Investigating Wind Characteristics and Temporal Variations in the Lower Troposphere over the Northeastern Qinghai–Tibet Plateau Using a Doppler LiDAR
Abstract
:1. Introduction
2. Instrument, Data, and Methods
2.1. Observation Site, Instrument, and Measurement
2.2. Methods
3. Results
3.1. Vertical Distributions and Seasonal Variations of Winds
3.2. Diurnal Variations of Winds
3.3. Empirical Relationship between Horizontal Wind Speed and Height and Its Variation
4. Discussion
5. Conclusions
- (1)
- The lower-tropospheric-prevailing HWD in this area is primarily influenced by the mountain-valley wind circulation throughout the year. However, as the altitude increases, the prevailing winds are predominantly affected by the westerlies. The development height of up-valley winds varies significantly across seasons, with the highest top observed in summer, followed by spring and autumn, and the lowest top occurring in winter. In the upper layer, the bottom of the high-speed wind layer is lower in cold seasons compared to warm seasons. This can be attributed to the thicker and stronger westerlies during cold seasons, resulting in a higher rate of increase in high-speed winds. Under 200 m, the occurrence of updrafts and downdrafts is relatively similar due to turbulent activities. However, at heights above 200 m, updrafts predominantly dominate the airflow.
- (2)
- From a diurnal perspective, noticeable transition processes between down-valley and up-valley winds can be observed. The down-valley wind dominates from late night to morning, while the up-valley wind prevails from afternoon to early evening. The transition from down-valley winds to up-valley winds occurs earlier in warm seasons compared to cold seasons, specifically around 11:00 L.T. in summer and spring, 13:00 L.T. in autumn, and 15:00 L.T. in winter. Additionally, it is worth mentioning that the duration of down-valley winds is shortest in spring but longest in winter. As the altitude increases, the mountain-valley wind pattern weakens, while the influence of the westerlies gradually intensifies.
- (3)
- In the NL and LL, there is a significant acceleration of high winds during the afternoon to early evening. However, the occurrence time of high winds varies across seasons, with the earliest in summer, followed by spring and autumn, and the latest in winter. Due to the impact of the mountain-valley circulation, vertical winds in the NL exhibit a downward motion during the daytime and an upward motion during the nighttime. Up to the ML and the UL, the vertical air motion is primarily controlled by updrafts throughout the day.
- (4)
- In this plateau valley, the wind shear exponent is found to be highest in spring, followed by autumn and summer, and lowest in winter. Furthermore, it is observed that the wind shear exponent is generally lower during the daytime compared to the nighttime. However, due to the unique terrain characteristics, negative values of the wind shear exponent can be observed during certain hours of the daytime in all seasons.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Gutiérrez, A.; Domínguez, D.; López, D.; Gonzalo, J. Atmospheric boundary layer wind profile estimation using neural networks applied to Lidar measurements. Sensors 2021, 21, 3659. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.C.; Cheng, F.Y.; Wang, L.J.; Wang, S.H.; Hsu, C.H. Impact of Lidar data assimilation on planetary boundary layer wind and PM2.5 prediction in Taiwan. Atmos. Environ. 2022, 277, 119064. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, T.; Wang, H.; Wang, Q.; Chang, L.; Tan, C. Analysis on atmospheric boundary layer and regional transport during PM2.5 Pollution episodes in Fuzhou. Chin. Environ. Sci. 2015, 35, 347–355. (In Chinese) [Google Scholar]
- Midjiyawa, Z.; Cheynet, E.; Reuder, J.; Ágústsson, H.; Kvamsdal, T. Potential and challenges of wind measurements using met-masts in complex topography for bridge design: Part II-Spectral flow characteristics. J. Wind Eng. Ind. Aerod. 2021, 211, 104585. [Google Scholar] [CrossRef]
- Baumann-Stanzer, K. The UHF wind profiler at Vienna airport-data quality control and comparisons to Rawinsonde data. Meteorol. Atmos. Phys. 2004, 85, 165–174. [Google Scholar] [CrossRef]
- Floors, R.; Troen, I.; Peña, A. Using Observed and Modelled Heat Fluxes for Improved Extrapolation of Wind Distributions. Bound. Layer Meteorol. 2023, 188, 75–101. [Google Scholar] [CrossRef]
- Smedman, A.S.; Högström, U. Turbulent characteristics of a shallow convective internal boundary layer. Bound. Layer Meteorol. 1983, 25, 271–287. [Google Scholar] [CrossRef]
- Abu Bakr, E.H.; Wieringa, J. A boundary-layer model for the determination of hourly surface wind characteristics in a representative tropical African region. Bound. Layer Meteorol. 1988, 45, 325–353. [Google Scholar] [CrossRef]
- Ricciardelli, F.; Polimeno, S. Some characteristics of the wind flow in the lower Urban Boundary Layer. J. Wind Eng. Ind. Aerod. 2006, 94, 815–832. [Google Scholar] [CrossRef]
- Mahrt, L. Characteristics of submeso winds in the stable boundary layer. Bound. Layer Meteorol. 2009, 130, 1–14. [Google Scholar] [CrossRef]
- Milan, P.; Wächter, M.; Peinke, J. Turbulent character of wind energy. Phys. Rev. Lett. 2013, 110, 138701. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Mejía, L.; Hoyos, C.D. Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the WRF model: The Aburrá Valley case-study. Q. J. R. Meteor. Soc. 2019, 145, 2641–2665. [Google Scholar] [CrossRef]
- Wu, A.; Li, G. Roles of the Topographically-Affected Boundary Layer Low-Level Jet in the Moisture Transport Process of Nocturnal Rainstorms in Mountainous Areas around the Western Sichuan Basin. Atmosphere 2022, 14, 84. [Google Scholar] [CrossRef]
- Chen, T.; Fu, J.Y.; Chan, P.W.; He, Y.C.; Liu, A.M.; Zhou, W. Wind characteristics in typhoon boundary layer at coastal areas observed via a Lidar profiler. J. Wind. Eng. Ind. Aerod. 2023, 232, 105253. [Google Scholar] [CrossRef]
- Resmi, E.A.; Murugavel, P.; Dinesh, G.; Balaji, B.; Leena, P.P.; Mercy, V.; Sathy, N.; Subharthi, C.; Yogesh, T.; Anandakumar, K.; et al. Observed diurnal and intraseasonal variations in boundary layer winds over Ganges valley. J. Atmos. Sol.-Terr. Phy. 2019, 188, 11–25. [Google Scholar] [CrossRef]
- Zhang, S.; Li, B.; Solari, G.; Zhang, X.; Xu, X. A refined study of atmospheric wind properties in the Beijing urban area based on a 325 m meteorological tower. Atmosphere 2021, 12, 786. [Google Scholar] [CrossRef]
- Li, L.; Zhou, Q.J.; Chan, P.W.; Yang, H.L. Variation of virtual temperature and wind in the atmospheric boundary layer over the Pearl River estuary during 2011–2020. Front. Environ. Sci. 2023, 10, 2691. [Google Scholar] [CrossRef]
- Dai, L.; Xin, J.; Zuo, H.; Ma, Y.; Zhang, L.; Wu, X.; Ma, Y.; Jia, D.; Wu, F. Multilevel Validation of Doppler Wind Lidar by the 325 m Meteorological Tower in the Planetary Boundary Layer of Beijing. Atmosphere 2020, 11, 1051. [Google Scholar] [CrossRef]
- Fan, Q.; Zhu, K.; Zheng, J.; Zhang, J.; Zhou, D.; Zhang, F. Detection performance analysis of all-fiber coherent wind lidar under different weather types. Chin. J. Lasers 2017, 44, 10. (In Chinese) [Google Scholar]
- Song, M.; Wang, Y.; Mamtimin, A.; Gao, J.; Aihaiti, A.; Zhou, C.; Yang, F.; Huo, W.; Wen, C.; Wang, B. Applicability Assessment of Coherent Doppler Wind LiDAR for Monitoring during Dusty Weather at the Northern Edge of the Tibetan Plateau. Remote Sens. 2022, 14, 5264. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Wu, G.; Gao, R. Evaluation of wind lidar data inmegacities experiment on integrated meteorological observation. J. Trop. Meteorol. 2022, 38, 253–264. (In Chinese) [Google Scholar]
- Jiang, P.; Yuan, J.; Wu, K.; Wang, L.; Xia, H. Turbulence Detection in the Atmospheric Boundary Layer Using Coherent Doppler Wind Lidar and Microwave Radiometer. Remote Sens. 2022, 14, 2951. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, Y.; Shu, Z.; Su, L.; Tang, D.; Yang, Y.; Dong, J.; Yu, S.; Zhang, Z.; Xia, H. Real-Time Synchronous 3-D Detection of Air Pollution and Wind Using a Solo Coherent Doppler Wind Lidar. Remote Sens. 2022, 14, 2809. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, J.; Xia, H.; Zhao, L.; Wu, Y. Marine Mixed Layer Height Detection Using Ship-Borne Coherent Doppler Wind Lidar Based on Constant Turbulence Threshold. Remote Sens. 2022, 14, 745. [Google Scholar] [CrossRef]
- Smalikho, I.N.; Banakh, V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer. Atmos. Meas. Tech. 2017, 10, 4191–4208. [Google Scholar] [CrossRef]
- Banakh, V.; Smalikho, I. Lidar Studies of Wind Turbulence in the Stable Atmospheric Boundary Layer. Remote Sens. 2018, 10, 1219. [Google Scholar] [CrossRef]
- Yuan, J.; Su, L.; Xia, H.; Li, Y.; Zhang, M.; Zhen, G.; Li, J. Microburst, Windshear, Gust Front, and Vortex Detection in Mega Airport Using a Single Coherent Doppler Wind Lidar. Remote Sens. 2022, 14, 1626. [Google Scholar] [CrossRef]
- Wood, C.; Pauscher, L.; Ward, H.; Kotthaus, S.; Barlow, J.; Gouvea, M.; Lane, S.; Grimmond, C. Wind observations above an urban river using a new lidar technique, scintillometry and anemometry. Sci. Total Environ. 2013, 442, 527–533. [Google Scholar] [CrossRef]
- Yi, D.W.; Choi, H.W.; Lee, S.S.; Lee, Y.H. Understanding the Characteristics of Vertical Structures for Wind Speed Observations via Wind-LIDAR on Jeju Island. Atmosphere 2023, 14, 1260. [Google Scholar] [CrossRef]
- Egger, J.; Bajrachaya, S.; Egger, U.; Heinrich, R.; Reuder, J.; Shayka, P.; Wendt, H.; Wirth, V. Diurnal Winds in the Himalayan Kali Gandaki Valley. Part I: Observations. Mon. Wea. Rev. 2000, 128, 1106–1122. [Google Scholar] [CrossRef]
- Zängl, G.; Egger, J.; Wirh, V. Diurnal Winds in the Himalayan Kali Gandaki Valley. Part II: Modeling. Mon. Wea. Rev. 2001, 129, 1062–1080. [Google Scholar] [CrossRef]
- Bian, L.; Xu, X.; Lu, L.; Gao, Z.; Zhou, M.; Liu, H. Analyses of turbulence parameters in the near-surface layer at Qamdo of the southeastern Tibetan Plateau. Adv. Atmos. Sci. 2003, 20, 369–378. [Google Scholar] [CrossRef]
- Chen, X.; Ma, Y.; Hu, Z.; He, H.; Luo, B. Analysis of atmospheric structure in Gaize region of western Tibetan plateau during pre-onset and onset of monsoon. Chin. J. Atmos. Sci. 2010, 34, 83–94. (In Chinese) [Google Scholar]
- Chen, X.; Anel, J.; Su, Z.; De, I.; Kelder, H.; Peet, J.; Ma, Y. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau. PLoS ONE 2013, 8, e56909. [Google Scholar] [CrossRef]
- Li, M.; Dai, Y.; Ma, Y.; Zhong, L.; Lü, S. Analysis on structure of atmospheric boundary layer and energy exchange of surface layer over mount Qomolangma region. Plateau Meteorol. 2006, 25, 807–813. (In Chinese) [Google Scholar]
- Lai, Y.; Chen, X.; Ma, Y.; Chen, D.; Zhaxi, S. Impacts of the westerlies on planetary boundary layer growth over a valley on the north side of the central Himalayas. J. Geophys. Res. Atmos. 2021, 126, e2020JD033928. [Google Scholar] [CrossRef]
- Lü, Y.; Ma, Y.; Li, M.; Sun, F. Study on characteristic of atmospheric boundary layer over lake Namco region, Tibetan Plateau. Plateau Meteorol. 2008, 27, 1205–1210. (In Chinese) [Google Scholar]
- Wang, Y.; Ma, Y.; Zhu, Z.; Li, M. Variation characteristics of meteorological elements in near surface layer over the Lulang valley of southeastern Tibetan Plateau. Plateau Meteorol. 2010, 29, 63–69. (In Chinese) [Google Scholar]
- Li, C.; Zhao, P.; Peng, T.; Feng, L.; Zhou, J.; Luo, X.; Zhou, D. Technical research of 3-D wind lidar. Laser Technol. 2017, 41, 703–707. (In Chinese) [Google Scholar]
- Huang, X.; Zheng, J.; Zhang, J.; Ma, X.; Tian, W.; Hua, Z. Study on the structure and characteristics of a low-level wind shear process that happened over Xining Airport. Laser Technol. 2022, 46, 206–212. (In Chinese) [Google Scholar]
- Robey, R.; Lundquist, J.K. Behavior and mechanisms of Doppler wind lidar error in varying stability regimes. Atmos. Meas. Tech. 2022, 15, 4585–4622. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Yang, J.; Zeng, T.; Zhang, A.; Zhang, C. Relationships between boundary layer height and different disaster weathers in north-central Qinghai Province. Plateau Meteorol. 2019, 38, 1048–1057. (In Chinese) [Google Scholar]
- Zhou, W.; Yang, S.; Jiang, X.; Guo, Q. Estimating planetary boundary layer height over the Tibetan Plateau using COSMIC radio occultation data. Acta Meteorol. Sin. 2018, 76, 117–133. (In Chinese) [Google Scholar]
- Xu, X.; Zhou, M.; Chen, J.; Bian, L.; Zhang, G.; Liu, H.; Li, S.; Zhang, H.; Zhao, Y. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau. Sci. Chin. Ser. D 2002, 45, 577–594. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, X.; Wang, J. A dynamic study of Ekman characteristics by using 1998 SCSMEX and TIPEX boundary layer data. Adv. Atmos. Sci. 2003, 20, 349–356. [Google Scholar] [CrossRef]
- Gu, X.; Wu, H.; Xu, L.; Wei, W. Precision analysis of wind speed prediction based on different calculation methods of wind shear exponent. Renew. Energ. Resour. 2019, 37, 1362–1367. (In Chinese) [Google Scholar]
- Chen, S.; Duan, Y.; Li, Q. Fitting of wind shear index in the boundary layer of landfalling typhoons based on high tower observation. J. Appl. Meteorol. Sci. 2022, 33, 155–166. (In Chinese) [Google Scholar]
- Xü, H.; Gong, Q.; Zhu, L.; Shen, L.; Gu, Z.; Chao, H.; Wang, Y.; Chen, J. Comparisons of wind resources based on wind shear indices at various temporal scales. J. Meteorol. Environ. 2022, 38, 106–112. (In Chinese) [Google Scholar]
- Yao, H.; Li, D. Spatial structure of East Asia subtropical jet stream and its relation with winter air temperature in China. Chin. J. Atmos. Sci. 2013, 37, 881–890. (In Chinese) [Google Scholar]
- Ma, M.; Qi, D.; Shen, H.; Zhang, J. Research on the characteristics of wind and thermal field for atmospheric boundary layer in Xining. J. Nat. Resour. 2014, 29, 1196–1206. (In Chinese) [Google Scholar]
- Zhu, C.; Ma, Y.; Chen, X. Atmospheric boundary layer structure in the west and the southeastern periphery of the Tibetan Plateau during the pre-monsoon period. J. Glaciol. Geocryol. 2011, 33, 325–333. (In Chinese) [Google Scholar]
- Liu, R.; Zhang, G.; Xiao, H.; Zhou, W. Analysis on the characteristics of daily variation of cloud and precipitation over the Huangshui river valley in summer. Arid Zone Res. 2010, 27, 135–141. (In Chinese) [Google Scholar] [CrossRef]
- Kuang, X.; Zhang, Y. The seasonal variation of the East Asian Subtropical Westerly Jet and its thermal mechanism. Acta Meteorol. Sin. 2006, 64, 564–575. (In Chinese) [Google Scholar]
- Bonner, W. Climatology of the low level jet. Mon. Wea. Rev. 1968, 96, 833–850. [Google Scholar] [CrossRef]
- Zhu, R.; Xue, H. Calculation of wind energy and distribution of wind energy in China. Meteorol. Mon. 1981, 8, 26–28. (In Chinese) [Google Scholar]
- Li, Y.; Liang, H.; Wang, S.; Zhou, Q.; Guo, X.; Qiao, H. Study of the near surface wind shear daily variation characteristics based on China’s wind power resources professional observation network. J. Nat. Res. 2012, 27, 1362–1372. (In Chinese) [Google Scholar]
- Chen, M. Analysis of several factors influencing the wind shear index. In Proceedings of the 2013 Annual Meeting of the Chinese Society of Electrical Engineering, Chengdu, China, 20 November 2013. (In Chinese). [Google Scholar]
- Li, H.; Zhu, R. Discussion on the influence of wind shear index on hub height. In Proceedings of the Asian Wind Energy Congress, Beijing, China, 25 June 2008. (In Chinese). [Google Scholar]
- Wang, K.; He, Q.; Wang, M.; Hu, Y.; Li, X. Wind field at boundary layer in the hinterland of the Taklimakan desert. J. Desert Res. 2012, 32, 1029–1034. (In Chinese) [Google Scholar]
- Shi, W. Study on the Characteristics of Atmospheric Boundary Layer Wind Field in Hangzhou Bay Area. Master’s Thesis, Nanjing University, Nanjing, China, 2019. (In Chinese). [Google Scholar]
- Cao, Y.; Chen, H.; Wang, P. Analysis of the data reliability and wind field characteristics near surface boundary layer with Doppler sodar observations. Plateau Meteorol. 2017, 36, 1315–1324. (In Chinese) [Google Scholar]
- Yang, X.; Ai, L.; Li, C. Study on characteristics of urban crown-level mountain-valley wind in Sanming City. Straits Sci. 2023, 1, 22–26. (In Chinese) [Google Scholar]
- Ji, G.; Zhang, L.; Xing, L.; Zhao, M.; Lu, W. Mountain-valley winds and the diffusion of pollutants in mountainous areas. Environ. Res. 1984, 2, 10–15. (In Chinese) [Google Scholar]
- Tan, J.; Yuan, Y.; Li, Y.; Li, Y. A study of wind system in a sophisticated relief in the mountain area. Climatic Environ. Res. 2001, 6, 493–497. (In Chinese) [Google Scholar]
- Li, Y.; Yan, H.; Mo, F.; Fang, P. The analysis of wind field characteristics of the atmospheric boundary layer in Xichang 2014. J. Xichang Univ. (Nat. Sci. Ed.). 2015, 29, 55–58. (In Chinese) [Google Scholar]
- Ma, H.; Qü, N.; Li, C.; Wang, S. Study on wind shear exponents of wind farms. Power Syst. Clean Energy 2012, 28, 88–90. (In Chinese) [Google Scholar]
- Xü, B.; Wu, T.; Li, W. Screening of calculation methods for wind shear exponent. Trans. Chin. Soc. Agric. Eng. 2014, 30, 188–194. (In Chinese) [Google Scholar]
- Farrugia, R.N. The wind shear exponent in a mediterranean island climate. Renew. Energ. 2003, 28, 647–653. [Google Scholar] [CrossRef]
- Okorie, M.E.; Inambao, F.; Chiguvare, Z. Evaluation of wind shear coefficients, surface roughness and energy yields over inland locations in Namibia. Procedia Manuf. 2017, 7, 630–638. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Abbai, M.N. Wind shear coefficient, turbulence intensity and wind power potential assessment for Dhulom, Saudi Arabia. Renew. Energ. 2008, 33, 2653–2660. [Google Scholar] [CrossRef]
Items | Specifications | Values |
---|---|---|
1 | laser wavelength (µm) | 1.55 |
2 | power dissipation (W) | ≤250 (average power) |
3 | weight (kg) | 65 |
4 | volume (mm) | 420 × 700 |
5 | power supply (V) | 220 |
6 | scanning mode | DBS, PPI, RHI, etc. |
7 | scan range (azimuth/pitch) (°) | 0–360/−10–+190 |
8 | wind speed measurable range (m/s) | 0–75 |
9 | available detection range (km) | ≤10 |
10 | velocity accuracy (m/s) | ≤0.1 (radial direction) |
11 | directional angle accuracy (°) | ≤0.1 |
12 | height resolution (m) | 28 |
13 | temporal resolution (s) | ≥3 |
14 | measurements | signal-to-noise ratio, radial velocity, horizontal and vertical wind speed and direction, etc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Liu, Y.; Peng, T.; Wan, X.; Huang, X.; Wang, Y.; Che, Y.; Xu, D. Investigating Wind Characteristics and Temporal Variations in the Lower Troposphere over the Northeastern Qinghai–Tibet Plateau Using a Doppler LiDAR. Remote Sens. 2024, 16, 1840. https://doi.org/10.3390/rs16111840
Zheng J, Liu Y, Peng T, Wan X, Huang X, Wang Y, Che Y, Xu D. Investigating Wind Characteristics and Temporal Variations in the Lower Troposphere over the Northeastern Qinghai–Tibet Plateau Using a Doppler LiDAR. Remote Sensing. 2024; 16(11):1840. https://doi.org/10.3390/rs16111840
Chicago/Turabian StyleZheng, Jiafeng, Yihua Liu, Tingwei Peng, Xia Wan, Xuan Huang, Yuqi Wang, Yuzhang Che, and Dongbei Xu. 2024. "Investigating Wind Characteristics and Temporal Variations in the Lower Troposphere over the Northeastern Qinghai–Tibet Plateau Using a Doppler LiDAR" Remote Sensing 16, no. 11: 1840. https://doi.org/10.3390/rs16111840
APA StyleZheng, J., Liu, Y., Peng, T., Wan, X., Huang, X., Wang, Y., Che, Y., & Xu, D. (2024). Investigating Wind Characteristics and Temporal Variations in the Lower Troposphere over the Northeastern Qinghai–Tibet Plateau Using a Doppler LiDAR. Remote Sensing, 16(11), 1840. https://doi.org/10.3390/rs16111840