Hyperspectral Anomaly Detection via Low-Rank Representation with Dual Graph Regularizations and Adaptive Dictionary
Abstract
:1. Introduction
2. Related Work
2.1. Deep-Learning Algorithms
2.2. Representation-Based Algorithms
3. Materials and Methods
3.1. Low Rank Representation
3.2. Adaptive Dictionary Construction
3.3. Low-Rank Representation Based on Dual Graph Regularization
3.4. Model Optimization
Algorithm 1: Optimization of the proposed DGRAD-LRR |
1. Input: an HSI , regularization parameters of λ, β, γ, Itrmax = 400 |
2. Initialize: , = 1 × 10−7 |
3. While (39) is not satisfied or Itr < Itrmax, do |
4. Update by (17) |
5. Update by (24) |
6. Update by (27) |
7. Update by (29) |
8. Update by (31) |
9. Update by (33) |
10. Update by (35) |
11. Update by (37) |
12. Update by (38) |
13. End while |
14. Output: , |
3.5. Anomaly Detection
4. Results
4.1. Experimental Setup
4.1.1. Hyperspectral Dataset
4.1.2. Compared Methods
4.1.3. Evaluation Metrics
4.1.4. Implement Details
4.2. Parameter Analysis
4.3. Detection Performance
4.3.1. Qualitative Performance
4.3.2. Quantitative Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tolie, H.F.; Ren, J.; Elyan, E. DICAM: Deep inception and channel-wise attention modules for underwater image enhancement. Neurocomputing 2024, 584, 127585. [Google Scholar] [CrossRef]
- Zhao, S.; Lin, S.; Cheng, X.; Zhou, K.; Zhang, M.; Wang, H. Dual-GAN complementary learning for real-world image denoising. IEEE Sens. J. 2024, 24, 355–366. [Google Scholar] [CrossRef]
- Egmont-Petersen, M.; de Ridder, D.; Handels, H. Image processing with neural networks—A review. Pattern Recognit. 2002, 35, 2279–2301. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Y.; Xiao, Y.; Yuan, Q.; Zhang, Y.; Liu, F.; He, J.; Zhang, L. Satellite video single object tracking: A systematic review and an oriented object tracking benchmark. ISPRS J. Photogramm. Remote Sens. 2024, 210, 212–240. [Google Scholar] [CrossRef]
- Li, J.; Zheng, K.; Yao, J.; Gao, L.; Hong, D. Deep unsupervised blind hyperspectral and multispectral data fusion. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6007305. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, X.; He, Z.; Chen, Z.; Du, W.; Li, Y.; Zhang, J.; Guo, P.; Zhang, L.; So, H.C. Practical issue analyses and imaging approach for hypersonic vehicle-borne SAR with near-vertical diving trajectory. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5204316. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Zickler, T. Statistics of real-world hyperspectral images. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011; pp. 193–200. [Google Scholar]
- Huo, Y.; Cheng, X.; Lin, S.; Zhang, M.; Wang, H. Memory-augmented autoencoder with adaptive reconstruction and sample sttribution mining for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2024, 1–19. [Google Scholar] [CrossRef]
- Li, J.; Zheng, K.; Liu, W.; Li, Z.; Yu, H.; Ni, L. Model-guided coarse-to-fine fusion network for unsupervised hyperspectral image super-resolution. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5508605. [Google Scholar] [CrossRef]
- Li, J.; Zheng, K.; Gao, L.; Ni, L.; Huang, M.; Chanussot, J. Model-informed multistage unsupervised network for hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5516117. [Google Scholar] [CrossRef]
- Cheng, X.; Yu, H.; Lin, S.; Dong, Y.; Zhao, S.; Zhang, M.; Wang, H. Deep feature aggregation network for hyperspectral anomaly detection. IEEE Trans. Instrum. Meas. 2024. [Google Scholar] [CrossRef]
