A Soil Moisture and Vegetation-Based Susceptibility Mapping Approach to Wildfire Events in Greece
Abstract
:1. Introduction
2. Methods
2.1. Description of the Study Area and the Wildfire Events
2.2. Description of Data and Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of Changing Climate for Global Wildland Fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- McLauchlan, K.K.; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman, J.K.; Tepley, A.J.; Varner, J.M.; Veblen, T.T.; Adalsteinsson, S.A.; et al. Fire as a Fundamental Ecological Process: Research Advances and Frontiers. J. Ecol. 2020, 108, 2047–2069. [Google Scholar] [CrossRef]
- Xing, H.; Fang, K.; Yao, Q.; Zhou, F.; Ou, T.; Liu, J.; Zhou, S.; Jiang, S.; Chen, Y.; Bai, M.; et al. Impacts of Changes in Climate Extremes on Wildfire Occurrences in China. Ecol. Indic. 2023, 157, 111288. [Google Scholar] [CrossRef]
- Moreno, M.; Bertolín, C.; Arlanzón, D.; Ortiz, P.; Ortiz, R. Climate Change, Large Fires, and Cultural Landscapes in the Mediterranean Basin: An Analysis in Southern Spain. Heliyon 2023, 9, e16941. [Google Scholar] [CrossRef] [PubMed]
- Benscoter, B.; Thompson, D.; Waddington, J.; Flannigan, M.; Wotton, M.; Groot, W.; Turetsky, M. Interactive Effects of Vegetation, Soil Moisture and Bulk Density on Depth of Burning of Thick Organic Soils. Int. J. Wildland Fire 2011, 20, 418–429. [Google Scholar] [CrossRef]
- Huang, Z.; Cao, C.; Chen, W.; Xu, M.; Dang, Y.; Singh, R.P.; Bashir, B.; Xie, B.; Lin, X. Remote Sensing Monitoring of Vegetation Dynamic Changes after Fire in the Greater Hinggan Mountain Area: The Algorithm and Application for Eliminating Phenological Impacts. Remote Sens. 2020, 12, 156. [Google Scholar] [CrossRef]
- Gemitzi, A.; Koutsias, N. Assessment of Properties of Vegetation Phenology in Fire-Affected Areas from 2000 to 2015 in the Peloponnese, Greece. Remote Sens. Appl. 2021, 23, 100535. [Google Scholar] [CrossRef]
- Sungmin, O.; Hou, X.; Orth, R. Observational Evidence of Wildfire-Promoting Soil Moisture Anomalies. Sci. Rep. 2020, 10, 11008. [Google Scholar]
- Koutsias, N.; Allgöwer, B.; Kalabokidis, K.; Mallinis, G.; Balatsos, P.; Goldammer, J.G. Fire Occurrence Zoning from Local to Global Scale in the European Mediterranean Basin: Implications for Multi-Scale Fire Management and Policy. IForest 2016, 9, 195–204. [Google Scholar] [CrossRef]
- Good, P.; Moriondo, M.; Giannakopoulos, C.; Bindi, M. The Meteorological Conditions Associated with Extreme Fire Risk in Italy and Greece: Relevance to Climate Model Studies. Int. J. Wildland Fire 2008, 17, 155. [Google Scholar] [CrossRef]
- Papagiannaki, K.; Giannaros, T.M.; Lykoudis, S.; Kotroni, V.; Lagouvardos, K. Weather-Related Thresholds for Wildfire Danger in a Mediterranean Region: The Case of Greece. Agric. For. Meteorol. 2020, 291, 108076. [Google Scholar] [CrossRef]
- Harris, S.; Nicholls, N.; Tapper, N. Forecasting Fire Activity in Victoria, Australia, Using Antecedent Climate Variables and ENSO Indices. Int. J. Wildland Fire 2014, 23, 173–184. [Google Scholar] [CrossRef]
- Thomas Ambadan, J.; Oja, M.; Gedalof, Z.; Berg, A.A. Satellite-Observed Soil Moisture as an Indicator of Wildfire Risk. Remote Sens. 2020, 12, 1543. [Google Scholar] [CrossRef]
