Analysis of Meteorological Drivers of Taihu Lake Algal Blooms over the Past Two Decades and Development of a VOCs Emission Inventory for Algal Bloom
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite Data
2.2.2. Meteorological Data
2.2.3. Cyanobacteria-Emission-Related Data
2.2.4. Machine Learning Model and SHapley Additive exPlanations (SHAP) Approach
3. Results
3.1. Long-Term Spatiotemporal Characteristics of EVI
3.2. Impacts of Meteorological Factors
3.2.1. The Spatiotemporal Variations of Meteorological Factors
3.2.2. The Relative Importance of Meteorological Factors
3.3. Spatiotemporal Characteristics of Retrieved VOCs Emission
4. Discussion
5. Conclusions
- (1)
- Cyanobacterial blooms in Taihu Lake are primarily distributed in the Northwest and Meiliang Bay areas, where VOCs are released. The EVI index exhibits a fluctuating upward trend, with explosive growth during the outbreak periods in 2006 and 2007. In 2020, the EVI reached the highest level, 1.71 times that of 2006, indicating a sustained deterioration trend in cyanobacterial blooms in Taihu Lake.
- (2)
- In all regions of Taihu Lake, temperature is the most significant meteorological factor influencing cyanobacterial blooms. Wind speed and direction usually affect the transportation and accumulation of cyanobacterial blooms in the northwestern regions.
- (3)
- Isoprene is the predominant component among the VOCs released by cyanobacterial blooms. The distribution of VOCs closely aligns with the concentration of cyanobacterial blooms, emphasizing the need to pay attention to air pollution, such as ozone increase and aerosol augmentation, in regions where cyanobacterial blooms are concentrated.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, L.; Yang, X.; Ren, L.; Qian, X.; Xiao, L. Mechanism and control strategy of cyanobacterial bloom in Lake Taihu. J. Lake Sci. 2019, 31, 18–27. [Google Scholar]
- Zhang, Y.; Su, Y.; Liu, Z.; Sun, K.; Kong, L.; Yu, J.; Jin, M. Sedimentary lipid biomarker record of human-induced environmental change during the past century in Lake Changdang, Lake Taihu basin, Eastern China. Sci. Total Environ. 2018, 613–614, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Wang, Y.; Liu, X.; Hu, W.; Zhu, J.; Zhu, L. Spatial distribution and risk assessment of heavy metals and As pollution in the sediments of a shallow lake. Environ. Monit. Assess. 2016, 188, 296. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Zhu, G.; Gao, G.; Zhang, Y.; Li, W.; Paerl, H.W.; Carmichael, W.W. A Drinking Water Crisis in Lake Taihu, China: Linkage to Climatic Variability and Lake Management. Environ. Manag. 2009, 45, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z. Why Algae Release Volatile Organic Compounds—The Emission and Roles. Front. Microbiol. 2019, 10, 446976. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Zheng, B.; Tong, D.; Lei, Y.; Liu, F.; Hong, C.; Kang, S.; Yan, L.; Zhang, Y.; et al. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: Drivers, speciation and ozone formation potential. Atmos. Chem. Phys. 2019, 19, 8897–8913. [Google Scholar] [CrossRef]
- Wu, R.; Xie, S. Spatial Distribution of Secondary Organic Aerosol Formation Potential in China Derived from Speciated Anthropogenic Volatile Organic Compound Emissions. Environ. Sci. Technol. 2018, 52, 8146–8156. [Google Scholar] [CrossRef] [PubMed]
- Guenther, A.; Zimmerman, P.; Wildermuth, M. Natural volatile organic compound emission rate estimates for U.S. woodland landscapes. Atmos. Environ. 1994, 28, 1197–1210. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Wang, G.; Wang, Z.; Li, M.; Liang, W.; Gao, J.; Wang, W.; Chen, D.; Feng, Y.; et al. Machine learning and theoretical analysis release the non-linear relationship among ozone, secondary organic aerosol and volatile organic compounds. J. Environ. Sci. 2022, 114, 75–84. [Google Scholar] [CrossRef]
