Modeling Potential Habitats of Macrophytes in Small Lakes: A GIS and Remote Sensing-Based Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Modeling Habitat Suitability
2.3. Model Input
2.3.1. Satellite Data
2.3.2. Radiometric Field Data
2.3.3. Bathymetric Data
2.3.4. Littoral Slope
2.3.5. PAR Availability
2.3.6. Distance to Groundwater Inflow
2.4. Model Validation
3. Results
3.1. Model Input and Macrophyte Occurrence
3.2. Model
4. Discussion
4.1. Habitat Predictors
4.2. Modeled Potential Habitats vs. Actual Habitats
4.3. Employing Remote Sensing in Habitat Modeling and Monitoring
4.4. GIS and Remote Sensing-Supported HSMs as Tools for Water Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HSM | habitat suitability model |
PAR | photosynthetically active radiation |
diffuse attenuation coefficient for photosynthetically active radiation | |
downwelling direct solar irradiance at wavelength | |
HSS | habitat suitability score |
Appendix A
%PAR | Slope | Distance to Inflow | Depth | |
---|---|---|---|---|
count | 5637.0 | 6276.0 | 6509.0 | 6509.0 |
mean | 5.21 | 13.33 | 293.95 | 3.85 |
std | 5.68 | 6.39 | 267.55 | 1.56 |
min | 0.0 | 0.66 | 0.88 | 0.35 |
25% | 1.3 | 8.64 | 84.08 | 2.75 |
50% | 3.53 | 12.52 | 198.52 | 3.75 |
75% | 6.92 | 17.81 | 492.31 | 4.78 |
max | 50.7 | 42.62 | 1150.76 | 10.8 |
r | −0.445 | 0.131 | −0.532 | −0.678 |
p-value | 0.001 | 0.397 | 0.0 | 0.0 |
0.676 | 0.41 | 0.486 | 0.757 | |
p-valuedcor | 0.0 | 0.003 | 0.0 | 0.0 |
References
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Loewen, C. Lakes as model systems for understanding global change. Nat. Clim. Chang. 2023, 13, 304–306. [Google Scholar] [CrossRef]
- Dayton, P.K. Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. In Proceedings of the Colloquium on Conservation Problems in Antarctica; Allen Press: Lawrence, KS, USA, 1972; pp. 81–96. [Google Scholar]
- Cook, C.D.K.; Gut, B.J.; Rix, E.M.; Schneller, J. Water Plants of the World: A Manual for the Identification of the Genera of Freshwater Macrophytes; Springer Science & Business Media: The Hague, The Netherlands, 1974. [Google Scholar]
- Carpenter, S.R.; Lodge, D.M. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 1986, 26, 341–370. [Google Scholar] [CrossRef]
- Pieczyńska, E. Detritus and nutrient dynamics in the shore zone of lakes: A review. Hydrobiologia 1993, 251, 49–58. [Google Scholar] [CrossRef]
- Finkler Ferreira, T.; Crossetti, L.O.; Motta Marques, D.M.L.; Cardoso, L.; Fragoso, C.R.; van Nes, E.H. The structuring role of submerged macrophytes in a large subtropical shallow lake: Clear effects on water chemistry and phytoplankton structure community along a vegetated-pelagic gradient. Limnologica 2018, 69, 142–154. [Google Scholar] [CrossRef]
- Bolduc, P.; Bertolo, A.; Bernadette, P.A. Does submerged aquatic vegetation shape zooplankton community structure and functional diversity? A test with a shallow fluvial lake system. Hydrobiologia 2016, 778, 151–165. [Google Scholar] [CrossRef]
- Deosti, S.; Bomfim, F.; Lansac-Tôha, F.; Quirino, B.; Bonecker, C.; Lansac-Tôha, F. Zooplankton taxonomic and functional structure is determined by macrophytes and fish predation in a Neotropical river. Hydrobiologia 2021, 848, 1–16. [Google Scholar] [CrossRef]
