The Indian Ocean Dipole Modulates the Phytoplankton Size Structure in the Southern Tropical Indian Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Estimation of Phytoplankton Size Structure
3. Results
3.1. Climatological Mean
3.2. Interannual Variations in Phytoplankton Size Structure
3.3. Features in IOD Events
3.4. Physical Processes
3.4.1. Southeastern TIO
3.4.2. Central Southern TIO
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sieburth, J.M.; Smetacek, V.; Lenz, J.J.L. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions 1. Limnol. Oceanogr. 1978, 23, 1256–1263. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Hirata, T.; Hardman-Mountford, N.J.; Lavender, S.J.; Sathyendranath, S.; Barlow, R. The influence of the Indian Ocean Dipole on interannual variations in phytoplankton size structure as revealed by Earth Observation. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 2012, 77–80, 117–127. [Google Scholar] [CrossRef]
- IOCCG. Phytoplankton functional types from Space. In Reports of the International Ocean-Colour Coordinating Group (IOCCG); 15; Sathyendranath, S., Ed.; International Ocean-Colour Coordinating Group: Petersburg, FL, USA, 2014; pp. 1–156. [Google Scholar]
- Kostadinov, T.S.; Siegel, D.A.; Maritorena, S. Retrieval of the particle size distribution from satellite ocean color observations. J. Geophys. Res.-Ocean. 2009, 114, C9. [Google Scholar] [CrossRef]
- Mouw, C.B.; Hardman-Mountford, N.J.; Alvain, S.; Bracher, A.; Brewin, R.J.W.; Bricaud, A.; Ciotti, A.M.; Devred, E.; Fujiwara, A.; Hirata, T.; et al. A Consumer’s Guide to Satellite Remote Sensing of Multiple Phytoplankton Groups in the Global Ocean. Front. Mar. Sci. 2017, 4, 41. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Hardman-Mountford, N.J.; Lavender, S.J.; Raitsos, D.E.; Hirata, T.; Uitz, J.; Devred, E.; Bricaud, A.; Ciotti, A.; Gentili, B. An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing. Remote Sens. Environ. 2011, 115, 325–339. [Google Scholar] [CrossRef]
- Mousing, E.A.; Ellegaard, M.; Richardson, K. Global patterns in phytoplankton community size structure-evidence for a direct temperature effect. Mar. Ecol. Prog. Ser. 2014, 497, 25–38. [Google Scholar] [CrossRef]
- Siegel, D.A.; DeVries, T.; Cetinic, I.; Bisson, K.M. Quantifying the Ocean’s Biological Pump and Its Carbon Cycle Impacts on Global Scales. Annu. Rev. Mar. Sci. 2023, 15, 329–356. [Google Scholar] [CrossRef] [PubMed]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res.-Ocean. 2006, 111, C8. [Google Scholar] [CrossRef]
- Hirata, T.; Hardman-Mountford, N.J.; Brewin, R.J.W.; Aiken, J.; Barlow, R.; Suzuki, K.; Isada, T.; Howell, E.; Hashioka, T.; Noguchi-Aita, M.; et al. Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types. Biogeosciences 2011, 8, 311–327. [Google Scholar] [CrossRef]
- Mouw, C.B.; Yoder, J.A. Optical determination of phytoplankton size composition from global SeaWiFS imagery. J. Geophys. Res.-Ocean. 2010, 115, C12. [Google Scholar] [CrossRef]
- Ciotti, A.M.; Lewis, M.R.; Cullen, J.J. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol. Oceanogr. 2002, 47, 404–417. [Google Scholar] [CrossRef]
- Roy, S.; Sathyendranath, S.; Bouman, H.; Platt, T. The global distribution of phytoplankton size spectrum and size classes from their light-absorption spectra derived from satellite data. Remote Sens. Environ. 2013, 139, 185–197. [Google Scholar] [CrossRef]
- Waga, H.; Hirawake, T.; Fujiwara, A.; Kikuchi, T.; Nishino, S.; Suzuki, K.; Takao, S.; Saitoh, S.I. Differences in Rate and Direction of Shifts between Phytoplankton Size Structure and Sea Surface Temperature. Remote Sens. 2017, 9, 222. [Google Scholar] [CrossRef]
- Arteaga, L.A.; Rousseaux, C.S. Impact of Pacific Ocean heatwaves on phytoplankton community composition. Commun. Biol. 2023, 6, 263. [Google Scholar] [CrossRef]
- Chiba, S.; Batten, S.; Sasaoka, K.; Sasai, Y.; Sugisaki, H. Influence of the Pacific Decadal Oscillation on phytoplankton phenology and community structure in the western North Pacific. Geophys. Res. Lett. 2012, 39, 15. [Google Scholar] [CrossRef]
- Barton, A.D.; Irwin, A.J.; Finkel, Z.V.; Stock, C.A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl. Acad. Sci. USA 2016, 113, 2964–2969. [Google Scholar] [CrossRef] [PubMed]
- Hermes, J.C.; Reason, C.J.C. Annual cycle of the South Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. J. Geophys. Res.-Ocean. 2008, 113, C4. [Google Scholar] [CrossRef]
- Hood, R.R.; Beckley, L.E.; Wiggert, J.D. Biogeochemical and ecological impacts of boundary currents in the Indian Ocean. Prog. Oceanogr. 2017, 156, 290–325. [Google Scholar] [CrossRef]
- McCreary, J.; Murtugudde, R.; Vialard, J.; Vinayachandran, P.; Wiggert, J.D.; Hood, R.R.; Shankar, D.; Shetye, S.R. Biophysical processes in the Indian Ocean. Indian Ocean. Biogeochem. Process. Ecol. Var. 2009, 185, 9–32. [Google Scholar]
- Du, Y.; Zhang, Y.H.; Zhang, L.Y.; Tozuka, T.; Ng, B.M.; Cai, W.J. Thermocline Warming Induced Extreme Indian Ocean Dipole in 2019. Geophys. Res. Lett. 2020, 47, e2020GL090079. [Google Scholar] [CrossRef]
- Currie, J.C.; Lengaigne, M.; Vialard, J.; Kaplan, D.M.; Aumont, O.; Naqvi, S.W.A.; Maury, O. Indian Ocean Dipole and El Nino/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences 2013, 10, 6677–6698. [Google Scholar] [CrossRef]
- Li, H.L.; Zhang, J.J.; Wang, X.Y.; Zhu, Y.L.; Liu, L.; Wang, B.D.; Zhang, X.L.; Wei, Q.S.; Ding, R.B.; Xuan, J.L.; et al. Robust Subsurface Biological Response During the Decaying Stage of an Extreme Indian Ocean Dipole in 2019. Geophys. Res. Lett. 2022, 49, e2022GL099721. [Google Scholar] [CrossRef]
- Ma, X.Y.; Chen, G.X.; Li, Y.L.; Zeng, L.L. Interannual variability of sea surface chlorophyll a in the southern tropical Indian Ocean: Local versus remote forcing. Deep Sea Res. Part I-Oceanogr. Res. Pap. 2022, 190, 103914. [Google Scholar] [CrossRef]
- Wiggert, J.D.; Hood, R.R.; Naqvi, S.W.A.; Brink, K.H.; Smith, S.L. Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean Dipole during the SeaWiFS era. Indian Ocean. Biogeochem. Process. Ecol. Var. 2009, 185, 385–407. [Google Scholar]
- Chen, G.; Han, W.; Ma, X.; Li, Y.; Zhang, T.; Wang, D. Role of Extreme Indian Ocean Dipole in Regulating Three-Dimensional Freshwater Content in the Southeast Indian Ocean. Geophys. Res. Lett. 2023, 50, e2022GL102290. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y. Satellite and Argo observed surface salinity variations in the tropical Indian Ocean and their association with the Indian Ocean dipole mode. J. Clim. 2015, 28, 695–713. [Google Scholar] [CrossRef]
- Liao, X.; Du, Y.; Wang, T.; He, Q.; Zhan, H.; Hu, S.; Wu, G. Extreme phytoplankton blooms in the southern tropical Indian Ocean in 2011. J. Geophys. Res. Ocean. 2020, 125, e2019JC015649. [Google Scholar] [CrossRef]
- Kawamiya, M.; Oschlies, A.J.G.R.L. Formation of a basin-scale surface chlorophyll pattern by Rossby waves. Geophys. Res. Lett. 2001, 28, 4139–4142. [Google Scholar] [CrossRef]
- Cai, W.; Santoso, A.; Wang, G.; Weller, E.; Wu, L.; Ashok, K.; Masumoto, Y.; Yamagata, T.J.N. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 2014, 510, 254–258. [Google Scholar] [CrossRef]
- Cai, W.J.; Yang, K.; Wu, L.X.; Huang, G.; Santoso, A.; Ng, B.; Wang, G.J.; Yamagata, T. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Chang. 2021, 11, 27–32. [Google Scholar] [CrossRef]
- Saji, N.; Goswami, B.N.; Vinayachandran, P.; Yamagata, T.J.N. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Fairall, C.W.; Bradley, E.F.; Hare, J.; Grachev, A.A.; Edson, J.B.J. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Waga, H.; Hirawake, T.; Ueno, H. Impacts of Mesoscale Eddies on Phytoplankton Size Structure. Geophys. Res. Lett. 2019, 46, 13191–13198. [Google Scholar] [CrossRef]
- Du, Y.; Chen, Z.; Xie, S.-P.; Zhang, L.; Zhang, Y.; Cai, Y. Drivers and characteristics of the Indo-western Pacific Ocean capacitor. Front. Clim. 2022, 4, 1014138. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Y.; Du, Y.; Jiang, X. Asymmetric response of sea surface salinity to extreme positive and negative indian ocean dipole in the southern tropical indian ocean. J. Geophys. Res.-Ocean. 2022, 127, e2022JC018986. [Google Scholar] [CrossRef]
- Masumoto, Y.; Meyers, G. Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res.-Ocean. 1998, 103, 27589–27602. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Y. Extreme IOD induced tropical Indian Ocean warming in 2020. Geosci. Lett. 2021, 8, 37. [Google Scholar] [CrossRef]
Variable | Data Set | Time Period | Spatial Resolution | Sources |
---|---|---|---|---|
Rrs (λ) | MODIS-Aqua L3 | January 2003–December 2020 | 4 km, 8-day | NASA’s OceanColor website https://oceandata.sci.gsfc.nasa.gov/ (accessed on 1 December 2023) |
SST | NOAA OISST Version-2 | January 1982–December 2020 | 0.25° × 0.25°, monthly | NOAA Physical Sciences Laboratory https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html (accessed on 1 December 2023) |
SSH | Ssalto/Duacs, DT merged all satellites, L4 | January 2003–December 2020 | 0.25° × 0.25°, monthly | AVISO https://www.aviso.altimetry.fr/en/home.html (accessed on 1 December 2023) |
u (ux, uy) | CCMP Version-3.1 | January 2003–December 2020 | 0.25° × 0.25°, monthly | Remote Sensing Systems https://www.remss.com/measurements/ccmp/ (accessed on 1 December 2023) |
Temperature, salinity, MLD | Global ocean Argo gridded data set (BOA_Argo) | January 2004–December 2020 | 1° × 1°, 58 standard levels within the upper 2000 m, monthly | China Argo Real-time Data Center http://www.argo.org.cn/ (accessed on 1 December 2023) |
Nitrate | World Ocean Atlas 2018 | Climatology | 1° × 1° | NOAA National Centers for Environmental Information https://www.ncei.noaa.gov/products/ (accessed on 1 December 2023) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, X.; Li, Y.; Zhan, W.; Niu, Q.; Mu, L. The Indian Ocean Dipole Modulates the Phytoplankton Size Structure in the Southern Tropical Indian Ocean. Remote Sens. 2024, 16, 1970. https://doi.org/10.3390/rs16111970
Liao X, Li Y, Zhan W, Niu Q, Mu L. The Indian Ocean Dipole Modulates the Phytoplankton Size Structure in the Southern Tropical Indian Ocean. Remote Sensing. 2024; 16(11):1970. https://doi.org/10.3390/rs16111970
Chicago/Turabian StyleLiao, Xiaomei, Yan Li, Weikang Zhan, Qianru Niu, and Lin Mu. 2024. "The Indian Ocean Dipole Modulates the Phytoplankton Size Structure in the Southern Tropical Indian Ocean" Remote Sensing 16, no. 11: 1970. https://doi.org/10.3390/rs16111970
APA StyleLiao, X., Li, Y., Zhan, W., Niu, Q., & Mu, L. (2024). The Indian Ocean Dipole Modulates the Phytoplankton Size Structure in the Southern Tropical Indian Ocean. Remote Sensing, 16(11), 1970. https://doi.org/10.3390/rs16111970