- Gemitzi, A.; Koutsias, N. A Google Earth Engine Code to Estimate Properties of Vegetation Phenology in Fire Affected Areas—A Case Study in North Evia Wildfire Event on August 2021. Remote Sens. Appl. 2022, 26, 100720. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Ager, A.A.; Salis, M.; Day, M.A.; Vega-Garcia, C. Optimizing Prescribed Fire Allocation for Managing Fire Risk in Central Catalonia. Sci. Total Environ. 2018, 621, 872–885. [Google Scholar] [CrossRef] [PubMed]
- Aparício, B.A.; Pereira, J.M.C.; Santos, F.C.; Bruni, C.; Sá, A.C.L. Combining Wildfire Behaviour Simulations and Network Analysis to Support Wildfire Management: A Mediterranean Landscape Case Study. Ecol Indic 2022, 137, 108726. [Google Scholar] [CrossRef]
- Fares, S.; Bajocco, S.; Salvati, L.; Camarretta, N.; Dupuy, J.L.; Xanthopoulos, G.; Guijarro, M.; Madrigal, J.; Hernando, C.; Corona, P. Characterizing Potential Wildland Fire Fuel in Live Vegetation in the Mediterranean Region. Ann. For. Sci. 2017, 74, 1. [Google Scholar] [CrossRef]
- Ba, R.; Song, W.; Lovallo, M.; Zhang, H.; Telesca, L. Informational Analysis of MODIS NDVI and EVI Time Series of Sites Affected and Unaffected by Wildfires. Phys. A Stat. Mech. Its Appl. 2022, 604, 127911. [Google Scholar] [CrossRef]
- Akıncı, H.A.; Akıncı, H. Machine Learning Based Forest Fire Susceptibility Assessment of Manavgat District (Antalya), Turkey. Earth Sci. Inform. 2023, 16, 397–414. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Liu, K. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. Int. J. Disaster Risk Sci. 2019, 10, 386–403. [Google Scholar] [CrossRef]
- Das, J.; Mahato, S.; Joshi, P.K.; Liou, Y.-A. Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches. Remote Sens. 2023, 15, 1340. [Google Scholar] [CrossRef]
- Pragya; Kumar, M.; Tiwari, A.; Majid, S.I.; Bhadwal, S.; Sahu, N.; Verma, N.K.; Tripathi, D.K.; Avtar, R. Integrated Spatial Analysis of Forest Fire Susceptibility in the Indian Western Himalayas (IWH) Using Remote Sensing and GIS-Based Fuzzy AHP Approach. Remote Sens. 2023, 15, 4701. [Google Scholar] [CrossRef]
- Achu, A.L.; Thomas, J.; Aju, C.D.; Gopinath, G.; Kumar, S.; Reghunath, R. Machine-Learning Modelling of Fire Susceptibility in a Forest-Agriculture Mosaic Landscape of Southern India. Ecol. Inform. 2021, 64, 101348. [Google Scholar] [CrossRef]
- Jensen, D.; Reager, J.T.; Zajic, B.; Rousseau, N.; Rodell, M.; Hinkley, E. The Sensitivity of US Wildfire Occurrence to Pre-Season Soil Moisture Conditions across Ecosystems. Environ. Res. Lett. 2018, 13, 014021. [Google Scholar] [CrossRef]
- Walters, A.; Fang, B.; Lakshmi, V. Using Earth Observations to Measure Hydrological Conditions Before, During, and After Wildfires in the Feather River Watershed. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 6972–6985. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef]
- Wang, L.; Quan, X.; He, B.; Yebra, M.; Xing, M.; Liu, X. Assessment of the Dual Polarimetric Sentinel-1A Data for Forest Fuel Moisture Content Estimation. Remote Sens. 2019, 11, 1568. [Google Scholar] [CrossRef]
- Jia, S.; Kim, S.H.; Nghiem, S.V.; Kafatos, M. Estimating Live Fuel Moisture Using SMAP L-Band Radiometer Soil Moisture for Southern California, USA. Remote Sens. 2019, 11, 1575. [Google Scholar] [CrossRef]
- Sharma, S.; Dhakal, K. Boots on the Ground and Eyes in the Sky: A Perspective on Estimating Fire Danger from Soil Moisture Content. Fire 2021, 4, 45. [Google Scholar] [CrossRef]
