Observations, Remote Sensing, and Model Simulation to Analyze Southern Brazil Antarctic Ozone Hole Influence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ozone Experiments
2.2. AURA/MLS Satellite Ozone Profiles Experiment
2.3. Stratospheric Dynamic Diagnosis by DYBAL Code in MIMOSA Model PV Fields
2.4. Methodology
3. Results
3.1. Event Study Case
3.2. Statistics and Classification of SBAOHI Events between 2005 and 2014
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gettelman, A.; Hoor, P.; Pan, L.L.; Randel, W.J.; Hegglin, M.I.; Birner, T. The Extratropical Upper Troposphere and Lower Stratosphere. Rev. Geophys. 2011, 49, RG3003. [Google Scholar] [CrossRef]
- Bracci, A.; Cristofanelli, P.; Sprenger, M.; Bonafè, U.; Calzolari, F.; Duchi, R.; Laj, P.; Marinoni, A.; Roccato, F.; Vuillermoz, E.; et al. Transport of Stratospheric Air Masses to the Nepal Climate Observatory-Pyramid (Himalaya; 5079 m MSL): A Synoptic-Scale Investigation. J. Appl. Meteorol. Clim. 2012, 51, 1489–1507. [Google Scholar] [CrossRef]
- Brewer, A.W. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q. J. R. Meteorol. Soc. 1949, 75, 351–363. [Google Scholar] [CrossRef]
- Dobson, G.M.B. Forty years’ research on atmospheric ozone at Oxford: A history. Appl. Opt. 1968, 7, 387–405. [Google Scholar] [CrossRef]
- Roscoe, H.K. The Brewer–Dobson circulation in the stratosphere and mesosphere—Is there a trend? Adv. Space Res. 2006, 38, 2446–2451. [Google Scholar] [CrossRef]
- Weber, M.; Dikty, S.; Burrows, J.P.; Garny, H.; Dameris, M.; Kubin, A.; Abalichin, J.; Langematz, U. The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales. Atmos. Chem. Phys. 2011, 11, 11221–11235. [Google Scholar] [CrossRef]
- Schoeberl, M.R. Reconstruction of the constituent distribution and trends in the Antarctic polar vortex from ER-2 flight observations. J. Geophys. Res. Atmos. 1989, 94, 16815–16845. [Google Scholar] [CrossRef]
- Danielsen, E.F. Stratospheric-tropospheric exchange based upon radioactivity, ozone and potential vorticity. J. Atmos. Sci. 1968, 25, 502–518. [Google Scholar] [CrossRef]
- Larry, D.; Chipperfild, M.; Pyle, J.; Norton, W.; Riishojgaard, L. Tree-dimensional tracer initialization and general diagnostics using equivalent PV latitude-potential-temperature coordinates. Q. J. R. Meteorol. Soc. 1995, 121, 187–210. [Google Scholar] [CrossRef]
- Hoskins, B.J.; McIntyre, M.E.; Robertson, A.W. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Norton, W.A. Breaking Rossby waves in a model stratosphere diagnosed by a vortex–following coordinate system and a technique for advecting material contours. J. Atmos. Sci. 1994, 51, 654–673. [Google Scholar] [CrossRef]
- Nash, E.R.; Newman, P.A.; Rosenfield, J.E.; Schoeberl, M.E. An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res. Atmos. 1996, 101, 9471–9478. [Google Scholar] [CrossRef]
- Marchand, M.; Bekki, S.; Pazmiño, A.; Lefèvre, F.; Godin, S.; Hauchecorne, A. Model simulations of the impact of the 2002 Antarctic ozone hole on midlatitudes. J. Atmos. Sci. 2005, 62, 871–884. [Google Scholar] [CrossRef]
- Trepte, C.R.; Hitchman, M.H. Tropical stratospheric circulation deduced from satellite aerosol data. Nature 1992, 355, 626–628. [Google Scholar] [CrossRef]
- Grant, W.B.; Browell, E.V.; Long, C.S.; Stowe, L.L.; Grainger, R.G.; Lambert, A. Use of volcanic aerosols to study the tropical stratospheric reservoir. J. Geophys. Res. Atmos. 1996, 101, 3973–3988. [Google Scholar] [CrossRef]
- Chubachi, S. Preliminary result of ozone observations at Syowa Station from February, 1982 to January, 1983. Mem. Natl. Inst. Polar Res. Jpn. Spec. 1984, 34, 13–20. Available online: http://id.nii.ac.jp/1291/00001666/ (accessed on 15 February 2023).
