossRef]
- Pander, J.; Mueller, M.; Geist, J. Habitat diversity and connectivity govern the conservation value of restored aquatic floodplain habitats. Biol. Conserv. 2018, 217, 1–10. [Google Scholar] [CrossRef]
- Pander, J.; Casas-Mulet, R.; Geist, J. Hydropeaking impairs upstream salmonid spawning habitats in a restored Danube tributary. River Res. Apps 2023, 39, 389–400. [Google Scholar] [CrossRef]
- Jowett, I.G. A method for objectively identifying pool, run, and riffle habitats from physical measurements. N. Z. J. Mar. Freshw. Res. 1993, 27, 241–248. [Google Scholar] [CrossRef]
- Casatti, L.; Teresa, F.B. A multimetric index based on fish fauna for the evaluation of the biotic integrity of streams at a mesohabitat scale. Acta Limnol. Bras. 2012, 24, 339–350. [Google Scholar] [CrossRef]
- Environment Agency, River Habitat Survey in Britain and Ireland. Available online: https://assets.publishing.service.gov.uk/media/62dff4138fa8f564a21dcd5e/RHS-manual-2003_2022-reprint-LIT-1758.pdf (accessed on 24 January 2024).
- Hawkins, C.P.; Kershner, J.L.; Bisson, P.A.; Bryant, M.D.; Decker, L.M.; Gregory, S.V.; McCullough, D.A.; Overton, C.K.; Reeves, G.H.; Steedman, R.J.; et al. A Hierarchical Approach to Classifying Stream Habitat Features. Fisheries 1993, 18, 3–12. [Google Scholar] [CrossRef]
- Gosselin, M.-P.; Maddock, I.; Petts, G. Mesohabitat use by brown trout (Salmo trutta) in a small groundwater-dominated stream. River Res. Appl. 2012, 28, 390–401. [Google Scholar] [CrossRef]
- Landesamt für Digitalisierung, Breitband und Vermessung. GeodatenOnline: Digitales Orthophoto DOP80 (WMS). Available online: https://www.ldbv.bayern.de/produkte/dienste/geodatendienste.html (accessed on 1 March 2024).
- Wohl, E.E.; Vincent, K.R.; Merritts, D.J. Pool and riffle characteristics in relation to channel gradient. Geomorphology 1993, 6, 99–110. [Google Scholar] [CrossRef]
- Piatka, D.R.; Wild, R.; Hartmann, J.; Kaule, R.; Kaule, L.; Gilfedder, B.; Peiffer, S.; Geist, J.; Beierkuhnlein, C.; Barth, J.A.C. Transfer and transformations of oxygen in rivers as catchment reflectors of continental landscapes: A review. Earth-Sci. Rev. 2021, 220, 103729. [Google Scholar] [CrossRef]
- Kelly, J.; Kljun, N.; Olsson, P.-O.; Mihai, L.; Liljeblad, B.; Weslien, P.; Klemedtsson, L.; Eklundh, L. Challenges and Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera. Remote Sens. 2019, 11, 567. [Google Scholar] [CrossRef]
- Casas-Mulet, R.; Alfredsen, K.; García-Escudero Uribe, A. A cost-effective approach to predict dynamic variation of mesohabitats at the river scale in Norwegian systems. Int. J. River Basin Manag. 2014, 12, 145–159. [Google Scholar] [CrossRef]
- Borsányi, P.; Alfredsen, K.; Harby, A.; Ugedal, O.; Kraxner, C. A Meso-scale Habitat Classification Method for Production Modelling of Atlantic Salmon in Norway. Hydroecologie Appl. 2004, 14, 119–138. [Google Scholar] [CrossRef]
- Gharechelou, S.; Tateishi, R.; Johnson, B.A. A Simple Method for the Parameterization of Surface Roughness from Microwave Remote Sensing. Remote Sens. 2018, 10, 1711. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuhn, J.; Pander, J.; Habersetzer, L.; Casas-Mulet, R.; Geist, J. Determining Riverine Surface Roughness at Fluvial Mesohabitat Level and Its Influence on UAV-Based Thermal Imaging Accuracy. Remote Sens. 2024, 16, 1674. https://doi.org/10.3390/rs16101674
Kuhn J, Pander J, Habersetzer L, Casas-Mulet R, Geist J. Determining Riverine Surface Roughness at Fluvial Mesohabitat Level and Its Influence on UAV-Based Thermal Imaging Accuracy. Remote Sensing. 2024; 16(10):1674. https://doi.org/10.3390/rs16101674
Chicago/Turabian StyleKuhn, Johannes, Joachim Pander, Luis Habersetzer, Roser Casas-Mulet, and Juergen Geist. 2024. "Determining Riverine Surface Roughness at Fluvial Mesohabitat Level and Its Influence on UAV-Based Thermal Imaging Accuracy" Remote Sensing 16, no. 10: 1674. https://doi.org/10.3390/rs16101674
APA StyleKuhn, J., Pander, J., Habersetzer, L., Casas-Mulet, R., & Geist, J. (2024). Determining Riverine Surface Roughness at Fluvial Mesohabitat Level and Its Influence on UAV-Based Thermal Imaging Accuracy. Remote Sensing, 16(10), 1674. https://doi.org/10.3390/rs16101674