- Sazib, N.; Bolten, J.D.; Mladenova, I.E. Leveraging NASA Soil Moisture Active Passive for Assessing Fire Susceptibility and Potential Impacts Over Australia and California. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 779–787. [Google Scholar] [CrossRef]
- Sharma, S.; Carlson, J.D.; Krueger, E.S.; Engle, D.M.; Twidwell, D.; Fuhlendorf, S.D.; Patrignani, A.; Feng, L.; Ochsner, T.E. Soil Moisture as an Indicator of Growing-Season Herbaceous Fuel Moisture and Curing Rate in Grasslands. Int. J. Wildland Fire 2021, 30, 57. [Google Scholar] [CrossRef]
- Mladenova, I.E.; Bolten, J.D.; Crow, W.T.; Sazib, N.; Cosh, M.H.; Tucker, C.J.; Reynolds, C. Evaluating the Operational Application of SMAP for Global Agricultural Drought Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3387–3397. [Google Scholar] [CrossRef]
- Sibilia, G.; Salvi, A.; Antofie, A.; Rodomonti, T.-E.; Marzi, K.; Gyenes, S. Towards a European Wide Vulnerability Framework A Flexible Approach for Vulnerability Assessment Using Composite Indicators; European Union: Brussels, Belgium, 2022. [Google Scholar]
- Eklund, L.; Sibilia, A.; Salvi, A.; Antofie, T.; Rodomonti, D.; Salari, S.; Poljansek, K.; Marzi, S.; Gyenes, Z.; Corban, C. Towards a European Wide Vulnerability Framework; European Union: Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
- Hellenic Fire Service Hellenic Fire Service. Available online: https://www.fireservice.gr/el (accessed on 1 February 2023).
- Copernicus European Forest Fire Information System (EFFIS). Available online: https://effis.jrc.ec.europa.eu/ (accessed on 2 March 2024).
- NASA MODIS Collection 6 NRT Hotspot/Active Fire Detections MCD14DL. Available online: https://earthdata.nasa.gov/firms (accessed on 19 April 2024).
- Bechtold, M.; De Lannoy, G.; Koster, D.; Crow, W.T.; Kimball, J.S.; Liu, Q.; Bechtold, M. SMAP L4 Global 3-Hourly 9 Km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update, Version 7; National Snow and Ice Data Center: Boulder, CO, USA, 2022. [Google Scholar]
- Australian Goevernment, Department of Agriculture, Fisheries and Forestry. National Soil Strategy; Australian Goevernment, Department of Agriculture, Fisheries and Forestry: Canberra, Australia, 2021. [Google Scholar]
- Reichle, R.H.; Liu, Q.; Koster, R.D.; Crow, W.T.; De Lannoy, G.J.M.; Kimball, J.S.; Ardizzone, J.V.; Bosch, D.; Colliander, A.; Cosh, M.; et al. Version 4 of the SMAP Level-4 Soil Moisture Algorithm and Data Product. J. Adv. Model Earth Syst. 2019, 11, 3106–3130. [Google Scholar] [CrossRef]
- Dong, J.; Crow, W.; Reichle, R.; Liu, Q.; Lei, F.; Cosh, M.H. A Global Assessment of Added Value in the SMAP Level 4 Soil Moisture Product Relative to Its Baseline Land Surface Model. Geophys. Res. Lett. 2019, 46, 6604–6613. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Assessment of the SMAP Passive Soil Moisture Product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of SMAP Surface Soil Moisture Products with Core Validation Sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Adámek, M.; Jankovská, Z.; Hadincová, V.; Kula, E.; Wild, J. Drivers of Forest Fire Occurrence in the Cultural Landscape of Central Europe. Landsc. Ecol. 2018, 33, 2031–2045. [Google Scholar] [CrossRef]
- Vilar, L.; Herrera, S.; Tafur-García, E.; Yebra, M.; Martínez-Vega, J.; Echavarría, P.; Martín, M.P. Modelling Wildfire Occurrence at Regional Scale from Land Use/Cover and Climate Change Scenarios. Environ. Model. Softw. 2021, 145, 105200. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Gayen, A.; Lasaponara, R.; Tiefenbacher, J.P. Application of Learning Vector Quantization and Different Machine Learning Techniques to Assessing Forest Fire Influence Factors and Spatial Modelling. Environ. Res. 2020, 184, 109321. [Google Scholar] [CrossRef]
