Consistency of Aerosol Optical Properties between MODIS Satellite Retrievals and AERONET over a 14-Year Period in Central–East Europe
Abstract
:1. Introduction
2. Methodology and Data Selection
2.1. MODIS Aerosol Data
2.2. AERONET Data
2.3. Collocation and Intercomparison
3. Analysis of Aerosol Properties Derived from MODIS and AERONET
3.1. Seasonal Analysis of AOD in Central–East Europe for the Period 2010–2023
3.1.1. AOD Maps from MODIS Retrievals and Measurements at AERONET Stations
3.1.2. Seasonal Comparison between MODIS and AERONET AOD Retrievals
3.2. Analysis of the AOD Biases Retrieved from the MODIS at AERONET Stations
3.3. Trend in AOD over Central–East Europe Derived from AERONET Network and Collocated MODIS Terra and Aqua between 2010 and 2023
4. Aerosol Types and Analysis of AE Biases Retrieved from MODIS at AERONET Stations
4.1. Classification of Aerosol Types and Individual Contribution to Atmospheric Aerosols
4.2. MODIS AE Biases for Different Types of Aerosols
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costantino, L.; Bréon, F.-M. Aerosol Indirect Effect on Warm Clouds over South-East Atlantic, from Co-Located MODIS and CALIPSO Observations. Atmos. Chem. Phys. 2013, 13, 69–88. [Google Scholar] [CrossRef]
- Feingold, G.; Jiang, H.; Harrington, J.Y. On Smoke Suppression of Clouds in Amazonia. Geophys. Res. Lett. 2005, 32, L02804. [Google Scholar] [CrossRef]
- Ghan, S.J. Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing. Atmos. Chem. Phys. 2013, 13, 9971–9974. [Google Scholar] [CrossRef]
- Quaas, J.; Gryspeerdt, E. Chapter 12—Aerosol-Cloud Interactions in Liquid Clouds. In Aerosols and Climate; Carslaw, K.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 489–544. ISBN 9780128197660. [Google Scholar] [CrossRef]
- Christopher, S.A.; Zhang, J.; Kaufman, Y.J.; Remer, L.A. Satellite-Based Assessment of Top of Atmosphere Anthropogenic Aerosol Radiative Forcing over Cloud-Free Oceans. Geophys. Res. Lett. 2006, 33, L15816. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, S.; Wang, Z.; Zhang, X.; Song, L. The Updated Effective Radiative Forcing of Major Anthropogenic Aerosols and Their Effects on Global Climate at Present and in the Future. Int. J. Climatol. 2016, 36, 4029–4044. [Google Scholar] [CrossRef]
- Dagan, G.; Yeheskel, N.; Williams, A.I.L. Radiative forcing from aerosol–cloud interactions enhanced by large-scale circulation adjustments. Nat. Geosci. 2023, 16, 1092–1098. [Google Scholar] [CrossRef]
- Intergovernmental Panel On Climate Change Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-915789-6.
- Stjern, C.W.; Stohl, A.; Kristjánsson, J.E. Have Aerosols Affected Trends in Visibility and Precipitation in Europe? J. Geophys. Res. Atmos. 2011, 116, D02212. [Google Scholar] [CrossRef]
- Ulevicius, V.; Byčenkienė, S.; Bozzetti, C.; Vlachou, A.; Plauškaitė, K.; Mordas, G.; Dudoitis, V.; Abbaszade, G.; Remeikis, V.; Garbaras, A.; et al. Fossil and Non-Fossil Source Contributions to Atmospheric Carbonaceous Aerosols during Extreme Spring Grassland Fires in Eastern Europe. Atmos. Chem. Phys. 2016, 16, 5513–5529. [Google Scholar] [CrossRef]
- Haywood, J. Chapter 27—Atmospheric Aerosols and Their Role in Climate Change. In Climate Change, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 449–463. ISBN 9780444635242. [Google Scholar] [CrossRef]