- Li, Q.; Su, G.; Li, C.; Liu, P.; Zhao, X.; Zhang, C.; Sun, X.; Mu, Y.; Wu, M.; Wang, Q.; et al. An investigation into the role of VOCs in SOA and ozone production in Beijing, China. Sci. Total Environ. 2020, 720, 137536. [Google Scholar] [CrossRef]
- Tsiligiannis, E.; Hammes, J.; Salvador, C.M.; Mentel, T.F.; Hallquist, M. Effect of NOx on 1,3,5-trimethylbenzene (TMB) oxidation product distribution and particle formation. Atmos. Chem. Phys. 2019, 19, 15073–15086. [Google Scholar] [CrossRef]
- Mao, Y.-H.; Yu, S.; Shang, Y.; Liao, H.; Li, N. Response of Summer Ozone to Precursor Emission Controls in the Yangtze River Delta Region. Front. Environ. Sci. 2022, 10, 864897. [Google Scholar] [CrossRef]
- Zhang, K.; Li, L.; Huang, L.; Wang, Y.; Huo, J.; Duan, Y.; Wang, Y.; Fu, Q. The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai. Atmos. Environ. 2020, 232, 117511. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, X.; Nie, W.; Chi, X.; Xu, Z.; Zheng, L.; Sun, P.; Ding, A. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China. Atmos. Environ. 2017, 168, 112–124. [Google Scholar] [CrossRef]
- Batterman, S.A.; Hedin, L.O.; van Breugel, M.; Ransijn, J.; Craven, D.J.; Hall, J.S. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 2013, 502, 224–227. [Google Scholar] [CrossRef]
- Jones, M.R.; Pinto, E.; Torres, M.A.; Dörr, F.; Mazur-Marzec, H.; Szubert, K.; Tartaglione, L.; Dell’Aversano, C.; Miles, C.O.; Beach, D.G.; et al. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res. 2021, 196, 117017. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Gao, H.; Zhang, L.; Liang, H.; Zhu, X. Rapid evolution of tolerance to toxic Microcystis in two cladoceran grazers. Sci. Rep. 2016, 6, 25319. [Google Scholar] [CrossRef] [PubMed]
- Rast, A.; Schaffer, M.; Albert, S.; Wan, W.; Pfeffer, S.; Beck, F.; Plitzko, J.M.; Nickelsen, J.; Engel, B.D. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants 2019, 5, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wu, X.; Yang, T.; Wang, C.; Tian, C.; Xiao, B.; Lorke, A. Feedback regulation of surface scum formation and persistence by self-shading of Microcystis colonies: Numerical simulations and laboratory experiments. Water Res. 2021, 194, 116908. [Google Scholar] [CrossRef]
- Schindler, D.W.; Hecky, R.E.; Findlay, D.L.; Stainton, M.P.; Parker, B.R.; Paterson, M.J.; Beaty, K.G.; Lyng, M.; Kasian, S.E.M. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 2008, 105, 11254–11258. [Google Scholar] [CrossRef]
- Schindler, D.W.; Carpenter, S.R.; Chapra, S.C.; Hecky, R.E.; Orihel, D.M. Reducing Phosphorus to Curb Lake Eutrophication is a Success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Qin, B.; Paerl, H.W.; Peng, K.; Zhang, Q.; Zhu, G.; Zhang, Y. Environmental controls of harmful cyanobacterial blooms in Chinese inland waters. Harmful Algae 2021, 110, 102127. [Google Scholar] [CrossRef] [PubMed]
- Wuethrich, B. How Climate Change Alters Rhythms of the Wild. Science 2001, 287, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Feng, L.; Dai, Y.; Hu, C.; Gibson, L.; Tang, J.; Lee, Z.; Wang, Y.; Cai, X.; Liu, J.; et al. Global mapping reveals increase in lacustrine algal blooms over the past decade. Nat. Geosci. 2022, 15, 130–134. [Google Scholar] [CrossRef]