- Tang, C.; Chen, D. Interaction between Soil Moisture and Air Temperature in the Mississippi River Basin. J. Water Resour. Prot. 2017, 9, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Sehler, R.; Li, J.; Reager, J.; Ye, H. Investigating Relationship Between Soil Moisture and Precipitation Globally Using Remote Sensing Observations. J. Contemp. Water Res. Educ. 2019, 168, 106–118. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T. AMSR2 Soil Moisture Downscaling Using Temperature and Vegetation Data. Remote Sens. 2018, 10, 1575. [Google Scholar] [CrossRef]
- Fang, B.; Kansara, P.; Dandridge, C.; Lakshmi, V. Drought Monitoring Using High Spatial Resolution Soil Moisture Data over Australia in 2015–2019. J. Hydrol. 2021, 594, 125960. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Cosh, M.; Liu, P.W.; Bindlish, R.; Jackson, T.J. A Global 1-Km Downscaled SMAP Soil Moisture Product Based on Thermal Inertia Theory. Vadose Zone J. 2022, 21, e20182. [Google Scholar] [CrossRef]
No. | Location | Dates | Area (km2) | Land Cover | Cause |
---|---|---|---|---|---|
1 | Evia island (North Evia) | 3 August 2021 | 511.8 | Arable land, permanent crops, heterogeneous agricultural areas, forests; shrub and/or herbaceous vegetation association, and open spaces with little or no vegetation | Combination of human activities, increased fuel accumulation, and meteorological conditions (burning of agricultural residues) |
2 | Alexadroupolis-Dadia (Evros) | 19 August 2023 | 1000.2 | Forests, shrub and/or herbaceous vegetation association, heterogeneous agricultural areas, arable land, permanent crops, and pastures | Possible thunder activity. A wildfire started on the 19th of August early in the morning in a forest area near Aristino village (East Macedonia and Thrace Region). |
3 | Sostis and Gratini villages at Rhodope | 21 August 2023 | 28.3 | Mixed forests, arable land, shrub and/or herbaceous vegetation association, heterogeneous agricultural areas, pastures, and open spaces with little or no vegetation | Combination of human activities, increased fuel accumulation, and meteorological conditions |
4 | Rhodes Island (Central and SE) | 1 Julie 2023 | 178.0 | Shrub and/or herbaceous vegetation association, heterogeneous agricultural areas, forests, permanent crops, arable land, open spaces with little or no vegetation, and pastures | Combination of human activities (old dump), increased fuel accumulation, and meteorological conditions |
5 | Lesvos island (Vattera) | 23 Julie 2022 | 25.5 | Arable land, permanent crops, heterogeneous agricultural areas, forests, shrub and/or herbaceous vegetation association, and other | Human activities (burning of agricultural residues) |
6 | Papikio Mt at Rhodope | 22 October 2022 | 25.6 | Complex cultivation patterns; land principally occupied by agriculture, with significant areas of natural vegetation; broad-leaved and mixed forest; natural grassland; sclerophyllous vegetation; transitional woodland shrub; and sparsely vegetated areas | Combination of human activities, increased fuel accumulation, and meteorological conditions |
7 | Varibobi (Attica) | 03 August 2021 | 83.8 | Arable land, permanent crops, pastures, heterogeneous agricultural areas, forests, shrub and/or herbaceous vegetation association, and open spaces with little or no vegetation | Electricity network. From Tuesday 03 August 2021 afternoon, wildfires were raging in the northeast sector of the Attica region in Greece. |
8 | Diavolitsi (Messinia Peloponnese) | 04 August 2021 | 51.1 | Non-irrigated arable land; olive groves; pastures; complex cultivation patterns; land principally occupied by agriculture; with significant areas of natural vegetation; broad-leaved forest; coniferous forest; mixed forests; natural grassland; sclerophyllous vegetation; beaches, dunes, and sand plains; and sparsely vegetated areas | Combination of human activities, increased fuel accumulation, and meteorological conditions |
9 | Gerania Mt (Corinthia) | 19 May 2021 | 69.6 | Arable land, permanent crops, heterogeneous agricultural areas, forests, shrub and/or herbaceous vegetation association, and open spaces with little or no vegetation | Human activities (burning of agricultural residues); A large wildfire burning large areas of pine forest in the area of Schinos, in Corinthia prefecture. |
10 | Penteli (Attica) | 19 Julie 2022 | 27.9 | Shrub and/or herbaceous vegetation association, forests, heterogeneous agricultural areas, and coniferous forest | Combination of human activities, increased fuel accumulation, and meteorological conditions. A forest fire broke out on the slopes of Mount Penteli in the northern suburbs of Athens. |
11 | Parnitha (Attica) | 22 August 2023 | 61.9 | Forest, pastures, heterogeneous agricultural areas, open spaces with little or no vegetation, and shrub and/or herbaceous vegetation association. A total of 47% of the area is protected. | The fire is attributed to a combination of human activities and meteorological conditions. |
Year | Area (km2) with 0.13 < NDVI < 0.35 | Area (km2) SM Anomaly < −5% | Fire-Susceptible Areas (km2) | Fire-Susceptible Areas in High-VDI Zones (km2) | Mean SM Anomaly (%) | Fire-Affected Areas within Fire-Susceptible Areas (km2) | Actual Affected Areas (km2) | Success Rate (%) |
---|---|---|---|---|---|---|---|---|
2023 | 116,503 | 22,536 | 20,132 | 19,355 | −8.9 | 1485 | 1747 | 85 |
2022 | 157,231 | 26,709 | 23,531 | 22,187 | −6.4 | 187 | 224 | 83 |
2021 | 161,732 | 28,311 | 22,587 | 22,534 | −5.8 | 1132 | 1307 | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaleplis, K.; Walters, A.; Fang, B.; Lakshmi, V.; Gemitzi, A. A Soil Moisture and Vegetation-Based Susceptibility Mapping Approach to Wildfire Events in Greece. Remote Sens. 2024, 16, 1816. https://doi.org/10.3390/rs16101816
Chaleplis K, Walters A, Fang B, Lakshmi V, Gemitzi A. A Soil Moisture and Vegetation-Based Susceptibility Mapping Approach to Wildfire Events in Greece. Remote Sensing. 2024; 16(10):1816. https://doi.org/10.3390/rs16101816
Chicago/Turabian StyleChaleplis, Kyriakos, Avery Walters, Bin Fang, Venkataraman Lakshmi, and Alexandra Gemitzi. 2024. "A Soil Moisture and Vegetation-Based Susceptibility Mapping Approach to Wildfire Events in Greece" Remote Sensing 16, no. 10: 1816. https://doi.org/10.3390/rs16101816
APA StyleChaleplis, K., Walters, A., Fang, B., Lakshmi, V., & Gemitzi, A. (2024). A Soil Moisture and Vegetation-Based Susceptibility Mapping Approach to Wildfire Events in Greece. Remote Sensing, 16(10), 1816. https://doi.org/10.3390/rs16101816