- Bellouin, N. AEROSOLS | Role in Climate Change. In Encyclopedia of Atmospheric Sciences, 2nd ed.; North, G.R., Pyle, J., Zhang, F., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 76–85. ISBN 9780123822253. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D’Amico, G.; Mattis, I.; et al. EARLINET: Towards an Advanced Sustainable European Aerosol Lidar Network. Atmos. Meas. Tech. 2014, 7, 2389–2409. [Google Scholar] [CrossRef]
- Lolli, S.; Vivone, G.; Lewis, J.R.; Sicard, M.; Welton, E.J.; Campbell, J.R.; Comerón, A.; D’Adderio, L.P.; Tokay, A.; Giunta, A.; et al. Overview of the New Version 3 NASA Micro-Pulse Lidar Network (MPLNET) Automatic Precipitation Detection Algorithm. Remote Sens. 2020, 12, 71. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Liu, L.; Geogdzhayev, I.V.; Travis, L.D.; Cairns, B.; Lacis, A.A. Toward Unified Satellite Climatology of Aerosol Properties.: 3. MODIS versus MISR versus AERONET. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 540–552. [Google Scholar] [CrossRef]
- Schuster, G.L.; Vaughan, M.; MacDonnell, D.; Su, W.; Winker, D.; Dubovik, O.; Lapyonok, T.; Trepte, C. Comparison of CALIPSO Aerosol Optical Depth Retrievals to AERONET Measurements, and a Climatology for the Lidar Ratio of Dust. Atmos. Chem. Phys. 2012, 12, 7431–7452. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS: Advanced Facility Instrument for Studies of the Earth as a System. IEEE Trans. Geosci. Remote Sens. 1989, 27, 145–153. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Diner, D.J.; Beckert, J.C.; Reilly, T.H.; Bruegge, C.J.; Conel, J.E.; Kahn, R.A.; Martonchik, J.V.; Ackerman, T.P.; Davies, R.; Gerstl, S.A.W.; et al. Multi-Angle Imaging SpectroRadiometer (MISR) Instrument Description and Experiment Overview. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1072–1087. [Google Scholar] [CrossRef]
- Deschamps, P.-Y.; Breon, F.-M.; Leroy, M.; Podaire, A.; Bricaud, A.; Buriez, J.-C.; Seze, G. The POLDER Mission: Instrument Characteristics and Scientific Objectives. IEEE Trans. Geosci. Remote Sens. 1994, 32, 598–615. [Google Scholar] [CrossRef]
- Levelt, P.F.; van den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Yang, Y.; Lou, S.; Wang, H.; Wang, P.; Liao, H. Trends and Source Apportionment of Aerosols in Europe during 1980–2018. Atmos. Chem. Phys. 2020, 20, 2579–2590. [Google Scholar] [CrossRef]
- Tørseth, K.; Aas, W.; Breivik, K.; Fjæraa, A.M.; Fiebig, M.; Hjellbrekke, A.G.; Lund Myhre, C.; Solberg, S.; Yttri, K.E. Introduction to the European Monitoring and Evaluation Programme (EMEP) and Observed Atmospheric Composition Change during 1972–2009. Atmos. Chem. Phys. 2012, 12, 5447–5481. [Google Scholar] [CrossRef]
- Marmer, E.; Langmann, B.; Hungershöfer, K.; Trautmann, T. Aerosol Modeling over Europe: 2. Interannual Variability of Aerosol Shortwave Direct Radiative Forcing. J. Geophys. Res. Atmos. 2007, 112, D23S16. [Google Scholar] [CrossRef]
- Smith, S.J.; van Aardenne, J.; Klimont, Z.; Andres, R.J.; Volke, A.; Delgado Arias, S. Anthropogenic Sulfur Dioxide Emissions: 1850–2005. Atmos. Chem. Phys. 2011, 11, 1101–1116. [Google Scholar] [CrossRef]
- Wild, M. Global Dimming and Brightening: A Review. J. Geophys. Res. Atmos. 2009, 114, D00D16. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P. Control of Recent European Surface Climate Change by Atmospheric Flow. Geophys. Res. Lett. 2009, 36, L22702. [Google Scholar] [CrossRef]
- Acosta Navarro, J.C.; Varma, V.; Riipinen, I.; Seland, Ø.; Kirkevåg, A.; Struthers, H.; Iversen, T.; Hansson, H.-C.; Ekman, A.M.L. Amplification of Arctic Warming by Past Air Pollution Reductions in Europe. Nat. Geosci 2016, 9, 277–281. [Google Scholar] [CrossRef]
- Sitnov, S.A.; Gorchakov, G.I.; Sviridenkov, M.A.; Gorchakova, I.A.; Karpov, A.V.; Kolesnikova, A.B. Aerospace Monitoring of Smoke Aerosol over the European Part of Russia in the Period of Massive Forest and Peatbog Fires in July–August of 2010. Atmos Ocean Opt 2013, 26, 265–280. [Google Scholar] [CrossRef]
- Barnaba, F.; Angelini, F.; Curci, G.; Gobbi, G.P. An Important Fingerprint of Wildfires on the European Aerosol Load. Atmos. Chem. Phys. 2011, 11, 10487–10501. [Google Scholar] [CrossRef]
- Ettehadi Osgouei, P.; Roberts, G.; Kaya, S.; Bilal, M.; Dash, J.; Sertel, E. Evaluation and Comparison of MODIS and VIIRS Aerosol Optical Depth (AOD) Products over Regions in the Eastern Mediterranean and the Black Sea. Atmos. Environ. 2022, 268, 118784. [Google Scholar] [CrossRef]
- Logothetis, S.-A.; Salamalikis, V.; Kazantzidis, A. Aerosol Classification in Europe, Middle East, North Africa and Arabian Peninsula Based on AERONET Version 3. Atmos. Res. 2020, 239, 104893. [Google Scholar] [CrossRef]
- Nicolae, V.; Talianu, C.; Andrei, S.; Antonescu, B.; Ene, D.; Nicolae, D.; Dandocsi, A.; Toader, V.-E.; Ștefan, S.; Savu, T.; et al. Multiyear Typology of Long-Range Transported Aerosols over Europe. Atmosphere 2019, 10, 482. [Google Scholar] [CrossRef]
- Carstea, E.; Fragkos, K.; Siomos, N.; Antonescu, B.; Belegante, L. Columnar Aerosol Measurements in a Continental Southeastern Europe Site: Climatology and Trends. Theor. Appl. Clim. 2019, 137, 3149–3159. [Google Scholar] [CrossRef]
- Evgenieva, T.T.; Kolev, N.I.; Iliev, I.T.; Savov, P.B.; Kaprielov, B.K.; Devara, P.C.S.; Kolev, I.N. Lidar and Spectroradiometer Measurements of Atmospheric Aerosol Optical Characteristics over an Urban Area in Sofia, Bulgaria. Int. J. Remote Sens. 2009, 30, 6381–6401. [Google Scholar] [CrossRef]
- Ștefănie, H.I.; Radovici, A.; Mereuță, A.; Arghiuș, V.; Cămărășan, H.; Costin, D.; Botezan, C.; Gînscă, C.; Ajtai, N. Variation of Aerosol Optical Properties over Cluj-Napoca, Romania, Based on 10 Years of AERONET Data and MODIS MAIAC AOD Product. Remote Sens. 2023, 15, 3072. [Google Scholar] [CrossRef]
- Posyniak, M.; Szkop, A.; Pietruczuk, A.; Podgórski, J.; Krzyścin, J. The Long-Term (1964–2014) Variability of Aerosol Optical Thickness and Its Impact on Solar Irradiance Based on the Data Taken at Belsk, Poland. Acta Geophys. 2016, 64, 1858–1874. [Google Scholar] [CrossRef]
- Elansky, N.F.; Ponomarev, N.A.; Verevkin, Y.M. Air Quality and Pollutant Emissions in the Moscow Megacity in 2005–2014. Atmos. Environ. 2018, 175, 54–64. [Google Scholar] [CrossRef]
- Chubarova, N.Y.; Poliukhov, A.A.; Gorlova, I.D. Long-Term Variability of Aerosol Optical Thickness in Eastern Europe over 2001–2014 According to the Measurements at the Moscow MSU MO AERONET Site with Additional Cloud and NO2 Correction. Atmos. Meas. Tech. 2016, 9, 313–334. [Google Scholar] [CrossRef]
- Rupakheti, D.; Aculinin, A.; Rupakheti, M.; Dahal, S.; Rai, M.; Yin, X.; Yu, X.; Abdullaev, S.F.; Hu, J. Insights on Aerosol Properties Using Two Decades-Long Ground-Based Remote Sensing Datasets in Moldova, Eastern Europe. Environ. Pollut. 2023, 337, 122535. [Google Scholar] [CrossRef]
