Assessing Slip Rates on the Xianshuihe Fault Using InSAR with Emphasis on Phase Unwrapping Error and Atmospheric Delay Corrections
Abstract
:1. Introduction
2. Data and Method
2.1. Data
2.2. Method
2.2.1. Phase Unwrapping Error (PUE) Correction
2.2.2. Atmospheric Phase Correction
2.2.3. Long-Wavelength Artifact Removal
2.2.4. InSAR Time Series Analysis and Frame Mosaicking
2.2.5. Calculation of the Three-Dimensional Velocity Field
3. Results
3.1. Mean LOS Velocities
3.2. Decomposed Three-Dimensional Velocities
4. Discussion
4.1. Significance of PUE Correction on InSAR Time Series Analysis
4.2. Effectiveness of Atmospheric Correction on InSAR Time Series Analysis
4.3. Modeling Long-Term Fault Slip Rate and Shallow Surface Creeping
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, C.R.; Luo, Z.L.; Qian, H.; Wen, Z.X.; Zhou, H.W.; Huang, W.S. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China. Geol. Soc. Am. Bull. 1991, 103, 1178–1199. [Google Scholar] [CrossRef]
- Bai, M.; Chevalier, M.L.; Pan, J.; Replumaz, A.; Leloup, P.H.; Métois, M. Southeastward increase of the late quaternary slip-rate of the Xianshuihe fault, eastern Tibet: Geodynamic and seismic hazard implications. Earth Planet. Sci. Lett. 2018, 485, 19–31. [Google Scholar] [CrossRef]
- Yan, B.; Lin, A. Holocene activity and paleoseismicity of the Selaha fault southeastern segment of the strike-slip Xianshuihe fault zone, Tibetan plateau. Tectonophysics 2017, 694, 302–318. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, X.Z.; Cao, J.L.; Yan, W.; Yang, Y.L.; Su, Q. Surface creep and slip-behavior segmentation along the northwestern Xianshuihe fault zone of southwestern China determined from decades of fault-crossing short-baseline and short-level surveys. Tectonophysics 2018, 722, 356–372. [Google Scholar] [CrossRef]
- Jiang, G.; Xu, X.; Chen, G.; Liu, Y.; Fukahata, Y.; Wang, H.; Yu, G.; Tan, X.; Xu, C. Geodetic imaging of potential seismogenic asperities on the Xianshuihe-Anninghe-Zemuhe fault system, southwest China, with a new 3-D viscoelastic interseismic coupling model. J. Geophys. Res. Solid Earth 2015, 120, 1855–1873. [Google Scholar] [CrossRef]
- Kong, W.; Huang, L.; Yao, R.; Yang, S. Contemporary kinematics along the Xianshuihe-Xiaojiang fault system: Insights from numerical simulation. Tectonophysics 2022, 839, 229545. [Google Scholar] [CrossRef]
- Yin, L.; Luo, G. Fault interaction and active crustal extrusion in the southeastern Tibetan plateau: Insights from geodynamic modeling. J. Asian Earth Sci. 2021, 218, 104866. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Shan, X.; Zhao, D.; Gao, Z.; Gong, W.; Qu, C. InSAR observations reveal variations in shallow creep on the Kangding segment of the Xianshuihe fault. Seismol. Res. Lett. 2023, 94, 2291–2300. [Google Scholar] [CrossRef]
- Guo, R.; Zheng, Y.; Tian, W.; Xu, J.; Zhang, W. Locking status and earthquake potential hazard along the middle-south Xianshuihe fault. Remote Sens. 2018, 10, 2048. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Shi, Y.; Zhang, H.; Zhang, G. Dynamic simulation of interactions between major earthquakes on the Xianshuihe fault zone. Sci. China Ser. D Earth Sci. 2008, 51, 1388–1400. [Google Scholar] [CrossRef]