- Yan, Y.; Ren, J.; Sun, H.; Williams, R. Nondestructive quantitative measurement for precision quality control in additive manufacturing using hyperspectral imagery and machine learning. IEEE Trans. Ind. Informat. 2024. [Google Scholar] [CrossRef]
- Li, Y.; Ren, J.; Yan, Y.; Liu, Q.; Ma, P.; Petrovski, A.; Sun, H. CBANet: An end-to-end cross band 2-D attention network for hyperspectral change detection in remote sensing. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5513011. [Google Scholar] [CrossRef]
- Cui, X.; Zheng, K.; Gao, L.; Zhang, B.; Yang, D.; Ren, J. Multiscale spatial-spectral convolutional network with image-based framework for hyperspectral imagery classification. Remote Sens. 2019, 11, 2220. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, B.; Feng, S.; Zhu, W.; Zhang, L.; Ren, J. An unsupervised domain adaptation method towards multi-level features and decision boundaries for cross-scene hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5546216. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Lin, S.; Zhou, K.; Wang, L.; Wang, H. Multiscale superpixel guided discriminative forest for hyperspectral anomaly detection. Remote Sens. 2022, 14, 4828. [Google Scholar] [CrossRef]
- Wang, D.; Zhuang, L.; Gao, L.; Sun, X.; Huang, M.; Plaza, A.J. PDBSNet: Pixel-shuffle downsampling blind-spot reconstruction network for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5511914. [Google Scholar] [CrossRef]
- Wang, D.; Zhuang, L.; Gao, L.; Sun, X.; Zhao, X.; Plaza, A. Sliding dual-window-inspired reconstruction network for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5504115. [Google Scholar] [CrossRef]
- Li, J.; Hong, D.; Gao, L.; Yao, J.; Zheng, K.; Zhang, B.; Chanussot, J. Deep learning in multimodal remote sensing data fusion: A comprehensive review. Int. J. Appl. Earth Obs. 2022, 112, 102926. [Google Scholar] [CrossRef]
- Gao, L.; Li, J.; Zheng, K.; Jia, X. Enhanced autoencoders with attention-embedded degradation learning for unsupervised hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5509417. [Google Scholar] [CrossRef]
- Sun, W.; Du, Q. Hyperspectral band selection: A review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 118–139. [Google Scholar] [CrossRef]
- Luo, F.; Zhou, T.; Liu, J.; Guo, T.; Gong, X.; Ren, J. Multiscale diff-changed feature fusion network for hyperspectral image change detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5502713. [Google Scholar] [CrossRef]
- Ma, P.; Ren, J.; Sun, G.; Zhao, H.; Jia, X.; Yan, Y.; Zabalza, J. Multiscale superpixelwise prophet model for noise-robust feature extraction in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5508912. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, Q.; Tang, Y.; Xiao, Y.; He, J.; Zhang, L. SPIRIT: Spectral awareness interaction network with dynamic template for hyperspectral object tracking. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5503116. [Google Scholar] [CrossRef]
- Li, J.; Zheng, K.; Li, Z.; Gao, L.; Jia, X. X-shaped interactive autoencoders with cross-modality mutual learning for unsupervised hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5518317. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Du, B.; Zhang, L. Hyperspectral anomaly detection based on machine learning: An overview. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2022, 15, 3351–3364. [Google Scholar] [CrossRef]
- Su, H.; Wu, Z.; Zhang, H.; Du, Q. Hyperspectral anomaly detection: A survey. IEEE Geosci. Remote Sens. Mag. 2022, 10, 64–90. [Google Scholar] [CrossRef]
- Cheng, T.; Wang, B. Graph and total variation regularized low-rank representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 391–406. [Google Scholar] [CrossRef]
- Reed, I.S.; Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1760–1770. [Google Scholar] [CrossRef]
- Heesung, K.; Nasrabadi, N.M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 388–397. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, B.; Ran, Q.; Gao, L.; Li, J.; Plaza, A. Weighted-RXD and linear filter-based RXD: Improving background statistics estimation for anomaly detection in hyperspectral imagery. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2014, 7, 2351–2366. [Google Scholar] [CrossRef]
- Huo, Y.; Qian, X.; Li, C.; Wang, W. Multiple instances complementary detection and difficulty evaluation for weakly supervised object detection in remote sensing images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6006505. [Google Scholar] [CrossRef]
- Qian, X.; Cheng, X.; Cheng, G.; Yao, X.; Jiang, L. Two-stream encoder GAN with progressive training for co-saliency detection. IEEE Signal Process. Lett. 2021, 28, 180–184. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Lin, S.; Zhou, K.; Zhao, S.; Wang, H. Two-stream isolation forest based on deep features for hyperspectral anomaly detection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5504205. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, W.; Huang, J. Exploiting embedding manifold of autoencoders for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1527–1537. [Google Scholar] [CrossRef]
- Wang, J.; Ouyang, T.; Duan, Y.; Cui, L. SAOCNN: Self-Attention and One-Class Neural Networks for Hyperspectral Anomaly Detection. Remote Sens. 2022, 14, 5555. [Google Scholar] [CrossRef]
- Li, K.; Ling, Q.; Qin, Y.; Wang, Y.; Cai, Y.; Lin, Z.; An, W. Spectral-spatial deep support vector data description for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5522316. [Google Scholar] [CrossRef]
- Zhu, D.; Du, B.; Dong, Y.; Zhang, L. Spatial-spectral joint reconstruction with interband correlation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5529513. [Google Scholar] [CrossRef]
- Lv, S.; Zhao, S.; Li, D.; Pang, B.; Lian, X.; Liu, Y. Spatial–spectral joint hyperspectral anomaly detection based on a two-branch 3D convolutional autoencoder and spatial filtering. Remote Sens. 2023, 15, 2542. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Zhang, L.; Zhong, Y. Deep low-rank prior for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5527017. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Zhong, Y.; Zhang, L. Hyperspectral anomaly detection via locally enhanced low-rank prior. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6995–7009. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Lin, S.; Li, Y.; Wang, H. Deep self-representation learning framework for hyperspectral anomaly detection. IEEE Trans. Instrum. Meas. 2024, 73, 5002016. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Shi, L.; Gamba, P.; Wang, H. Dynamic low-rank and sparse priors constrained deep autoencoders for hyperspectral anomaly detection. IEEE Trans. Instrum. Meas. 2024, 73, 2500518. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, P.; Teng, X.; Zhao, D.; Li, H.; Song, J.; Zhou, H.; Tan, W. Enhancing hyperspectral anomaly detection with a novel differential network approach for precision and robust background suppression. Remote Sens. 2024, 16, 434. [Google Scholar] [CrossRef]
- Jiang, K.; Xie, W.; Li, Y.; Lei, J.; He, G.; Du, Q. Semisupervised spectral learning with generative adversarial network for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5224–5236. [Google Scholar] [CrossRef]
- Xie, W.; Liu, B.; Li, Y.; Lei, J.; Chang, C.; He, G. Spectral adversarial feature learning for anomaly detection in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2352–2365. [Google Scholar] [CrossRef]
- Tao, J.; Weiying, X.; Yunsong, L.; Jie, L.; Qian, D. Weakly supervised discriminative learning with spectral constrained generative adversarial network for hyperspectral anomaly detection. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6504–6517. [Google Scholar]
- Wang, D.; Gao, L.; Qu, Y.; Sun, X.; Liao, W. Frequency-to-spectrum mapping GAN for semisupervised hyperspectral anomaly detection. CAAI Trans. Intell. Technol. 2023, 8, 1258–1273. [Google Scholar] [CrossRef]
- Zhao, R.; Yang, Z.; Meng, X.; Shao, F. A novel fully convolutional auto-encoder based on dual clustering and latent feature adversarial consistency for hyperspectral anomaly detection. Remote Sens. 2024, 16, 717. [Google Scholar] [CrossRef]
- Wang, J.; Guo, S.; Hua, Z.; Huang, R.; Hu, J.; Gong, M. CL-CaGAN: Capsule differential adversarial continual learning for cross-domain hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5517315. [Google Scholar] [CrossRef]
- Xiang, P.; Ali, S.; Zhang, J.; Jung, S.K.; Zhou, H. Pixel-associated autoencoder for hyperspectral anomaly detection. Int. J. Appl. Earth Obs. 2024, 129, 103816. [Google Scholar] [CrossRef]
- Yuan, Z.; Sun, H.; Ji, K.; Li, Z.; Zou, H. Local sparsity divergence for hyperspectral anomaly detection. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1697–1701. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Zhang, L.; Ma, L. Hyperspectral anomaly detection by the use of background joint sparse representation. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2015, 8, 2523–2533. [Google Scholar] [CrossRef]
- Ling, Q.; Guo, Y.; Lin, Z.; An, W. A constrained sparse representation model for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2358–2371. [Google Scholar] [CrossRef]
- Zhu, L.; Wen, G. Hyperspectral anomaly detection via background estimation and adaptive weighted sparse representation. Remote Sens. 2018, 10, 272. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Zhao, S.; Shi, L.; Wang, H. Hyperspectral anomaly detection using spatial–spectral-based union dictionary and improved saliency weight. Remote Sens. 2023, 15, 3609. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. Collaborative representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1463–1474. [Google Scholar] [CrossRef]
- Su, H.; Wu, Z.; Du, Q.; Du, P. Hyperspectral Anomaly Detection Using Collaborative Representation With Outlier Removal. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2018, 11, 5029–5038. [Google Scholar] [CrossRef]
- Zhao, C.; Li, C.; Feng, S. A spectral–spatial method based on fractional fourier transform and collaborative representation for hyperspectral anomaly detection. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1259–1263. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Zhou, K.; Zhao, S.; Wang, H. Hyperspectral Anomaly Detection via Sparse Representation and Collaborative Representation. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2022, 16, 946–961. [Google Scholar] [CrossRef]
- Yang, Y.; Su, H.; Wu, Z.; Du, Q. Saliency-guided collaborative-competitive representation for hyperspectral anomaly detection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2023, 16, 6843–6859. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Li, J.; Plaza, A.; Wei, Z. Anomaly detection in hyperspectral images based on low-rank and sparse representation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1990–2000. [Google Scholar] [CrossRef]
- Huyan, N.; Zhang, X.; Zhou, H.; Jiao, L. Hyperspectral anomaly detection via background and potential anomaly dictionaries construction. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2263–2276. [Google Scholar] [CrossRef]
- Lu, L.; Wei, L.; Qian, D.; Ran, T. Low-rank and sparse decomposition with mixture of gaussian for hyperspectral anomaly detection. IEEE Trans. Cybern. 2020, 51, 4363–4372. [Google Scholar]
- Guo, T.; He, L.; Luo, F.; Gong, X.; Li, Y.; Zhang, L. Anomaly detection of hyperspectral image with hierarchical anti-noise mutual-incoherence-induced low-rank representation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5510213. [Google Scholar]
- Qin, H.; Shen, Q.; Zeng, H.; Chen, Y.; Lu, G. Generalized nonconvex low-rank tensor representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5526612. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Zhao, S.; Wang, H. Dual collaborative constraints regularized low rank and sparse representation via robust dictionaries construction for hyperspectral anomaly detection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2022, 16, 2009–2024. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Wang, L.; Xu, M.; Wang, H. Hyperspectral anomaly detection via dual dictionaries construction guided by two-stage complementary decision. Remote Sens. 2022, 14, 1784. [Google Scholar] [CrossRef]
- Sun, S.; Liu, J.; Zhang, Z.; Li, W. Hyperspectral anomaly setection based on adaptive low-rank transformed tensor. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-P.; Li, H.; Chen, Y.; Wang, Z.; Li, X. Hyperspectral anomaly detection via structured sparsity plus enhanced low-rankness. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5515115. [Google Scholar] [CrossRef]
- Cai, D.; He, X.; Han, J. Locally consistent concept factorization for document clustering. IEEE Trans. Knowl. Data Eng. 2010, 23, 902–913. [Google Scholar] [CrossRef]
- Candes, E.J.; Plan, Y. Matrix completion with noise. Proc. IEEE. 2010, 98, 925–936. [Google Scholar] [CrossRef]
- Chen, J.; Mao, H.; Wang, Z.; Zhang, X. Low-rank representation with adaptive dictionary learning for subspace clustering. Knowl. Based Syst. 2021, 223, 107053. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Wang, J.; Sun, K.; Wang, Q. Reweighted nuclear norm and total variation regularization with sparse dictionary construction for hyperspectral anomaly detection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2022, 15, 1775–1790. [Google Scholar] [CrossRef]
- Chang, S.; Ghamisi, P. Nonnegative-constrained joint collaborative representation with union dictionary for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5534913. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Zhang, L.; Zhong, Y. Auto-AD: Autonomous hyperspectral anomaly detection network based on fully convolutional autoencoder. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5503314. [Google Scholar] [CrossRef]
- Xiang, P.; Ali, S.; Jung, S.K.; Zhou, H. Hyperspectral anomaly detection with guided autoencoder. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5538818. [Google Scholar] [CrossRef]
- Gao, L.; Wang, D.; Zhuang, L.; Sun, X.; Huang, M.; Plaza, A. BS3LNet: A new blind-spot self-supervised learning network for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5504218. [Google Scholar] [CrossRef]
Dataset | Spatial Size | Spectral Bands | Spatial Resolution | Wavelength | Anomaly Type |
---|---|---|---|---|---|
Gulfport | 100 × 100 | 191 | 3.4 m | 400–2500 nm | Airplanes |
Texas Coast | 100 × 100 | 207 | 17.2 m | 450–1350 nm | Buildings |
Los Angeles | 100 × 100 | 205 | 7.1 m | 430–860 nm | Buildings |
Salinas | 120 × 120 | 204 | 3.7 m | ───── | Simulated Targets |
San Diego-1 | 100 × 100 | 189 | 3.5 m | 370–2510 nm | Airplanes |
San Diego-2 | 120 × 120 | 189 | 3.5 m | 370–2510 nm | Airplanes |
Dataset | Gulfport | Texas Coast | Los Angeles | Salinas | San Diego-1 | San Diego-2 |
---|---|---|---|---|---|---|
r | 40 | 3 | 2 | 40 | 3 | 4 |
λ | 0.1 | 0.01 | 30 | 0.1 | 10 | 1 |
β | 0.2 | 0.5 | 10 | 0.001 | 1 | 0.1 |
γ | 0.7 | 0.1 | 0.1 | 100 | 100 | 0.3 |
Dataset | Metrics | RX | CRD | NJCR | Auto-AD | GAED | LRASR | GTVLRR | AHMID | LSDM −MoG | GNLTR | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gulfport | AUC(D,F)↑ | 0.9526 | 0.8921 | 0.9760 | 0.9938 | 0.9830 | 0.8377 | 0.9647 | 0.9827 | 0.9435 | 0.9839 | 0.9960 |
AUC(D,τ)↑ | 0.0736 | 0.0231 | 0.5034 | 0.4025 | 0.2719 | 0.4603 | 0.4061 | 0.1695 | 0.3115 | 0.4175 | 0.8184 | |
AUC(F,τ)↓ | 0.0248 | 0.0108 | 0.0984 | 0.0141 | 0.0342 | 0.2878 | 0.1151 | 0.0208 | 0.1021 | 0.0919 | 0.2110 | |
AUCTD↑ | 1.0262 | 0.9152 | 1.4794 | 1.3962 | 1.2549 | 1.2980 | 1.3709 | 1.1522 | 1.2550 | 1.4014 | 1.8144 | |
AUCODP↑ | 1.0015 | 0.9045 | 1.3810 | 1.3821 | 1.2207 | 1.0102 | 1.2558 | 1.1314 | 1.1529 | 1.3094 | 1.6034 | |
AUCTD-BS↑ | 0.0489 | 0.0124 | 0.4050 | 0.3884 | 0.2377 | 0.1725 | 0.2911 | 0.1487 | 0.2094 | 0.3256 | 0.6074 | |
Texas Coast | AUC(D,F)↑ | 0.9946 | 0.9431 | 0.9950 | 0.9941 | 0.9945 | 0.7569 | 0.9105 | 0.9956 | 0.9786 | 0.9953 | 0.9994 |
AUC(D,τ)↑ | 0.1178 | 0.0627 | 0.2517 | 0.0798 | 0.1026 | 0.1662 | 0.1820 | 0.1299 | 0.1014 | 0.2557 | 0.3548 | |
AUC(F,τ)↓ | 0.0135 | 0.0044 | 0.0252 | 0.0008 | 0.0047 | 0.0803 | 0.0465 | 0.0265 | 0.0197 | 0.0462 | 0.0862 | |
AUCTD↑ | 1.1124 | 1.0057 | 1.2467 | 1.0739 | 1.0971 | 0.9231 | 1.0924 | 1.1255 | 1.0800 | 1.2510 | 1.3541 | |
AUCODP↑ | 1.0989 | 1.0013 | 1.2215 | 1.0731 | 1.0924 | 0.8428 | 1.0459 | 1.0990 | 1.0603 | 1.2049 | 1.2680 | |
AUCTD-BS↑ | 0.1043 | 0.0582 | 0.2265 | 0.0790 | 0.0978 | 0.0858 | 0.1355 | 0.1033 | 0.0817 | 0.2096 | 0.2686 | |
Los Angeles | AUC(D,F)↑ | 0.9887 | 0.9794 | 0.9591 | 0.9954 | 0.9852 | 0.8551 | 0.9526 | 0.9943 | 0.9745 | 0.9884 | 0.9971 |
AUC(D,τ)↑ | 0.0891 | 0.0366 | 0.1077 | 0.0736 | 0.0306 | 0.0601 | 0.0933 | 0.0103 | 0.1362 | 0.1187 | 0.2574 | |
AUC(F,τ)↓ | 0.0114 | 0.0018 | 0.0111 | 0.0044 | 0.0007 | 0.0172 | 0.0154 | 0.0002 | 0.0331 | 0.0173 | 0.0559 | |
AUCTD↑ | 1.0778 | 1.0161 | 1.0668 | 1.0646 | 1.0158 | 0.9152 | 1.0459 | 1.0046 | 1.1107 | 1.1071 | 1.2544 | |
AUCODP↑ | 1.0664 | 1.0143 | 1.0556 | 1.0689 | 1.0150 | 0.8980 | 1.0305 | 1.0044 | 1.0776 | 1.0898 | 1.1986 | |
AUCTD-BS↑ | 0.0777 | 0.0349 | 0.0965 | 0.0692 | 0.0299 | 0.0429 | 0.0779 | 0.0100 | 0.1031 | 0.1014 | 0.2015 | |
Salinas | AUC(D,F)↑ | 0.8073 | 0.9635 | 0.9888 | 0.9925 | 0.9528 | 0.8137 | 0.9755 | 0.9641 | 0.9938 | 0.9683 | 0.9962 |
AUC(D,τ)↑ | 0.2143 | 0.3012 | 0.5373 | 0.4096 | 0.2318 | 0.4975 | 0.5741 | 0.3749 | 0.5274 | 0.5620 | 0.5778 | |
AUC(F,τ)↓ | 0.0314 | 0.0069 | 0.0353 | 0.0026 | 0.0023 | 0.1263 | 0.0482 | 0.0083 | 0.0168 | 0.0555 | 0.0952 | |
AUCTD↑ | 1.0216 | 1.2647 | 1.5261 | 1.4021 | 1.1846 | 1.3112 | 1.5496 | 1.3390 | 1.5212 | 1.5304 | 1.5740 | |
AUCODP↑ | 0.9903 | 1.2577 | 1.4908 | 1.3995 | 1.1823 | 1.1849 | 1.5014 | 1.3306 | 1.5044 | 1.4748 | 1.4788 | |
AUCTD-BS↑ | 0.1829 | 0.2942 | 0.5020 | 0.4070 | 0.2295 | 0.3712 | 0.5259 | 0.3665 | 0.5106 | 0.5065 | 0.4826 | |
San Diego-1 | AUC(D,F)↑ | 0.9403 | 0.9412 | 0.9736 | 0.9856 | 0.9907 | 0.8940 | 0.9360 | 0.9732 | 0.9388 | 0.9764 | 0.9935 |
AUC(D,τ)↑ | 0.1778 | 0.0911 | 0.3807 | 0.0653 | 0.2337 | 0.3681 | 0.3354 | 0.1930 | 0.1744 | 0.3425 | 0.4837 | |
AUC(F,τ)↓ | 0.0589 | 0.0214 | 0.0692 | 0.0038 | 0.0079 | 0.1199 | 0.0738 | 0.0094 | 0.0515 | 0.0592 | 0.0980 | |
AUCTD↑ | 1.1181 | 1.0323 | 1.3542 | 1.0509 | 1.2244 | 1.2621 | 1.2714 | 1.1662 | 1.1132 | 1.3189 | 1.4772 | |
AUCODP↑ | 1.0592 | 1.0110 | 1.2850 | 1.0471 | 1.2165 | 1.1422 | 1.1976 | 1.1569 | 1.0617 | 1.2597 | 1.3792 | |
AUCTD-BS↑ | 0.1189 | 0.0698 | 0.3114 | 0.0615 | 0.2258 | 0.2482 | 0.2616 | 0.1837 | 0.1229 | 0.2832 | 0.3857 | |
San Diego-2 | AUC(D,F)↑ | 0.9111 | 0.9791 | 0.9568 | 0.9797 | 0.9871 | 0.9610 | 0.9858 | 0.9878 | 0.9320 | 0.9938 | 0.9958 |
AUC(D,τ)↑ | 0.0791 | 0.1375 | 0.2560 | 0.0469 | 0.1292 | 0.2836 | 0.2618 | 0.1073 | 0.1619 | 0.4301 | 0.3131 | |
AUC(F,τ)↓ | 0.0406 | 0.0360 | 0.1021 | 0.0068 | 0.0095 | 0.0975 | 0.0402 | 0.0081 | 0.0882 | 0.1012 | 0.0387 | |
AUCTD↑ | 0.9902 | 1.1166 | 1.2128 | 1.0266 | 1.1162 | 1.2446 | 1.2476 | 1.0951 | 1.0939 | 1.4240 | 1.3088 | |
AUCODP↑ | 0.9496 | 1.0806 | 1.1107 | 1.0198 | 1.1068 | 1.1471 | 1.2074 | 1.0870 | 1.0057 | 1.3228 | 1.2701 | |
AUCTD-BS↑ | 0.0385 | 0.1015 | 0.1539 | 0.0401 | 0.1197 | 0.1861 | 0.2215 | 0.0992 | 0.0737 | 0.3290 | 0.2744 |
Dataset | RX | CRD | NJCR | Auto-AD | GAED | LRASR | GTVLRR | AHMID | LSDM-MoG | GNLTR | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|
Gulfport | 0.283 | 7.218 | 30.820 | 36.386 | 36.104 | 1.215 | 227.397 | 19.583 | 11.009 | 3.467 | 86.197 |
Texas Coast | 0.311 | 3.683 | 31.309 | 22.921 | 37.430 | 1.323 | 212.385 | 21.668 | 17.040 | 3.302 | 12.803 |
Los Angeles | 0.361 | 5.624 | 17.736 | 16.213 | 37.241 | 1.480 | 156.376 | 25.378 | 18.136 | 3.498 | 41.781 |
Salinas | 0.528 | 6.382 | 43.480 | 21.471 | 56.359 | 1.992 | 214.851 | 28.854 | 12.424 | 4.515 | 32.592 |
San Diego-1 | 0.305 | 10.579 | 21.905 | 15.896 | 35.778 | 1.580 | 206.854 | 19.560 | 4.697 | 3.319 | 13.101 |
San Diego-2 | 0.531 | 15.137 | 36.115 | 16.307 | 50.915 | 2.415 | 219.254 | 31.136 | 8.453 | 4.816 | 89.660 |
Average | 0.387 | 8.104 | 30.228 | 21.532 | 42.305 | 1.668 | 206.186 | 24.363 | 11.960 | 3.820 | 46.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Mu, R.; Lin, S.; Zhang, M.; Wang, H. Hyperspectral Anomaly Detection via Low-Rank Representation with Dual Graph Regularizations and Adaptive Dictionary. Remote Sens. 2024, 16, 1837. https://doi.org/10.3390/rs16111837
Cheng X, Mu R, Lin S, Zhang M, Wang H. Hyperspectral Anomaly Detection via Low-Rank Representation with Dual Graph Regularizations and Adaptive Dictionary. Remote Sensing. 2024; 16(11):1837. https://doi.org/10.3390/rs16111837
Chicago/Turabian StyleCheng, Xi, Ruiqi Mu, Sheng Lin, Min Zhang, and Hai Wang. 2024. "Hyperspectral Anomaly Detection via Low-Rank Representation with Dual Graph Regularizations and Adaptive Dictionary" Remote Sensing 16, no. 11: 1837. https://doi.org/10.3390/rs16111837
APA StyleCheng, X., Mu, R., Lin, S., Zhang, M., & Wang, H. (2024). Hyperspectral Anomaly Detection via Low-Rank Representation with Dual Graph Regularizations and Adaptive Dictionary. Remote Sensing, 16(11), 1837. https://doi.org/10.3390/rs16111837