- Markowicz, K.M.; Stachlewska, I.S.; Zawadzka-Manko, O.; Wang, D.; Kumala, W.; Chilinski, M.T.; Makuch, P.; Markuszewski, P.; Rozwadowska, A.K.; Petelski, T.; et al. A Decade of Poland-AOD Aerosol Research Network Observations. Atmosphere 2021, 12, 1583. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H. Impact of COVID-19 Lockdown on Air Quality in the Poland, Eastern Europe. Environ. Res. 2021, 198, 110454. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H. Trends in Aerosol Optical Properties over Eastern Europe Based on MODIS-Aqua. Geosci. Front. 2020, 11, 2169–2181. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H.; Zhou, L.; Gusev, A. Climatology of Aerosol Optical Depth over Eastern Europe Based on 19 Years (2000–2018) MODIS TERRA Data. Int. J. Climatol. 2020, 40, 3531–3549. [Google Scholar] [CrossRef]
- Milinevsky, G.; Miatselskaya, N.; Grytsai, A.; Danylevsky, V.; Bril, A.; Chaikovsky, A.; Yukhymchuk, Y.; Wang, Y.; Liptuga, A.; Kyslyi, V.; et al. Atmospheric Aerosol Distribution in 2016–2017 over the Eastern European Region Based on the GEOS-Chem Model. Atmosphere 2020, 11, 722. [Google Scholar] [CrossRef]
- Bovchaliuk, A.; Milinevsky, G.; Danylevsky, V.; Goloub, P.; Dubovik, O.; Holdak, A.; Ducos, F.; Sosonkin, M. Variability of Aerosol Properties over Eastern Europe Observed from Ground and Satellites in the Period from 2003 to 2011. Atmos. Chem. Phys. 2013, 13, 6587–6602. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS Aerosol Products over Land and Ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.-C. Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation: Enhanced deep blue aerosol retrieval. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC Algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- NASA MODIS Adaptive Processing System. MODIS Atmosphere L2 Aerosol Product. NASA Goddard Space Flight Center, Greenbelt, MD, United States. 2023. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD04_L2 (accessed on 1 December 2023).
- NASA MODIS Adaptive Processing System. MODIS Atmosphere L2 Aerosol Product. NASA Goddard Space Flight Center, Greenbelt, MD, United States. 2023. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MYD04_L2 (accessed on 1 December 2023).
- Dubovik, O.; King, M.D. A Flexible Inversion Algorithm for Retrieval of Aerosol Optical Properties from Sun and Sky Radiance Measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database—Automated near-Real-Time Quality Control Algorithm with Improved Cloud Screening for Sun Photometer Aerosol Optical Depth (AOD) Measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength Dependence of the Optical Depth of Biomass Burning, Urban, and Desert Dust Aerosols. J. Geophys. Res. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Spencer, R.S.; Levy, R.C.; Remer, L.A.; Mattoo, S.; Arnold, G.T.; Hlavka, D.L.; Meyer, K.G.; Marshak, A.; Wilcox, E.M.; Platnick, S.E. Exploring Aerosols Near Clouds With High-Spatial-Resolution Aircraft Remote Sensing During SEAC4RS. J. Geophys. Res. Atmos. 2019, 124, 2148–2173. [Google Scholar] [CrossRef]
- Ajtai, N.; Ștefănie, H.; Mereuță, A.; Radovici, A.; Botezan, C. Multi-Sensor Observation of a Saharan Dust Outbreak over Transylvania, Romania in April 2019. Atmosphere 2020, 11, 364. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An Overview of MODIS Land Data Processing and Product Status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Sfîcă, L.; Beck, C.; Nita, A.-I.; Voiculescu, M.; Birsan, M.-V.; Philipp, A. Cloud cover changes driven by atmospheric circulation in Europe during the last decades. Int. J. Climatol. 2021, 41 (Suppl. S1), E2211–E2230. [Google Scholar] [CrossRef]
- Cahynová, M.; Huth, R. Atmospheric circulation influence on climatic trends in Europe: An analysis of circulation type classifications from the COST733 catalogue. Int. J. Climatol. 2016, 36, 2743–2760. [Google Scholar] [CrossRef]
- Matuszko, D. Influence of cloudiness on sunshine duration. Int. J. Climatol. 2012, 32, 1527–1536. [Google Scholar] [CrossRef]
- Mhawish, A.; Banerjee, T.; Sorek-Hamer, M.; Lyapustin, A.; Broday, D.M.; Chatfield, R. Comparison and Evaluation of MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Product over South Asia. Remote Sens. Environ. 2019, 224, 12–28. [Google Scholar] [CrossRef]
- Tao, M.; Wang, J.; Li, R.; Wang, L.; Wang, L.; Wang, Z.; Tao, J.; Che, H.; Chen, L. Performance of MODIS High-Resolution MAIAC Aerosol Algorithm in China: Characterization and Limitation. Atmos. Environ. 2019, 213, 159–169. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Raptis, I.-P.; Kazadzis, S.; Amiridis, V.; Gkikas, A.; Gerasopoulos, E.; Mihalopoulos, N. A Decade of Aerosol Optical Properties Measurements over Athens, Greece. Atmosphere 2020, 11, 154. [Google Scholar] [CrossRef]
Country | Station | Location | Latitude | Longitude | Mean AE 440/675 nm | Mean AOD 550 nm | Nr. AOD |
---|---|---|---|---|---|---|---|
AU | Kanzelhohe_Obs | Rural | 46.677 | 13.901 | 1.32 | 0.087 | 842 |
AU | Vienna_BOKU | Urban | 48.237 | 16.331 | 1.49 | 0.149 | 957 |
AU | Vienna_UNIVIE | Urban | 48.221 | 16.355 | 1.48 | 0.165 | 493 |
BG | Galata_Platform | Rural | 43.044 | 28.193 | 1.48 | 0.156 | 1976 |
BG | Sofia_IEBAS | Urban | 42.653 | 23.386 | 1.50 | 0.157 | 462 |
BY | Minsk | Urban | 53.920 | 27.601 | 1.47 | 0.152 | 1435 |
EE | Toravere | Rural | 58.264 | 26.466 | 1.35 | 0.112 | 1723 |
LT | Irbe_lighthouse | Rural | 57.750 | 21.722 | 1.41 | 0.117 | 365 |
MD | Moldova | Urban | 47.000 | 28.815 | 1.50 | 0.168 | 1465 |
PL | Belsk | Rural | 51.836 | 20.791 | 1.45 | 0.185 | 1292 |
PL | Debrzyna_PULS | Rural | 53.782 | 16.592 | 1.38 | 0.135 | 207 |
PL | POLWET_Rzecin | Rural | 52.762 | 16.309 | 1.39 | 0.154 | 181 |
PL | Raciborz | Rural | 50.083 | 18.191 | 1.43 | 0.178 | 1032 |
PL | Strzyzow | Rural | 49.878 | 21.861 | 1.50 | 0.152 | 1061 |
PL | Warsaw UW | Urban | 52.210 | 20.982 | 1.39 | 0.167 | 593 |
RO | Bucharest_Inoe | Urban | 44.348 | 26.028 | 1.52 | 0.216 | 759 |
RO | CLUJ_UBB | Urban | 46.768 | 23.551 | 1.53 | 0.184 | 1231 |
RO | Eforie | Rural | 44.075 | 28.632 | 1.48 | 0.176 | 1106 |
RO | Gloria | Rural | 44.599 | 29.359 | 1.50 | 0.165 | 1719 |
RO | Iasi_Loasl | Urban | 47.193 | 27.555 | 1.52 | 0.178 | 1408 |
RO | Magurele_Inoe | Urban | 44.348 | 26.030 | 1.53 | 0.175 | 1643 |
RO | Section-7_Platform | Rural | 44.545 | 29.446 | 1.42 | 0.144 | 620 |
RO | Timisoara | Urban | 45.746 | 21.227 | 1.46 | 0.183 | 970 |
SK | Poprad-Ganovce | Rural | 49.035 | 20.322 | 1.53 | 0.128 | 1279 |
UA | Kyiv | Urban | 50.363 | 30.496 | 1.47 | 0.173 | 1674 |
UA | Kyiv_AO | Urban | 50.452 | 30.498 | 1.39 | 0.168 | 247 |
UA | Lugansk | Urban | 48.570 | 39.364 | 1.39 | 0.204 | 60 |
UA | Martova | Rural | 49.936 | 36.953 | 1.41 | 0.148 | 66 |
UA | Sevastopol | Rural | 44.615 | 33.517 | 1.51 | 0.166 | 659 |
Station | MODIS Terra (MOD) | MODIS Aqua (MYD) | ||||
---|---|---|---|---|---|---|
Nr. AOD | Mean Bias | CI 95% | Nr. AOD | Mean Bias | CI 95% | |
Belsk | 628 | 0.007 | −0.004, 0.020 | 427 | 0.040 | 0.025, 0.055 |
Bucharest_Inoe | 459 | 0.037 | 0.023, 0.051 | 366 | 0.066 | 0.049, 0.082 |
CLUJ_UBB | 748 | 0.019 | 0.008, 0.029 | 575 | 0.050 | 0.037, 0.061 |
Debrzyna_PULS | 77 | −0.038 | −0.089, 0.013 | 62 | 0.021 | −0.017, 0.058 |
Eforie | 672 | 0.003 | −0.007, 0.013 | 656 | 0.023 | 0.010, 0.035 |
Galata_Platform | 1174 | −0.028 | −0.035, −0.019 | 1180 | 0.007 | −0.00, 0.0153 |
Gloria | 1053 | −0.024 | −0.032, −0.014 | 1036 | −0.008 | −0.017, 0.000 |
Iasi_Loasl | 905 | 0.014 | 0.004, 0.024 | 734 | 0.053 | 0.041, 0.064 |
Irbe_lighthouse | 226 | −0.085 | −0.106, −0.063 | 246 | −0.035 | −0.051, −0.018 |
Kanzelhohe_Obs | 232 | −0.086 | −0.104, −0.068 | 188 | −0.063 | −0.081, −0.045 |
Kyiv | 754 | −0.012 | −0.024, 0.001 | 591 | 0.019 | 0.006, 0.031 |
Kyiv_AO | 106 | 0.015 | −0.010, 0.040 | 71 | 0.007 | −0.039, 0.052 |
Lugansk | 21 | −0.021 | −0.071, 0.030 | 17 | 0.155 | 0.081, 0.229 |
Magurele_Inoe | 935 | 0.001 | −0.008, 0.011 | 748 | 0.026 | 0.013, 0.038 |
Martova | 41 | −0.010 | −0.051, 0.031 | 30 | −0.049 | −0.107, 0.009 |
Minsk | 516 | 0.014 | −0.000, 0.028 | 395 | 0.014 | −0.003, 0.030 |
Moldova | 847 | −0.001 | −0.012, 0.010 | 656 | 0.034 | 0.020, 0.047 |
POLWET_Rzecin | 79 | 0.011 | −0.017, 0.038 | 67 | 0.010 | −0.021, 0.041 |
Poprad-Ganovce | 406 | −0.051 | −0.066, −0.036 | 313 | −0.035 | −0.050, −0.018 |
Raciborz | 396 | 0.003 | −0.013, 0.019 | 338 | 0.041 | 0.026, 0.055 |
Section-7_~Platform | 362 | −0.032 | −0.046, −0.018 | 378 | −0.006 | −0.021, 0.008 |
Sevastopol | 420 | −0.018 | −0.031, −0.004 | 377 | −0.002 | −0.017, 0.013 |
Sofia_IEBAS | 242 | −0.039 | −0.059, −0.017 | 187 | 0.014 | −0.006, 0.034 |
Strzyzow | 526 | 0.011 | −0.001, 0.023 | 447 | 0.019 | 0.005, 0.031 |
Timisoara | 650 | 0.007 | −0.005, 0.019 | 523 | 0.035 | 0.021, 0.049 |
Toravere | 636 | −0.041 | −0.053, −0.029 | 527 | −0.007 | −0.020, 0.007 |
Vienna_BOKU | 444 | −0.026 | −0.040, −0.012 | 381 | 0.008 | −0.007, 0.023 |
Vienna_UNIVIE | 268 | 0.006 | −0.012, 0.025 | 235 | 0.007 | −0.016, 0.030 |
Warsaw UW | 290 | −0.015 | −0.032, 0.001 | 211 | 0.047 | 0.025, 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deaconu, L.-T.; Mereuță, A.; Radovici, A.; Ștefănie, H.I.; Botezan, C.; Ajtai, N. Consistency of Aerosol Optical Properties between MODIS Satellite Retrievals and AERONET over a 14-Year Period in Central–East Europe. Remote Sens. 2024, 16, 1677. https://doi.org/10.3390/rs16101677
Deaconu L-T, Mereuță A, Radovici A, Ștefănie HI, Botezan C, Ajtai N. Consistency of Aerosol Optical Properties between MODIS Satellite Retrievals and AERONET over a 14-Year Period in Central–East Europe. Remote Sensing. 2024; 16(10):1677. https://doi.org/10.3390/rs16101677
Chicago/Turabian StyleDeaconu, Lucia-Timea, Alexandru Mereuță, Andrei Radovici, Horațiu Ioan Ștefănie, Camelia Botezan, and Nicolae Ajtai. 2024. "Consistency of Aerosol Optical Properties between MODIS Satellite Retrievals and AERONET over a 14-Year Period in Central–East Europe" Remote Sensing 16, no. 10: 1677. https://doi.org/10.3390/rs16101677
APA StyleDeaconu, L. -T., Mereuță, A., Radovici, A., Ștefănie, H. I., Botezan, C., & Ajtai, N. (2024). Consistency of Aerosol Optical Properties between MODIS Satellite Retrievals and AERONET over a 14-Year Period in Central–East Europe. Remote Sensing, 16(10), 1677. https://doi.org/10.3390/rs16101677