- Farman, J.C.; Gardiner, B.G.; Shanklin, J.D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 1985, 315, 207–210. [Google Scholar] [CrossRef]
- Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316. [Google Scholar] [CrossRef]
- Schoeberl, M.R.; Hartman, D.L. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science 1991, 251, 46–52. [Google Scholar] [CrossRef]
- Roscoe, H.K.; Feng, W.; Chipperfield, M.P.; Trainic, M.; Shuckburgh, E.F. The existence of the edge region of the Antarctic stratospheric vortex. J. Geophys. Res. Atmos. 2012, 117, D04301. [Google Scholar] [CrossRef]
- Solomon, S.; Garcia, R.R.; Rowland FS Wuebbles, D.J. On the depletion of Antarctic ozone. Nature 1986, 321, 755–758. [Google Scholar] [CrossRef]
- Lambert, A.; Santee, M.L.; Wu, D.L.; Chae, J.H. A-train CALIOP and MLS observations of early winter Antarctic polar stratospheric clouds and nitric acid in 2008. Atmos. Chem. Phys. 2012, 2, 2899–2931. [Google Scholar] [CrossRef]
- Hofmann, D.J.; Oltmans, S.J.; Harris, J.M.; Johnson, B.J.; Lathrop, J.A. Ten years of ozone sonde measurements at the South Pole: Implications for recovery of springtime Antarctic ozone. J. Geophys. Res. Atmos. 1997, 102, 8931–8943. [Google Scholar] [CrossRef]
- Müller, R.; Grooß, J.U.; Lemmen, C.; Heinze, D.; Dameris, M.; Bodeker, G. Simple measures of ozone depletion in the polar stratosphere. Atmos. Chem. Phys. 2008, 8, 251–264. [Google Scholar] [CrossRef]
- Salby, M.L.; Titova, E.A.; Deschamps, L. Changes of the Antarctic ozone hole: Controlling mechanisms, seasonal predictability, and evolution. J. Geophys. Res. Atmos. 2012, 117, D10111. [Google Scholar] [CrossRef]
- Lefèvre, F.; Figarol, F.; Carslaw, K.S.; Peter, T. The 1997 Arctic Ozone depletion quantified from three-dimensional model simulations. Geophys. Res. Lett. 1998, 25, 2425–2428. [Google Scholar] [CrossRef]
- Tripathi, O.P.; Godin-Beekmann, S.; Lefèvre, F.; Marchand, M.; Pazmiño, A.; Hauchecorne, A.; Goutail, F.; Schlager, H.; Volk, C.M.; Johnson, B.; et al. High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations. J. Atmos. Chem. 2006, 55, 205–226. [Google Scholar] [CrossRef]
- Solomon, S.; Portmann, R.W.; Thompson, D.W.J. Contrasts between Antarctic and Arctic ozone depletion. Proc. Natl. Acad. Sci. USA 2007, 104, 445–449. [Google Scholar] [CrossRef]
- Newman, P.A.; Nash, E.R. Quantifying the wave driving of the stratosphere. J. Geophys. Res. Atmos. 2000, 105, 12485–12497. [Google Scholar] [CrossRef]
- Zerefos, C.S.; Tourpali, K.; Bojkov, B.R.; Balis DS Rognerund, B.; Isaksen, I.S.A. Solar activity-total ozone relationships: Observations and model studies with the heterogeneous chemistry. J. Geophys. Res. Atmos. 1997, 102, 1561–1569. [Google Scholar] [CrossRef]
- Chipperfield, M.P.; Jones, R.L. Relative influences of atmospheric chemistry and transport on Arctic ozone trends. Nature 1999, 400, 551–555. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Lefèvre, F.; Pommereau, J.-P.; Roscoe, H.K.; Goutail, F.; Pazmiño, A.; Shanklin, J.D. Antarctic ozone loss in 1979–2010: First sign of ozone recovery. Atmos. Chem. Phys. 2013, 13, 1625–1635. [Google Scholar] [CrossRef]
- Solomon, S.; Ivy, D.J.; Kinnison, D.; Mills, M.J.; Neely, R.R.; Schmidt, A. Emergence of healing in the Antarctic ozone layer. Science 2016, 353, 269–274. [Google Scholar] [CrossRef]
- Kirchhoff, V.W.J.H.; Sahai, Y.; Casiccia CA, R.; Zamorano, F.; Valderrama, V. Observations of the 1995 ozone hole over Punta Arenas, Chile. J. Geophys. Res. Atmos. 1997, 102, 16109–16120. [Google Scholar] [CrossRef]
- Perez, A.; Jaque, F. On the Antarctic origin of low ozone events at the South American continent during the springs of 1993 and 1994. Atmos. Environ. 1998, 32, 3665–3668. [Google Scholar] [CrossRef]