- Li, L.; Wu, Y. Dynamic deformation and fault locking of the Xianshuihe fault zone, southeastern Tibetan plateau: Implications for seismic hazards. Earth Planets Space 2022, 74, 35. [Google Scholar] [CrossRef]
- Qiao, X.; Zhou, Y. Geodetic imaging of shallow creep along the Xianshuihe fault and its frictional properties. Earth Planet. Sci. Lett. 2021, 567, 117001. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Bai, M.; Chevalier, M.L.; Leloup, P.H.; Li, H.; Pan, J.; Replumaz, A.; Wang, S.; Li, K.; Wu, Q.; Liu, F. Spatial slip rate distribution along the SE Xianshuihe fault, eastern Tibet, and earthquake hazard assessment. Tectonics 2021, 40, e2021TC006985. [Google Scholar] [CrossRef]
- Qian, H.; Allen, C.R.; Luo, Z.L.; Wen, X.Z.; Zhou, H.W.; Huang, W.S. The active characteristics of Xianshuihe fault in Holocene. Earthq. Res. China 1988, 4, 9–18. [Google Scholar]
- Zhao, G.; Liu, D.; Wei, W.; Zhang, H.; He, Q.; Su, G.; Guo, J.; Zhang, J.; Tan, W. The later quaternary slip rate and segmentation of the Xianshuihe active fault zone. In Proceedings of the PRC_USA Bilateral Symposium on the Xianshuihe Fault Zone, Chengdu, China, 22–24 September 1990. [Google Scholar]
- Tang, R.C.; Han, W.B. Active Faults and Earthquakes in Sichuan Province; Seismological Press: Beijing, China, 1993; pp. 67–138. (In Chinese) [Google Scholar]
- Li, T.; Du, Q.; Zhang, C.; You, Z. The Active Xianshuihe Fault Zone and Its Seismic Risk Assessment; Chengdu Cartographic Publishing House: Chengdu, China, 1997; p. 230. (In Chinese) [Google Scholar]
- Xu, X.; Wen, X.; Zheng, R.; Ma, W.; Song, F.; Yu, G. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sci. China Ser. D Earth Sci. 2003, 46, 210–226. [Google Scholar] [CrossRef]
- Chen, G.H.; Xu, X.W.; Wen, X.Z.; Wang, Y.L. Kinematical transformation and slip partitioning of northern to eastern active boundary belt of Sichuan-Yunnan block. Seismol. Geol. 2008, 30, 58–85. [Google Scholar]
- Zhang, P.Z. A review on active tectonics and deep crustal processes of the western Sichuan region, eastern margin of the Tibetan plateau. Tectonophysics 2013, 584, 7–22. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.; Gan, W.; Liao, H.; Li, T.; Ren, J.; Qiao, X.; Wang, Q.; Yang, Y.; Teruyuki, K. GPS monitoring of temporal deformation of the Xianshuihe fault. Sci. China Ser. D Earth Sci. 2008, 51, 1259–1266. [Google Scholar] [CrossRef]
- Rui, X.; Stamps, D.S. Present-day kinematics of the eastern Tibetan plateau and Sichuan basin: Implications for lower crustal rheology. J. Geophys. Res. Solid Earth 2016, 121, 3846–3866. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, H.; Wright, T.J.; Lou, Y.; Zhang, R.; Zhang, W.; Shi, C.; Huang, J.; Wei, N. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J. Geophys. Res. Solid Earth 2017, 122, 9290–9312. [Google Scholar] [CrossRef]
- Tang, W.; Liu, Y.; Chen, Z. GPS monitoring of Xianshuihe fault and blocks on its both sides. J. Southwest Jiaotong Univ. 2005, 40, 313–317. [Google Scholar]
- Shen, Z.K.; Lü, J.; Wang, M.; Bürgmann, R. Contemporary crustal deformation around the southeast borderland of the Tibetan plateau. J. Geophys. Res. Solid Earth. 2005, 110, B11. [Google Scholar] [CrossRef]
- Du, Q.; Li, G.; Chen, D.; Zhou, Y.; Qi, S.; Wu, G.; Chai, M.; Tang, L.; Jia, H.; Peng, W. SBAS-InSAR-Based analysis of surface deformation in the Eastern Tianshan mountains, China. Front. Earth Sci. 2021, 9, 729454. [Google Scholar] [CrossRef]
- Galve, J.P.; Pérez-Peña, J.V.; Azañón, J.M.; Closson, D.; Caló, F.; Reyes-Carmona, C.; Jabaloy, A.; Ruano, P.; Mateos, R.M.; Notti, D.; et al. Evaluation of the SBAS InSAR service of the european space Agency’s Geohazard Exploitation Platform (GEP). Remote Sens. 2017, 9, 1291. [Google Scholar] [CrossRef]
- Nayak, K.; López-Urías, C.; Romero-Andrade, R.; Sharma, G.; Guzmán-Acevedo, G.M.; Trejo-Soto, M.E. Ionospheric Total Electron Content (TEC) anomalies as earthquake precursors: Unveiling the geophysical connection leading to the 2023 Moroccan 6.8 Mw earthquake. Geosciences 2023, 13, 319. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, L.; Zhu, L.; Liu, C.; Jiang, F.; Xu, X. Current slip and strain rate distribution along the Ganzi-Yushu-Xianshuihe fault system based on InSAR and GPS observations. Front. Earth Sci. 2022, 173, 821761. [Google Scholar] [CrossRef]
- Li, Y.; Bürgmann, R. Partial coupling and earthquake potential along the Xianshuihe fault, China. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021406. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic atmospheric correction model for interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Lazecký, M.; Spaans, K.; González, P.J.; Maghsoudi, Y.; Morishita, Y.; Albino, F.; Elliott, J.; Greenall, N.; Hatton, E.; Hooper, A. LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sens. 2020, 12, 2430. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef]
- Morishita, Y.; Lazecky, M.; Wright, T.J.; Weiss, J.R.; Elliott, J.R.; Hooper, A. LiCSBAS: An open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor. Remote Sens. 2020, 12, 424. [Google Scholar] [CrossRef]
- Ou, Q.; Daout, S.; Weiss, J.; Shen, L.; Lazecký, M.; Wright, T.J.; Parsons, B.E. Large-scale interseismic itrain mapping of the NE Tibetan plateau from Sentinel-1 interferometry. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024176. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Wang, S.; Lu, Z.; Wang, B.; Niu, Y.; Song, C.; Li, X.; Ma, Z.; Xu, C. A phase-based InSAR tropospheric correction method for interseismic deformation based on short-period interferograms. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5212318. [Google Scholar] [CrossRef]
- Xu, X.; Sandwell, D.T. Toward absolute phase change recovery with InSAR: Correcting for earth tides and phase unwrapping ambiguities. IEEE Trans. Geosci. Remote Sens. 2019, 58, 726–733. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res. Solid Earth 1997, 102, 7547–7563. [Google Scholar] [CrossRef]
- Ding, X.L.; Li, Z.W.; Zhu, J.J.; Feng, G.C.; Long, J.P. Atmospheric effects on InSAR measurements and their mitigation. Sensors 2008, 8, 5426–5448. [Google Scholar] [CrossRef]
- Biggs, J.; Wright, T.; Lu, Z.; Parsons, B. Multi-interferogram method for measuring interseismic deformation: Denali fault, Alaska. Geophys. J. Int. 2007, 170, 1165–1179. [Google Scholar] [CrossRef]
- Gomba, G.; De Zan, F. Bayesian data combination for the estimation of ionospheric effects in SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6582–6593. [Google Scholar] [CrossRef]
- Fattahi, H.; Amelung, F. InSAR uncertainty due to orbital errors. Geophys. J. Int. 2014, 199, 549–560. [Google Scholar] [CrossRef]
- Xu, X.; Sandwell, D.T.; Smith-Konter, B. Coseismic displacements and surface fractures from Sentinel-1 InSAR: 2019 Ridgecrest earthquakes. Seismol. Res. Lett. 2020, 91, 1979–1985. [Google Scholar] [CrossRef]
- López-Quiroz, P.; Doin, M.P.; Tupin, F.; Briole, P.; Nicolas, J.M. Time series analysis of Mexico City subsidence constrained by radar interferometry. J. Appl Geophys. 2009, 69, 1–15. [Google Scholar] [CrossRef]
- Weiss, J.R.; Walters, R.J.; Morishita, Y.; Wright, T.J.; Lazecky, M.; Wang, H.; Hussain, E.; Hooper, A.J.; Elliott, J.R.; Rollins, C. High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data. Geophys. Res. Lett. 2020, 47, e2020GL087376. [Google Scholar] [CrossRef]
- Xu, X.; Sandwell, D.T.; Klein, E.; Bock, Y. Integrated Sentinel-1 InSAR and GNSS time-series along the San Andreas fault system. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022579. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, G.; Weingarten, M.; Niu, Y. InSAR evidence indicates a link between fluid injection for salt mining and the 2019 Changning (China) earthquake sequence. Geophys. Res. Lett. 2020, 47, e2020GL087603. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.; England, P.C.; Fielding, E.J. InSAR observations of low slip rates on the major faults of western Tibet. Science 2004, 305, 236–239. [Google Scholar] [CrossRef]
- Savage, J.; Burford, R. Geodetic determination of relative plate motion in central California. J. Geophys. Res. 1973, 78, 832–845. [Google Scholar] [CrossRef]
- Watson, A.R.; Elliott, J.R.; Walters, R.J. Interseismic strain accumulation across the main recent fault, SW Iran, from Sentinel-1 InSAR observations. J. Geophys. Res. Solid Earth 2022, 127, e2020GL087603. [Google Scholar] [CrossRef]
- Avouac, J.P. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 233–271. [Google Scholar] [CrossRef]
- Hussain, E.; Hooper, A.; Wright, T.J.; Walters, R.J.; Bekaert, D.P. Interseismic strain accumulation across the central north Anatolian fault from iteratively unwrapped InSAR measurements. J. Geophys. Res. Solid Earth 2016, 121, 9000–9019. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.; Scharroo, R.; Luis, J.; Wobbe, F. Generic mapping tools: Improved version released. Eos Trans. Am. Geophys. Union 2013, 94, 409–410. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, P.; Li, X.; Song, C.; Wang, B.; Yin, Z.; Wang, S. Assessing Slip Rates on the Xianshuihe Fault Using InSAR with Emphasis on Phase Unwrapping Error and Atmospheric Delay Corrections. Remote Sens. 2024, 16, 1872. https://doi.org/10.3390/rs16111872
Xi P, Li X, Song C, Wang B, Yin Z, Wang S. Assessing Slip Rates on the Xianshuihe Fault Using InSAR with Emphasis on Phase Unwrapping Error and Atmospheric Delay Corrections. Remote Sensing. 2024; 16(11):1872. https://doi.org/10.3390/rs16111872
Chicago/Turabian StyleXi, Peiyan, Xing Li, Chuang Song, Bin Wang, Zhi Yin, and Shuai Wang. 2024. "Assessing Slip Rates on the Xianshuihe Fault Using InSAR with Emphasis on Phase Unwrapping Error and Atmospheric Delay Corrections" Remote Sensing 16, no. 11: 1872. https://doi.org/10.3390/rs16111872
APA StyleXi, P., Li, X., Song, C., Wang, B., Yin, Z., & Wang, S. (2024). Assessing Slip Rates on the Xianshuihe Fault Using InSAR with Emphasis on Phase Unwrapping Error and Atmospheric Delay Corrections. Remote Sensing, 16(11), 1872. https://doi.org/10.3390/rs16111872