- Fang, C.; Song, K.; Paerl, H.W.; Jacinthe, P.-A.; Wen, Z.; Liu, G.; Tao, H.; Xu, X.; Kutser, T.; Wang, Z.; et al. Global divergent trends of algal blooms detected by satellite during 1982–2018. Glob. Chang. Biol. 2022, 28, 2327–2340. [Google Scholar] [CrossRef]
- Trolle, D.; Elliott, J.A.; Mooij, W.M.; Janse, J.H.; Bolding, K.; Hamilton, D.P.; Jeppesen, E. Advancing projections of phytoplankton responses to climate change through ensemble modelling. Environ. Model. Softw. 2014, 61, 371–379. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Qin, B.Q.; Zhou, J.; Elser, J.J.; Gardner, W.S.; Deng, J.M.; Brookes, J.D. Water Depth Underpins the Relative Roles and Fates of Nitrogen and Phosphorus in Lakes. Environ. Sci. Technol. 2020, 54, 3191–3198. [Google Scholar] [CrossRef]
- Bouvy, M.; Nascimento, S.M.; Molica, R.J.R.; Ferreira, A.; Huszar, V.; Azevedo, S.M.F.O. Limnological features in Tapacurá reservoir (northeast Brazil) during a severe drought. Hydrobiologia 2003, 493, 115–130. [Google Scholar] [CrossRef]
- Zhao-tang, S.; Jian, R.E.N.; Ming-rong, Q.I.N.; Ying, X.I.A.; Lang, H.E.; Yu-wen, C. Relationships between climatic change and cyanobacterial bloom in Taihu Lake. Chin. J. Ecol. 2010, 29, 55–61. [Google Scholar]
- Wang, M.; Zhan, Y.; Chen, C.; Chen, M.; Zhu, J.; Jiang, X.; Yang, Y.; Lv, X.; Yin, P.; Zhang, W.; et al. Amplified cyanobacterial bloom is derived by polyphosphate accumulation triggered by ultraviolet light. Water Res. 2022, 222, 118837. [Google Scholar] [CrossRef] [PubMed]
- Carrick, H.J.; Aldridge, F.J.; Schelske, C.L. Wind Influences phytoplankton biomass and composition in a shallow, productive lake. Limnol. Oceanogr. 1993, 38, 1179–1192. [Google Scholar] [CrossRef]
- Wu, T.; Qin, B.; Brookes, J.D.; Shi, K.; Zhu, G.; Zhu, M.; Yan, W.; Wang, Z. The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. Sci. Total Environ. 2015, 518–519, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Y.; Qian, X.; Qian, Y. Review of cyanobacteria remote sensing in Taihu Lake. Environ. Pollut. Control. 2009, 31, 79–83. [Google Scholar]
- Shi, K.; Zhang, Y.L.; Qin, B.Q.; Zhou, B.T. Remote sensing of cyanobacterial blooms in inland waters: Present knowledge and future challenges. Sci. Bull. 2019, 64, 1540–1556. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zheng, W.; Liu, C. Application of Himawari-8 data with high-frequency observation for Cyanobacteria bloom dynamically monitoring in Lake Taihu. J. Lake Sci. 2017, 29, 1043–1053. [Google Scholar]
- Feng, L. Key issues in detecting lacustrine cyanobacterial bloom using satellite remote sensing. J. Lake Sci. 2021, 33, 647–652. [Google Scholar]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Oppelt, N. Remote sensing for lake research and monitoring—Recent advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Alharbi, B. Remote sensing techniques for monitoring algal blooms in the area between Jeddah and Rabigh on the Red Sea Coast. Remote Sens. Appl.-Soc. Environ. 2023, 30, 100935. [Google Scholar] [CrossRef]
- Kefauver, S.C.; Filella, I.; Peñuelas, J. Remote sensing of atmospheric biogenic volatile organic compounds (BVOCs) via satellite-based formaldehyde vertical column assessments. Int. J. Remote Sens. 2014, 35, 7519–7542. [Google Scholar] [CrossRef]
- Xing, C.Z.; Liu, C.; Hu, Q.H.; Fu, Q.Y.; Lin, H.; Wang, S.T.; Su, W.J.; Wang, W.W.; Javed, Z.; Liu, J.G. Identifying the wintertime sources of volatile organic compounds (VOCs) from MAX-DOAS measured formaldehyde and glyoxal in Chongqing, southwest China. Sci. Total Environ. 2020, 715, 136258. [Google Scholar] [CrossRef] [PubMed]
- Vrekoussis, M.; Wittrock, F.; Richter, A.; Burrows, J.P. GOME-2 observations of oxygenated VOCs: What can we learn from the ratio glyoxal to formaldehyde on a global scale? Atmos. Chem. Phys. 2010, 10, 10145–10160. [Google Scholar] [CrossRef]
- Su, W.J.; Liu, C.; Chan, K.L.; Hu, Q.H.; Liu, H.R.; Ji, X.G.; Zhu, Y.Z.; Liu, T.; Zhang, C.X.; Chen, Y.J.; et al. An improved TROPOMI tropospheric HCHO retrieval over China. Atmos. Meas. Tech. 2020, 13, 6271–6292. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef]
- Xiao, Q.T.; Zhang, M.; Hu, Z.H.; Gao, Y.Q.; Hu, C.; Liu, C.; Liu, S.D.; Zhang, Z.; Zhao, J.Y.; Xiao, W.; et al. Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate. J. Geophys. Res.-Biogeosci. 2017, 122, 1597–1614. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using Modis. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Jingping, X.U.; Ba, Z.; Fang, L.I.; Kaishan, S.; Zongming, W. Detecting modes of cyanobacteria bloom using MODIS data in Lake Taihu. Sci. Limnol. Sin. 2008, 20, 191–195. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, K.; Zhang, S. Extracting temporal and spatial distribution features of Lake Taihu from MODIS-EVI data by empirical orthogonal function analysis. Chin. J. Ecol. 2018, 37, 3802–3808. [Google Scholar]
- Xiao, Y.; Zhang, J.; Cui, T.; Gong, J.; Liu, R.; Chen, X.; Liang, X. Remote sensing estimation of the biomass of floating Ulva prolifera and analysis of the main factors driving the interannual variability of the biomass in the Yellow Sea. Mar. Pollut. Bull. 2019, 140, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Yu, Y.-j.; Li, C.-y.; Shen, W.; Wang, Z.; Xu, P.-q.; Yu, H.-x. Volatile compounds released by microalgae-water phase from Taihu Lake in China. Harmful Algae 2019, 84, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, T.; Zhao, X.; Zan, F.; Yang, G.; Miao, Y. Cyanobacteria blooms potentially enhance volatile organic compound (VOC) emissions from a eutrophic lake: Field and experimental evidence. Environ. Res. 2021, 202, 111664. [Google Scholar] [CrossRef] [PubMed]
- Ke, G.L.; Meng, Q.; Finley, T.; Wang, T.F.; Chen, W.; Ma, W.D.; Ye, Q.W.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Bentéjac, C.; Csörgo, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Dai, Y.; Yang, S.; Zhao, D.; Hu, C.; Xu, W.; Anderson, D.M.; Li, Y.; Song, X.-P.; Boyce, D.G.; Gibson, L.; et al. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 2023, 615, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Shao, M.; Chen, P.; Gu, C.; Wang, Q.G. Comparative study of anthropogenic and biogenic VOCs emission characteristics and their impact on O3 and SOA formation potential in the Yangtze River Delta region. China Environ. Sci. 2023, 1–12. [Google Scholar] [CrossRef]
- An, J.; Huang, Y.; Huang, C.; Wang, X.; Yan, R.; Wang, Q.; Wang, H.; Jing, S.; Zhang, Y.; Liu, Y.; et al. Emission inventory of air pollutants and chemical speciation for specific anthropogenic sources based on local measurements in the Yangtze River Delta region. Atmos. Chem. Phys. 2021, 21, 2003–2025. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, Y.; Mao, P.; Zhang, Q.; Zhang, J.; Qiu, L.; Yang, Y. Development of a high-resolution emission inventory and its evaluation and application through air quality modeling for Jiangsu Province, China. Atmos. Chem. Phys. 2017, 17, 211–233. [Google Scholar] [CrossRef]
- Cui, L.; Xiao, Y.; Hu, W.; Song, L.; Wang, Y.; Zhang, C.; Fu, P.; Zhu, J. Enhanced dataset of global marine isoprene emissions from biogenic and photochemical processes for the period 2001–2020. Earth Syst. Sci. Data 2023, 15, 5403–5425. [Google Scholar] [CrossRef]
Region | Description |
---|---|
Northwest | The primary inflow region, including Zhushan Bay (the very north part), receives ~80% of the total inflow, as well as most of the pollution. |
Meiliang Bay | The region experiences frequent pollution, with the west affected by industrial and agricultural pollutants, and the north impacted by urban pollution. |
Gonghu Bay | The key water source for two major cities, receiving river discharges for urban consumption |
Central | Far offshore with the deepest water. |
Southwest | Connected to three major inflowing rivers, it serves as a transitional zone dominated by planktonic plants and submerged vegetation |
East | The primary outflow of Taihu Lake |
East Taihu Bay | A shallow bay primarily utilized for aquaculture and is inhabited by submerged vegetation |
Category | VOCs Components | Relative Proportion of Stable Periods | Relative Proportion of Senescence | Relative Proportion of Apoptotic Phase |
---|---|---|---|---|
Alkanes | ETHANE CH3CH3 | 0.0414 | 0.0461 | 0.0434 |
Propane C3H8 | 0.0494 | 0.0703 | 0.0578 | |
ISOBUTANE C4H10 | 0.0317 | 0.0419 | 0.0343 | |
n-Butane C4H10 | 0.0422 | 0.0389 | 0.0327 | |
Cyclopentane C5H10 | 0.0486 | 0.0259 | 0.0166 | |
2-Methylbutane C5H12 | 0.0584 | 0.0401 | 0.0327 | |
Pentane C5H12 | 0.0622 | 0.0486 | 0.0473 | |
2,2-Dimethylbutane C6H14 | 0.0113 | 0.0078 | 0.0000 | |
3-METHYLPENTANE C6H14 | 0.0286 | 0.0235 | 0.0540 | |
Heptane C7H16 | 0.0249 | 0.0320 | 0.0385 | |
N-NONANE C9H20 | 0.0301 | 0.0350 | 0.0205 | |
Alkenes | ETHYLENE C2H4 | 0.0622 | 0.0498 | 0.0368 |
PROPYLENE C3H6 | 0.0494 | 0.0473 | 0.0412 | |
2-BUTENE C4H8 | 0.0188 | 0.0115 | 0.0138 | |
1-BUTENE C4H8 | 0.0339 | 0.0199 | 0.0188 | |
CIS-2-BUTENE C4H8 | 0.0181 | 0.0386 | 0.0111 | |
1,3-Butadiene C4H6 | 0.0098 | 0.0048 | 0.0133 | |
1-Pentene C5H10 | 0.0301 | 0.0181 | 0.0243 | |
trans-2-Pentene C5H10 | 0.0128 | 0.0109 | 0.0188 | |
Isoprene C5H8 | 0.0870 | 0.0395 | 0.0327 | |
CIS-2-PENTENE C5H10 | 0.0249 | 0.0103 | 0.0155 | |
1-Hexene C6H12 | 0.0279 | 0.0139 | 0.0440 | |
OVOCs | Acrolein C3H4O | 0.0264 | 0.0476 | 0.0166 |
Acetone C3H6O | 0.0795 | 0.0576 | 0.0407 | |
2-Butanone C4H8O | 0.0430 | 0.0350 | 0.0473 | |
VSOCs | Carbon disulfide CS2 | 0.0475 | 0.0157 | 0.0445 |
Dimethyl sulfide C2H6S | 0.0000 | 0.0350 | 0.0232 | |
1,1′-Thiobisethane C4H10S | 0.0000 | 0.0455 | 0.0457 | |
Dimethyl disulfide C2H6S2 | 0.0000 | 0.0259 | 0.0368 | |
Methyl propyl disulfide C4H10S2 | 0.0000 | 0.0407 | 0.0490 | |
Dimethyl trisulfide C2H6S3 | 0.0000 | 0.0000 | 0.0183 | |
ISOPROPYL DISULFIDE C6H14S2 | 0.0000 | 0.0223 | 0.0299 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Lv, S.; Zhang, C.; Zha, Y.; Wang, S.; Shao, M. Analysis of Meteorological Drivers of Taihu Lake Algal Blooms over the Past Two Decades and Development of a VOCs Emission Inventory for Algal Bloom. Remote Sens. 2024, 16, 1680. https://doi.org/10.3390/rs16101680
Liao Z, Lv S, Zhang C, Zha Y, Wang S, Shao M. Analysis of Meteorological Drivers of Taihu Lake Algal Blooms over the Past Two Decades and Development of a VOCs Emission Inventory for Algal Bloom. Remote Sensing. 2024; 16(10):1680. https://doi.org/10.3390/rs16101680
Chicago/Turabian StyleLiao, Zihang, Shun Lv, Chenwu Zhang, Yong Zha, Suyang Wang, and Min Shao. 2024. "Analysis of Meteorological Drivers of Taihu Lake Algal Blooms over the Past Two Decades and Development of a VOCs Emission Inventory for Algal Bloom" Remote Sensing 16, no. 10: 1680. https://doi.org/10.3390/rs16101680
APA StyleLiao, Z., Lv, S., Zhang, C., Zha, Y., Wang, S., & Shao, M. (2024). Analysis of Meteorological Drivers of Taihu Lake Algal Blooms over the Past Two Decades and Development of a VOCs Emission Inventory for Algal Bloom. Remote Sensing, 16(10), 1680. https://doi.org/10.3390/rs16101680