- Pazmino, A.F.; Godin-Beckmann, S.; Ginzburg, M.; Bekki, S.; Hauchecorne, A.; Piacentini, R.D.; Quel, E.J. Impact of Antarctic polar vortex occurrences on total ozone and UVB radiation at southern Argentinean and Antarctic stations during 1997–2003 period. J. Geophys. Res. Atmos. 2005, 110, D03103. [Google Scholar] [CrossRef]
- de Laat, A.T.J.; van der A, R.J.; Allaart, M.A.F.; van Weele, M.; Benitez, G.C.; Casiccia, C.; Leme, N.M.P.; Quel, E.; Salvador, J.; Wolfram, E. Extreme sunbathing: Three weeks of small total O-3 columns and high UV radiation over the southern tip of South America during the 2009 Antarctic O-3 hole season. Geophys. Res. Lett. 2010, 37, L14805. [Google Scholar] [CrossRef]
- Schoeberl, M.R.; Lait, L.R.; Newman, P.A.; Rasenfield, J.E. The structure of the polar vortex. J. Geophys. Res. Atmos. 1992, 97, 7859–7882. [Google Scholar] [CrossRef]
- Waugh, D.; Plumb, R.; Atkinson, R.J.; Schoeberl, M.R.; Lait, L.R.; Newman, P.A.; Loewenstein, M.; Toohet, D.; Avallone, L.; Webster, C.; et al. Transport out of the lower stratospheric vortex by Rossby wave breaking. J. Geophys. Res. Atmos. 1994, 99, 1071–1088. [Google Scholar] [CrossRef]
- Marchand, M.; Godin, S.; Hauchecorne, A.; Lefèvre, F.; Bekki, S.; Chipperfield, M.P. Influence of polar ozone loss on northern mid-latitude regions estimated by a high resolution chemistry transport model during winter 1999–2000. J. Geophys. Res. Atmos. 2003, 108, 8326. [Google Scholar] [CrossRef]
- Shepherd, T.G. Transport in the Middle Atmosphere. J. Meteorol. Soc. Jpn. 2007, 85B, 165–191. [Google Scholar] [CrossRef]
- Koch, G.; Wernli, H.; Staehelin, J.; Peter, T. A Lagrangian analysis of stratospheric ozone variability and long-term trends above Payerne (Switzerland) during 1970–2001. J. Geophys. Res. Atmos. Atmos. 2002, 107, ACL 2-1–ACL 2-14. [Google Scholar] [CrossRef]
- Prather, M.; Jaffe, H. Global impact of the Antarctic ozone hole: Chemical propagation. J. Geophys. Res. Atmos. 1990, 95, 3413–3492. [Google Scholar] [CrossRef]
- Waugh, D.W. Subtropical stratospheric mixing linked to disturbances in the polar vortices. Nature 1993, 365, 535–537. [Google Scholar] [CrossRef]
- Manney, G.L.; Zurek, R.W.; Neil, A.O.; Swinbank, R. On the motion of air through the stratospheric polar vortex. J. Atmos. Sci. 1994, 51, 2973–2994. [Google Scholar] [CrossRef]
- Reid, S.J.; Vaughan, G. Lamination in ozone profiles in the lower stratosphere. Q. J. R. Meteorol. Soc. 1991, 117, 825–844. [Google Scholar] [CrossRef]
- Perez, A.; Crino, E.; De Carcer, I.A.; Jaque, F. Low-ozone events and three-dimensional transport at midlatitudes of South America during springs of 1996 and 1997. J. Geophys. Res. Atmos. 2000, 105, 4553–4561. [Google Scholar] [CrossRef]
- Semane, N.; Bencherif, H.; Morel, B.; Hauchecorne, A.; Diab, R.D. An unusual stratospheric ozone decrease in Southern Hemisphere subtropics linked to isentropic air-mass transport as observed over Irene (25.5° S, 28.1° E) in mid-May 2002. Atmos. Chem. Phys. 2006, 6, 1927–1936. [Google Scholar] [CrossRef]
- Brinksma, E.J.; Meijer, Y.J.; Connor, B.J.; Manney, G.L.; Bergwerff, J.B.; Bodeker, G.E.; Boyd, I.S.; Liley, J.B.; Hogervorst, W.; Hovenier, J.W.; et al. Analysis of record-low ozone values during the 1997 winter over Lauder, New Zealand. Geophys. Res. Lett. 1998, 25, 2785–2788. [Google Scholar] [CrossRef]
- Orsolini, Y.J.; Manney, G.L.; Engel, A.; Ovarlez, J.; Claud, C.; Coy, L. Layering in stratospheric profiles of long-lived trace species: Balloonborne observations and modeling. J. Geophys. Res. Atmos. 1998, 103, 5815–5825. [Google Scholar] [CrossRef]
- Hall, T.M.; Waugh, D.W. Tracer transport in the tropical stratosphere due to vertical diffusion and horizontal mixing. Geophys. Res. Lett. 1997, 24, 1383–1386. [Google Scholar] [CrossRef]
- Heese, B.; Godin, S.; Hauchecorne, A. Forecast and simulation of stratospheric ozone filaments: A validation of a high-resolution potential vorticity advection model by airborne ozone lidar measurements in winter 1998/1999. J. Geophys. Res. Atmos. 2001, 106, 20011–20024. [Google Scholar] [CrossRef]
- Portafaix, T.; Morel, B.; Bencherif, H.; Baldy, S.; Godin-Beekmann, S.; Hauchecorne, A. Fine-scale study of a thick stratospheric ozone lamina at the edge of the southern subtropical barrier. J. Geophys. Res. Atmos. 2003, 108, 4196. [Google Scholar] [CrossRef]
- Hauchecorne, A.; Godin, S.; Marchand, M.; Heese, B.; Souprayen, C. Quantification of the transport of chemical constituents from the polar vortex to midlatitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity. J. Geophys. Res. Atmos. 2002, 107, 8289. [Google Scholar] [CrossRef]
- McIntyre, M.E.; Palmer, T.N. The ‘‘surf zone’’ in the stratosphere. J. Atmos. Terr. Phys. 1984, 46, 825–849. [Google Scholar] [CrossRef]
- Kanzawa, H. Four observed sudden stratospheric warmings diagnosed by the Eliassen-Palm flux and refractive index. In Dynamics of the Middle Atmosphere; Holton, J.R., Matsuno, T., Eds.; Terra Sci.: Tokyo, Japan, 1984; pp. 307–331. [Google Scholar]
- Morel, B.; Bencherif, H.; Keckhut, P.; Portafaix, T.; Hauchecorne, A.; Baldy, S. Fine-scale study of a thick stratospheric ozone lamina at the edge of the southern subtropical barrier: 2. Numerical simulations with coupled dynamics models. J. Geophys. Res. Atmos. 2005, 110, D17101. [Google Scholar] [CrossRef]
- Bencherif, H.; El Amraoui, L.; Kirgis, G.; De Bellevue, J.L.; Hauchecorne, A.; Mzé, N.; Portafaix, T.; Pazmino, A.; Goutail, F. Analysis of a rapid increase of stratospheric ozone during late austral summer 2008 over Kerguelen (49.4°S, 70.3°E). Atmos. Chem. Phys. 2011, 11, 363–373. [Google Scholar] [CrossRef]
- Kirchhoff, V.W.J.H.; Schuch, N.J.; Pinheiro, D.K.; Harris, J.M. Evidence for an ozone hole perturbation at 30° south. Atmos. Environ. 1996, 33, 1481–1488. [Google Scholar] [CrossRef]
- Guarnieri, R.A.; Padilha, L.F.; Guarnieri, F.L.; Echer, E.; Makita, K.; Pinheiro, D.K.; Schuch, A.M.P.; Boeira, L.S.; Schuch, N.J. A study of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in southern Brazil. Adv. Space Res. 2004, 34, 764–768. [Google Scholar] [CrossRef]
- Schuch, P.A.; Santos, M.B.; Lipinski, V.M.; Peres, L.V.; Santos, C.P.; Cechin, S.Z.; Schuch, N.J.; Pinheiro, D.K.; Loreto, E.L.S. Identification of influential events concerning the Antarctic ozone hole over southern Brazil and the biological effects induced by UVB and UVA radiation in an endemic tree frog species. Ecotoxicol. Environ. Saf. 2015, 118, 190–198. [Google Scholar] [CrossRef]
- Peres, L.V.; Bencherif, H.; Mbatha, N.; Schuch, A.P.; Toihir, A.M.; Bègue, N.; Portafaix, T.; Anabor, V.; Pinheiro, D.K.; Leme, N.M.P.; et al. Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the Southern Space Observatory in Brazil. Ann. Geophys. 2017, 35, 25–37. [Google Scholar] [CrossRef]
- Chiodo, G.; Polvani, L.M. The response of the ozone layer to quadrupled CO2 concentrations: Implications for climate. J. Clim. 2019, 32, 7629–7642. [Google Scholar] [CrossRef] [PubMed]
- Chiodo, G.; Polvani, L.M.; Marsh, D.R.; Stenke, A.; Ball, W.; Rozanov, E.; Muthers, S.; Tsigaridis, K. The response of the ozone layer to quadrupled CO2 concentrations. J. Clim. 2018, 31, 3893–3907. [Google Scholar] [CrossRef]
- Bresciani, C.; Bittencourt, G.D.; Bageston, J.V.; Pinheiro, D.K.; Schuch, N.J.; