HVConv: Horizontal and Vertical Convolution for Remote Sensing Object Detection
Abstract
:1. Introduction
- A new convolution fashion, leveraging the horizontal and vertical convolution (HVConv), was proposed to reduce receptive fields redundancy, which accommodates object features with non-uniform aspect ratios of length and width for a higher precision of object detection coverage.
- The attention mechanism is cleverly coordinated with our HVConv to dynamically achieve the fusion of different receptive fields to adapt to various aspect ratios of remote sensing objects.
- HVConv is designed as a plug-and-play module for expanding horizontal and vertical receptive fields. It can be easily applied to different networks to improve detection capabilities.
2. Related Work
2.1. Remote Sensing Object Detection
2.2. Attention Module
3. Method
3.1. Overall Architecture
3.2. Horizontal and Vertical Convolution
3.3. Attention
3.4. Loss Function
4. Experiments
4.1. Datasets
4.2. Implementation Details
4.3. Evaluation Metrics
4.4. Comparison with State-of-the-Art
4.5. Ablation Studies
4.5.1. The Stage for Replacement
4.5.2. The Effective of Attention Module
4.5.3. Effectiveness on Different Architecture
4.6. Visualization and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, J.; Ding, J.; Li, J.; Xia, G.S. Align Deep Features for Oriented Object Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J.; Feng, Z.; He, T. R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, Virtual, 4–7 February 2021; Volume 4A, pp. 3163–3171. [Google Scholar]
- Pan, X.; Ren, Y.; Sheng, K.; Dong, W.; Yuan, H.; Guo, X.; Ma, C.; Xu, C. Dynamic refinement network for oriented and densely packed object detection. In Proceedings of the 2020 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Virtual, 14–19 June 2020; pp. 11204–11213. [Google Scholar] [CrossRef]
- Lin, Q.; Zhao, J.; Du, B.; Fu, G.; Yuan, Z. MEDNet: Multiexpert Detection Network With Unsupervised Clustering of Training Samples. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Feng, L.Q.; Luo Jun, L.; Yuan Long, Y.; Fu, G. A Multiple Prediction Mechanisms Ensemble for Complex Remote Sensing Scenes. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023; pp. 8635–8643. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 2016, pp. 770–778. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Q.; Zheng, Z.; Cheng, M.M.; Yang, J.; Li, X. Large Selective Kernel Network for Remote Sensing Object Detection. In Proceedings of the 2023 IEEE International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 16748–16759. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, Y.; Xia, Z.; Han, Y.; Wang, Y.; Gan, W.; Wang, Z.; Song, S.; Huang, G. Adaptive Rotated Convolution for Rotated Object Detection. In Proceedings of the 2023 IEEE International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 6566–6577. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Weng, L.; Yang, Y. Ship Rotated Bounding Box Space for Ship Extraction from High-Resolution Optical Satellite Images with Complex Backgrounds. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1074–1078. [Google Scholar] [CrossRef]
- Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. In Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3974–3983. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; Volume 2017, pp. 2999–3007. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, W.; Hou, R. MFIL-FCOS: A Multi-Scale Fusion and Interactive Learning Method for 2D Object Detection and Remote Sensing Image Detection. Remote Sens. 2024, 16, 936. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Zhao, J.; Fu, G.; Yuan, Z. CRPN-SFNet: A high-performance object detector on large-scale remote sensing images. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 416–429. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the 2017 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; Volume 2017, pp. 936–944. [Google Scholar] [CrossRef]
- Lin, Q.; Zhao, J.; Tong, Q.; Zhang, G.; Yuan, Z.; Fu, G. Cropping Region Proposal Network Based Framework for Efficient Object Detection on Large Scale Remote Sensing Images. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo, Shanghai, China, 8–12 July 2019; pp. 1534–1539. [Google Scholar] [CrossRef]
- Lin, Q.; Long, C.; Zhao, J.; Fu, G.; Yuan, Z. DDBN: Dual detection branch network for semantic diversity predictions. Pattern Recognit. 2022, 122, 108315. [Google Scholar] [CrossRef]
- Ma, J.; Shao, W.; Ye, H.; Wang, L.; Wang, H.; Zheng, Y.; Xue, X. Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimed. 2018, 20, 3111–3122. [Google Scholar] [CrossRef]
- Ding, J.; Xue, N.; Long, Y.; Xia, G.S.; Lu, Q. Learning roi transformer for oriented object detection in aerial images. In Proceedings of the 2019 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; Volume 2019, pp. 2844–2853. [Google Scholar] [CrossRef]
- Li, J.; Chen, M.; Hou, S.; Wang, Y.; Luo, Q.; Wang, C. An Improved S2A-Net Algorithm for Ship Object Detection in Optical Remote Sensing Images. Remote Sens. 2023, 15, 4559. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Hu, X.; Yang, J. Selective kernel networks. In Proceedings of the 2019 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; Volume 2019, pp. 510–519. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 2016, pp. 2818–2826. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16X16 Words: Transformers for image recognition at scale. In Proceedings of the ICLR 2021—9th International Conference on Learning Representations, Virtual, 3–7 May 2021. [Google Scholar]
- Guan, X.; Dong, Y.; Tan, W.; Su, Y.; Huang, P. A Parameter-Free Pixel Correlation-Based Attention Module for Remote Sensing Object Detection. Remote Sens. 2024, 16, 312. [Google Scholar] [CrossRef]
- Xie, X.; Cheng, G.; Wang, J.; Yao, X.; Han, J. Oriented R-CNN for Object Detection. In Proceedings of the 2021 IEEE International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 3500–3509. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, X.; Zhang, G.; Wang, J.; Liu, Y.; Hou, L.; Jiang, X.; Liu, X.; Yan, J.; Lyu, C.; et al. MMRotate: A Rotated Object Detection Benchmark using PyTorch. In Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 10–14 October 2022; pp. 7331–7334. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. Available online: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ (accessed on 21 March 2024).
- Chen, Z.; Chen, K.; Lin, W.; See, J.; Yu, H.; Ke, Y.; Yang, C. PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Glasgow, UK, 29 October 2020; Volume 12350 LNCS, pp. 195–211. [Google Scholar] [CrossRef]
- Qian, W.; Yang, X.; Peng, S.; Yan, J.; Guo, Y. Learning Modulated Loss for Rotated Object Detection. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, Virtual, 4–7 February 2021; Volume 3B, pp. 2458–2466. [Google Scholar]
- Ming, Q.; Zhou, Z.; Miao, L.; Zhang, H.; Li, L. Dynamic Anchor Learning for Arbitrary-Oriented Object Detection. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, Virtual, 4–7 February 2021; Volume 3B, pp. 2355–2363. [Google Scholar]
- Huo, L.; Hou, J.; Feng, J.; Wang, W.; Liu, J. Global and Multiscale Aggregate Network for Saliency Object Detection in Optical Remote Sensing Images. Remote Sens. 2024, 16, 624. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, D.; Chen, J.; Wang, Z.; Wang, Z.; Zhang, Q. On-Board Multi-Class Geospatial Object Detection Based on Convolutional Neural Network for High Resolution Remote Sensing Images. Remote Sens. 2023, 15, 3963. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. SCRDet: Towards more robust detection for small, cluttered and rotated objects. In Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; Volume 2019, pp. 8231–8240. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G.S.; Bai, X. Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, C.; Cui, Z.; Wang, D.; Zhang, T.; Yang, J. Feature-Attentioned Object Detection in Remote Sensing Imagery. In Proceedings of the 2019 International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; Volume 2019, pp. 3886–3890. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Guo, H.; Cheng, W.; Pan, T.; Yang, W. Mask OBB: A Semantic Attention-Based Mask Oriented Bounding Box Representation for Multi-Category Object Detection in Aerial Images. Remote Sens. 2019, 11, 2930. [Google Scholar] [CrossRef]
- Han, J.; Ding, J.; Xue, N.; Xia, G.S. ReDeT: A Rotation-equivariant Detector for Aerial Object Detection. In Proceedings of the 2021 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19 June–25 June 2021. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, J.; Li, K.; Xie, X.; Lang, C.; Yao, Y.; Han, J. Anchor-Free Oriented Proposal Generator for Object Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Hou, L.; Lu, K.; Xue, J.; Li, Y. Shape-Adaptive Selection and Measurement for Oriented Object Detection. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 753–761. [Google Scholar]
- Zhen, P.; Wang, S.; Zhang, S.; Yan, X.; Wang, W.; Ji, Z.; Chen, H.B. Towards Accurate Oriented Object Detection in Aerial Images with Adaptive Multi-level Feature Fusion. ACM Trans. Multimedia Comput. Commun. Appl. 2023, 19, 6. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Q.; Zhang, K. Stacked Hourglass Network for Robust Facial Landmark Localisation. In Proceedings of the 2017 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; Volume 2017, pp. 2025–2033. [Google Scholar] [CrossRef]
- Yu, F.; Wang, D.; Shelhamer, E.; Darrell, T. Deep Layer Aggregation. In Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2403–2412. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J.; Ming, Q.; Wang, W.; Zhang, X.; Tian, Q. Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss. In Proceedings of the 2021 Machine Learning Research, Virtual, 18–24 July 2021; Volume 139, pp. 11830–11841. [Google Scholar]
- Yang, X.; Yang, X.; Yang, J.; Ming, Q.; Wang, W.; Tian, Q.; Yan, J. Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence. In Proceedings of the 2021 Advances in Neural Information Processing Systems, Virtual, 6–14 December 2021; Volume 22, pp. 18381–18394. [Google Scholar]
- Yang, X.; Zhou, Y.; Zhang, G.; Yang, J.; Wang, W.; Yan, J.; Zhang, X.; Tian, Q. The KFIoU Loss for Rotated Object Detection. arXiv 2022, arXiv:2201.12558. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Q.; Xu, Y.; Zhang, J.; Du, B.; Tao, D.; Zhang, L. Advancing Plain Vision Transformer Toward Remote Sensing Foundation Model. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 9992–10002. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, X.; Liu, C.; Ji, X.; Jiao, J.; Ye, Q. Convex-Hull Feature Adaptation for Oriented and Densely Packed Object Detection. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5252–5265. [Google Scholar] [CrossRef]
Method | Backbone | mAP | PL | BD | BR | GTF | SV | LV | SH | TC | BC | ST | SBF | RA | HA | SP | HC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
One-stage methods | |||||||||||||||||
DRN [3] | H104 | 70.70 | 88.91 | 80.22 | 43.52 | 63.35 | 73.48 | 70.69 | 84.94 | 90.14 | 83.85 | 84.11 | 50.12 | 58.41 | 67.62 | 68.60 | 52.50 |
R3Det [2] | R101 | 73.79 | 88.76 | 83.09 | 50.91 | 67.27 | 76.23 | 80.39 | 86.72 | 90.78 | 84.68 | 83.24 | 61.98 | 61.35 | 66.91 | 70.63 | 53.94 |
PIoU [29] | DLA34 | 60.50 | 80.90 | 69.70 | 24.10 | 60.20 | 38.30 | 64.40 | 64.80 | 90.90 | 77.20 | 70.40 | 46.50 | 37.10 | 57.10 | 61.90 | 64.00 |
RSDet [30] | R101 | 72.20 | 89.80 | 82.90 | 48.60 | 65.20 | 69.50 | 70.10 | 70.20 | 90.50 | 85.60 | 83.40 | 62.50 | 63.90 | 65.60 | 67.20 | 68.00 |
DAL [31] | R50 | 71.44 | 88.68 | 76.55 | 45.08 | 66.80 | 67.00 | 76.76 | 79.74 | 90.84 | 79.54 | 78.45 | 57.71 | 62.27 | 69.05 | 73.14 | 60.11 |
G-Rep [32] | R50 | 75.56 | 87.76 | 81.29 | 52.64 | 70.53 | 80.34 | 80.56 | 87.47 | 90.74 | 82.91 | 85.01 | 61.48 | 68.51 | 67.53 | 73.02 | 63.54 |
MIOUC [33] | ELAN based | 75.80 | 89.30 | 82.10 | 54.70 | 65.60 | 80.10 | 84.40 | 87.70 | 90.80 | 79.00 | 87.10 | 50.40 | 64.40 | 80.30 | 80.50 | 60.10 |
ANet [1] | R50 | 76.11 | 88.70 | 81.41 | 54.28 | 69.75 | 78.04 | 80.54 | 88.04 | 90.69 | 84.75 | 86.22 | 65.03 | 65.81 | 76.16 | 73.37 | 58.86 |
Two-stage methods | |||||||||||||||||
RoI Trans [20] | R101 | 69.56 | 88.64 | 78.52 | 43.44 | 75.92 | 68.81 | 73.68 | 83.59 | 90.74 | 77.27 | 81.46 | 58.39 | 53.54 | 62.83 | 58.93 | 47.67 |
SCRDet [34] | R101 | 72.61 | 89.98 | 80.65 | 52.09 | 68.36 | 68.36 | 60.32 | 72.41 | 90.85 | 87.94 | 86.86 | 65.02 | 66.68 | 66.25 | 68.24 | 65.21 |
G.Vertex [35] | R101 | 75.02 | 89.64 | 85.00 | 52.26 | 77.34 | 73.01 | 73.14 | 86.82 | 90.74 | 79.02 | 86.81 | 59.55 | 70.91 | 72.94 | 70.86 | 57.32 |
FAOD [36] | R101 | 73.28 | 90.21 | 79.58 | 45.49 | 76.41 | 73.18 | 68.27 | 79.56 | 90.83 | 83.40 | 84.68 | 53.40 | 65.42 | 74.17 | 69.69 | 64.86 |
Mask OBB [37] | R50 | 74.86 | 89.61 | 85.09 | 51.85 | 72.90 | 75.28 | 73.23 | 85.57 | 90.37 | 82.08 | 85.05 | 55.73 | 68.39 | 71.61 | 69.87 | 66.33 |
ReDet [38] | ReR50 | 76.25 | 88.79 | 82.64 | 53.97 | 74.00 | 78.13 | 84.06 | 88.04 | 90.89 | 87.78 | 85.75 | 61.76 | 60.39 | 75.96 | 68.07 | 63.59 |
AOPG [39] | R101 | 75.39 | 89.14 | 82.74 | 51.87 | 69.28 | 77.65 | 82.42 | 88.08 | 90.89 | 86.26 | 85.13 | 60.60 | 66.30 | 74.05 | 67.76 | 58.77 |
SASM [40] | R50 | 74.92 | 86.42 | 78.97 | 52.47 | 69.84 | 77.30 | 75.99 | 86.72 | 90.89 | 82.63 | 85.66 | 60.13 | 68.25 | 73.98 | 72.22 | 62.37 |
AFF-Det [41] | R50 | 75.72 | 88.34 | 83.06 | 53.77 | 72.16 | 79.54 | 78.09 | 87.65 | 90.69 | 87.19 | 84.50 | 57.46 | 64.96 | 74.88 | 70.80 | 61.24 |
Oriented R-CNN [26] | R50 | 75.87 | 89.46 | 82.12 | 54.78 | 70.86 | 78.93 | 83.00 | 88.20 | 90.90 | 87.50 | 84.68 | 63.97 | 67.69 | 74.94 | 68.84 | 52.28 |
HVConv | HV-R50 | 77.60 | 89.25 | 84.07 | 55.59 | 75.56 | 78.40 | 83.69 | 87.89 | 90.87 | 86.07 | 85.26 | 68.38 | 68.14 | 75.88 | 70.87 | 64.05 |
Method | Backbone | mAP |
---|---|---|
Oriented R-CNN [26] | R50 | 80.87 |
R3Det-GWD [44] | R152 | 80.19 |
R3Det-KLD [45] | R152 | 80.63 |
AFF-Det [41] | R50 | 80.73 |
KFIoU [46] | Swin-T | 80.93 |
RVSA [47] | ViT-B | 81.01 |
ANet [1] | R50 | 79.42 |
ReDet [38] | Re-R50 | 80.10 |
AOPG [39] | R50 | 80.66 |
R3Det [2] | R152 | 76.47 |
G-Rep [32] | Swin-T | 80.16 |
HVConv | HV-R50 | 81.07 |
Stage1 | Stage2 | Stage3 | Stage4 | mAP | FPS |
---|---|---|---|---|---|
✓ | ✓ | ✓ | ✓ | 77.30 | 14.9 |
✓ | ✓ | ✓ | 77.28 | 17.6 | |
✓ | ✓ | ✓ | 77.14 | 16.2 |
Fusion Method | mAP | |
---|---|---|
HConv | VConv | |
0 | 1 | 76.68 |
1 | 0 | 76.38 |
0.5 | 0.5 | 76.67 |
77.28 |
Method | Backbone | AP50 | AP75 | mAP |
---|---|---|---|---|
Rotated | R50 | 72.20 | 36.60 | 38.53 |
RetinaNet [12] | HV-R50 | 81.70 | 46.80 | 46.41 |
Rotated | R50 | 78.20 | 41.10 | 43.59 |
Faster R-CNN [14] | HV-R50 | 78.80 | 46.70 | 44.78 |
R3Det [2] | R50 | 88.10 | 46.80 | 49.07 |
HV-R50 | 89.30 | 57.30 | 53.25 | |
RoI | R50 | 90.10 | 79.60 | 63.46 |
Transformer [20] | HV-R50 | 90.30 | 80.00 | 63.63 |
Oriented | R50 | 90.60 | 89.30 | 70.85 |
R-CNN [26] | HV-R50 | 90.60 | 89.60 | 71.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Lin, Q.; Huang, H.; Yu, Y.; Zhu, D.; Fu, G. HVConv: Horizontal and Vertical Convolution for Remote Sensing Object Detection. Remote Sens. 2024, 16, 1880. https://doi.org/10.3390/rs16111880
Chen J, Lin Q, Huang H, Yu Y, Zhu D, Fu G. HVConv: Horizontal and Vertical Convolution for Remote Sensing Object Detection. Remote Sensing. 2024; 16(11):1880. https://doi.org/10.3390/rs16111880
Chicago/Turabian StyleChen, Jinhui, Qifeng Lin, Haibin Huang, Yuanlong Yu, Daoye Zhu, and Gang Fu. 2024. "HVConv: Horizontal and Vertical Convolution for Remote Sensing Object Detection" Remote Sensing 16, no. 11: 1880. https://doi.org/10.3390/rs16111880
APA StyleChen, J., Lin, Q., Huang, H., Yu, Y., Zhu, D., & Fu, G. (2024). HVConv: Horizontal and Vertical Convolution for Remote Sensing Object Detection. Remote Sensing, 16(11), 1880. https://doi.org/10.3390/rs16111880