- Emery-Butcher, H.E.; Beatty, S.J.; Robson, B.J. The impacts of invasive ecosystem engineers in freshwaters: A review. Freshw. Biol. 2020, 65, 999–1015. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as Ecosystem Engineers. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Thomaz, S.M.; Cunha, E.R.d. The role of macrophytes in habitat structuring in aquatic ecosystems: Methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol. Bras. 2010, 22, 218–236. [Google Scholar] [CrossRef]
- Bakker, E.S.; Wood, K.A.; Pagès, J.F.; Veen, G.F.C.; Christianen, M.J.A.; Santamaría, L.; Nolet, B.A.; Hilt, S. Herbivory on freshwater and marine macrophytes: A review and perspective. Aquat. Bot. 2016, 135, 18–36. [Google Scholar] [CrossRef]
- Wolters, J.W.; Verdonschot, R.C.M.; Schoelynck, J.; Brion, N.; Verdonschot, P.F.M.; Meire, P. Stable isotope measurements confirm consumption of submerged macrophytes by macroinvertebrate and fish taxa. Aquat. Ecol. 2018, 52, 269–280. [Google Scholar] [CrossRef]
- Thomaz, S.M. Ecosystem services provided by freshwater macrophytes. Hydrobiologia 2023, 850, 2757–2777. [Google Scholar] [CrossRef]
- Zhang, Y.; Jeppesen, E.; Liu, X.; Qin, B.; Shi, K.; Zhou, Y.; Thomaz, S.M.; Deng, J. Global loss of aquatic vegetation in lakes. Earth-Sci. Rev. 2017, 173, 259–265. [Google Scholar] [CrossRef]
- Lind, L.; Eckstein, R.L.; Relyea, R.A. Direct and indirect effects of climate change on distribution and community composition of macrophytes in lentic systems. Biol. Rev. 2022, 97, 1677–1690. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Mooij, W.M.; Janse, J.H.; De Senerpont Domis, L.N.; Hülsmann, S.; Ibelings, B.W. Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. In Shallow Lakes in a Changing World; Gulati, R.D., Lammens, E., De Pauw, N., Van Donk, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 443–454. [Google Scholar] [CrossRef]
- European Environment Agency. European Rivers and Lakes: Assessment of Their Environmental State; Number 1 in EEA environmental monographs; European Environmental Agency: Copenhagen, Denmark, 1994.
- Elith, J.; Leathwick, J. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef]
- Warren, D.L.; Matzke, N.J.; Iglesias, T.L. Evaluating presence-only species distribution models with discrimination accuracy is uninformative for many applications. J. Biogeogr. 2020, 47, 167–180. [Google Scholar] [CrossRef]
- Barnes, M.A.; Jerde, C.L.; Wittmann, M.E.; Chadderton, W.L.; Ding, J.; Zhang, J.; Purcell, M.F.; Budhathoki, M.; Lodge, D.M. Geographic selection bias of occurrence data influences transferability of invasive Hydrilla verticillata distribution models. Ecol. Evol. 2014, 4, 2584–2593. [Google Scholar] [CrossRef] [PubMed]
- Lee-Yaw, J.; McCune, J.; Pironon, S.; Sheth, S. Species distribution models rarely predict the biology of real populations. Ecography 2021, 2022, e05877. [Google Scholar] [CrossRef]
- Araújo, M.B.; Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 2006, 33, 1677–1688. [Google Scholar] [CrossRef]
- Kellner, C.J.; Brawn, J.D.; Karr, J.R. What Is Habitat Suitability and how Should it be Measured? In Wildlife 2001: Populations; McCullough, D.R., Barrett, R.H., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 476–488. [Google Scholar] [CrossRef]
- Peterson, A.; Soberón, J. Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Nat. Conserv. 2012, 10, 1–6. [Google Scholar] [CrossRef]
- Melo-Merino, S.M.; Reyes-Bonilla, H.; Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 2020, 415, 108837. [Google Scholar] [CrossRef]
- McGill, B.J. Ecology. Matters of scale. Science 2010, 328, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Alahuhta, J. Geographic patterns of lake macrophyte communities and species richness at regional scale. J. Veg. Sci. 2015, 26, 564–575. [Google Scholar] [CrossRef]
- Scheffer, M.; Hosper, S.; Meijer, M.L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 1993, 8, 275–279. [Google Scholar] [CrossRef]
- Stefanidis, K.; Sarika, M.; Papastegiadou, E. Exploring environmental predictors of aquatic macrophytes in water-dependent Natura 2000 sites of high conservation value: Results from a long-term study of macrophytes in Greek lakes. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 1133–1148. [Google Scholar] [CrossRef]
- Van Echelpoel, W.; Goethals, P.L.M. Variable importance for sustaining macrophyte presence via random forests: Data imputation and model settings. Sci. Rep. 2018, 8, 14557. [Google Scholar] [CrossRef]
- Duarte, C.M.; Kalff, J. Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities1,1: Submerged macrophyte biomass. Limnol. Oceanogr. 1986, 31, 1072–1080. [Google Scholar] [CrossRef]
- He, L.; Zhu, T.; Wu, Y.; Li, W.; Zhang, H.; Zhang, X.; Cao, T.; Ni, L.; Hilt, S. Littoral Slope, Water Depth and Alternative Response Strategies to Light Attenuation Shape the Distribution of Submerged Macrophytes in a Mesotrophic Lake. Front. Plant Sci. 2019, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Lewerentz, A.; Hoffmann, M.; Sarmento Cabral, J. Depth diversity gradients of macrophytes: Shape, drivers, and recent shifts. Ecol. Evol. 2021, 11, 13830–13845. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, M.; Phillips, G.; Hellsten, S.; Kolada, A.; Ecke, F.; Mäemets, H.; Mjelde, M.; Azzella, M.M.; Oggioni, A. Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia 2013, 704, 165–177. [Google Scholar] [CrossRef]
- Alahuhta, J.; Lindholm, M.; Baastrup-Spohr, L.; García Girón, J.; Toivanen, M.; Heino, J.; Murphy, K. Macroecology of macrophytes in the freshwater realm: Patterns, mechanisms and implications. Aquat. Bot. 2021, 168, 103325. [Google Scholar] [CrossRef]
- Johnson, R.K.; Toprak, V. Local habitat is a strong determinant of spatial and temporal patterns of macrophyte diversity and composition in boreal lakes. Freshw. Biol. 2021, 66, 1490–1501. [Google Scholar] [CrossRef]
- García-Girón, J.; Heino, J.; García-Criado, F.; Fernández-Aláez, C.; Alahuhta, J. Biotic interactions hold the key to understanding metacommunity organisation. Ecography 2020, 43, 1180–1190. [Google Scholar] [CrossRef]
- Crane, K.; Kregting, L.; Coughlan, N.E.; Cuthbert, R.N.; Ricciardi, A.; MacIsaac, H.J.; Dick, J.T.; Reid, N. Abiotic and biotic correlates of the occurrence, extent and cover of invasive aquatic Elodea nuttallii. Freshw. Biol. 2022, 67, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.E.; Moss, B.; Eaton, J. Fish induced macrophyte loss in shallow lakes: Top–down and bottom–up processes in mesocosm experiments. Freshw. Biol. 2002, 47, 2216–2232. [Google Scholar] [CrossRef]
- Nechad, B.; Ruddick, K. A model of diffuse attenuation of the downwelling irradiance for ecosystem models. In Proceedings of the SPIE Asia-Pacific Remote Sensing, Incheon, Republic of Korea, 3 November 2010; p. 78580D. [Google Scholar] [CrossRef]
- Deutscher Wetterdienst (German Weather Service). Climate Data Center (CDC): Grids of Multi-Annual Mean Precipitation Height for Germany, Versionv21.3, 2017. Location: Iffeldorf. 2021. Available online: https://cdc.dwd.de/portal/ (accessed on 19 April 2024).
- Deutscher Wetterdienst (German Weather Service). Climate Data Center (CDC): Weather Station Data of Multi-Annual Mean Temperature, Location: Attenkam. 2020. Available online: https://cdc.dwd.de/portal/ (accessed on 19 April 2024).
- Gruenert, U.; Raeder, U. Growth responses of the calcite-loricated freshwater phytoflagellate Phacotus lenticularis (Chlorophyta) to the CaCO3 saturation state and meteorological changes. J. Plankton Res. 2014, 36, 630–640. [Google Scholar] [CrossRef]
- Zwirglmaier, K.; Keiz, K.; Engel, M.; Geist, J.; Raeder, U. Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front. Microbiol. 2015, 6, 1168. [Google Scholar] [CrossRef] [PubMed]
- Raeder, U.; Ruzicka, J.; Goos, C. Characterization of the light attenuation by periphyton in lakes of different trophic state. Limnologica 2010, 40, 40–46. [Google Scholar] [CrossRef]
- Melzer, A. Aquatic macrophytes as tools for lake management. Hydrobiologia 1999, 395, 181–190. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Le Lay, G. Habitat suitability modelling and niche theory. J. Appl. Ecol. 2008, 45, 1372–1381. [Google Scholar] [CrossRef]
- Hudon, C.; Lalonde, S.; Gagnon, P. Ranking the effects of site exposure, plant growth form, water depth, and transparency on aquatic plant biomass. Can. J. Fish. Aquat. Sci. 2000, 57, 31–42. [Google Scholar] [CrossRef]
- Bornette, G.; Puijalon, S. Response of aquatic plants to abiotic factors: A review. Aquat. Sci. 2011, 73, 1–14. [Google Scholar] [CrossRef]
- Middelboe, A.L.; Markager, S. Depth limits and minimum light requirements of freshwater macrophytes. Freshw. Biol. 1997, 37, 553–568. [Google Scholar] [CrossRef]
- Fleming, J.P.; Madsen, J.D.; Dibble, E.D. Development of a GIS model to enhance macrophyte re-establishment projects. Appl. Geogr. 2012, 32, 629–635. [Google Scholar] [CrossRef]
- Malczewski, J. On the Use of Weighted Linear Combination Method in GIS: Common and Best Practice Approaches. Trans. GIS 2000, 4, 5–22. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755. [Google Scholar] [CrossRef]
- Lee, Z.; Weidemann, A.; Kindle, J.; Arnone, R.; Carder, K.L.; Davis, C. Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. J. Geophys. Res. 2007, 112, C03009. [Google Scholar] [CrossRef]
- Lee, Z. Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters. J. Geophys. Res. 2005, 110, C09019. [Google Scholar] [CrossRef]
- Havens, K.E. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake. Hydrobiologia 2003, 493, 173–186. [Google Scholar] [CrossRef]
- Abele, W. Hydroacoustic Water Depth Dataset, Osterseen Lake District, Device; Krupp Atlas Deso 10; Bavarian State Office for the Environment (LfU): Augsburg, Germany, 2001. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Graeler, B.; Pebesma, E.; Heuvelink, G. Spatio-Temporal Interpolation using gstat. R J. 2016, 8, 204–218. [Google Scholar] [CrossRef]
- Florêncio, F.M.; Alves, D.C.; Lansac-Tôha, F.M.; Silveira, M.J.; Thomaz, S.M. The success of the invasive macrophyte Hydrilla verticillata and its interactions with the native Egeria najas in response to environmental factors and plant abundance in a subtropical reservoir. Aquat. Bot. 2021, 175, 103432. [Google Scholar] [CrossRef]
- Azzella, M.M.; Bolpagni, R.; Oggioni, A. A preliminary evaluation of lake morphometric traits influence on the maximum growing depth of macrophytes. J. Limnol. 2014, 73, 400–406. [Google Scholar] [CrossRef]
- Van Den Berg, M.S.; Scheffer, M.; Van Nes, E.; Coops, H. Dynamics and stability of Chara sp and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 1999, 408/409, 335–342. [Google Scholar] [CrossRef]
- Mõttus, M.; Sulev, M.; Baret, F.; Lopez-Lozano, R.; Reinart, A. Photosynthetically Active Radiation: Measurement and Modeling. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012; pp. 7902–7932. [Google Scholar] [CrossRef]
- Mobley, C. The Oceanic Optics Book; International Ocean Colour Coordinating Group (IOCCG): Dartmouth, NS, Canada, 2022. [Google Scholar]
- Székely, G.J.; Rizzo, M.L.; Bakirov, N.K. Measuring and testing dependence by correlation of distances. Ann. Stat. 2007, 35, 2769–2794. [Google Scholar] [CrossRef]
- Ramos-Carreño, C.; Torrecilla, J.L. dcor: Distance correlation and energy statistics in Python. SoftwareX 2023, 22, 101326. [Google Scholar] [CrossRef]
- Lehmann, A. GIS modeling of submerged macrophyte distribution using Generalized Additive Models. Plant Ecol. 1998, 139, 113–124. [Google Scholar] [CrossRef]
- Tang, R.W.K.; Doka, S.E.; Midwood, J.D.; Gardner Costa, J.M. Development and spatial application of a submerged aquatic vegetation model for Cootes Paradise Marsh, Ontario, Canada. Aquat. Sci. 2020, 83, 9. [Google Scholar] [CrossRef]
- Harrow-Lyle, T.J.; Kirkwood, A.E. An ecological niche model based on a broad calcium-gradient reveals additional habitat preferences of the invasive charophyte Nitellopsis obtusa. Aquat. Bot. 2021, 172, 103397. [Google Scholar] [CrossRef]
- Rey-Boissezon, A.; Auderset Joye, D. Habitat requirements of charophytes—Evidence of species discrimination through distribution analysis. Aquat. Bot. 2015, 120, 84–91. [Google Scholar] [CrossRef]
- Miller, S.A.; Crowl, T.A. Effects of common carp (Cyprinus carpio) on macrophytes and invertebrate communities in a shallow lake. Freshw. Biol. 2006, 51, 85–94. [Google Scholar] [CrossRef]
- Pípalová, I. Initial impact of low stocking density of grass carp on aquatic macrophytes. Aquat. Bot. 2002, 73, 9–18. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Oppelt, N. Remote sensing for lake research and monitoring—Recent advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Calamita, E.; Lever, J.J.; Albergel, C.; Woolway, R.I.; Odermatt, D. Detecting climate-related shifts in lakes: A review of the use of satellite Earth Observation. Limnol. Oceanogr. 2024, 39, 723–741. [Google Scholar] [CrossRef]
- Schaeffer, B.A.; Schaeffer, K.G.; Keith, D.; Lunetta, R.S.; Conmy, R.; Gould, R.W. Barriers to adopting satellite remote sensing for water quality management. Int. J. Remote Sens. 2013, 34, 7534–7544. [Google Scholar] [CrossRef]
- Yates, K.L.; Bouchet, P.J.; Caley, M.J.; Mengersen, K.; Randin, C.F.; Parnell, S.; Fielding, A.H.; Bamford, A.J.; Ban, S.; Barbosa, A.M.; et al. Outstanding Challenges in the Transferability of Ecological Models. Trends Ecol. Evol. 2018, 33, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Hupfer, M.; Schwefel, R.; Jordan, S.; Köhler, A. Auswirkungen des Klimawandels auf Seen in Deutschland; Abschlussbericht; Länderarbeitsgemeinschaft Wasser (LAWA-AK): Berlin, Germany, 2022. [Google Scholar]
- Hoffmann, M.; Raeder, U. Predicting the potential distribution of neophytes in Southern Germany using native Najas marina as invasion risk indicator. Environ. Earth Sci. 2016, 75, 1217. [Google Scholar] [CrossRef]
Lake Name | Abbr. | Trophic State | Surface Area [ha] | Max. Depth [m] | Cluster |
---|---|---|---|---|---|
Ursee | US | Oligotrophic | 2.75 | 11.8 | northern |
Gartensee | GAS | Oligotrophic | 7.89 | 14.2 | |
Gröbensee | GS | Oligotrophic | 7.81 | 15.8 | |
Lustsee | LS | Oligotrophic | 7.16 | 18 | |
Stechsee | STS | Oligotrophic | 9.50 | 15.4 | |
Ameisensee | AS | Meso-oligotrophic | 5.28 | 19.8 | central |
Öst. Breitenauersee | OBS | Meso-oligotrophic | 2.40 | 16.3 | |
West. Breitenauersee | WBS | Meso-oligotrophic | 6.49 | 17.8 | |
Ostersee | OS | Meso-oligotrophic | 118.48 | 30.1 | |
Eishausseee | ES | Mesotrophic | 6.99 | 19.8 | eastern |
Herrensee | HS | Oligotrophic | 2.72 | 11.5 | |
Bräuhaussee | BS | Mesotrophic | 3.96 | 13.1 | |
Fischkaltersee | FKS | Mesotrophic | 2.71 | 11.9 | |
Forchensee | FOS | Meso-oligotrophic | 0.84 | 9.4 | |
Fohnsee | FS | Mesotrophic | 19.65 | 24.1 | southern |
Wolfelsee | WOS | Mesotrophic | 1.02 | 6.1 | |
Sengsee | SES | Eutrophic | 5.03 | 15.1 | |
Schiffhüttensee | SHS | Eutrophic | 1.35 | 6.4 | |
Waschsee | WS | Eutrophic | 1.08 | 5.5 |
Mean | Min | Max | Slope | Intercept | r | MBE | ||
---|---|---|---|---|---|---|---|---|
0.63 | 0.47 | 1.05 | ||||||
0.58 | 0.37 | 1.25 | 1.22 | −0.19 | 0.85 | 0.73 | 0.05 | |
0.59 | 0.41 | 1.39 | 1.4 | −0.29 | 0.88 | 0.77 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robran, B.; Kroth, F.; Kuhwald, K.; Schneider, T.; Oppelt, N. Modeling Potential Habitats of Macrophytes in Small Lakes: A GIS and Remote Sensing-Based Approach. Remote Sens. 2024, 16, 2339. https://doi.org/10.3390/rs16132339
Robran B, Kroth F, Kuhwald K, Schneider T, Oppelt N. Modeling Potential Habitats of Macrophytes in Small Lakes: A GIS and Remote Sensing-Based Approach. Remote Sensing. 2024; 16(13):2339. https://doi.org/10.3390/rs16132339
Chicago/Turabian StyleRobran, Bastian, Frederike Kroth, Katja Kuhwald, Thomas Schneider, and Natascha Oppelt. 2024. "Modeling Potential Habitats of Macrophytes in Small Lakes: A GIS and Remote Sensing-Based Approach" Remote Sensing 16, no. 13: 2339. https://doi.org/10.3390/rs16132339
APA StyleRobran, B., Kroth, F., Kuhwald, K., Schneider, T., & Oppelt, N. (2024). Modeling Potential Habitats of Macrophytes in Small Lakes: A GIS and Remote Sensing-Based Approach. Remote Sensing, 16(13), 2339. https://doi.org/10.3390/rs16132339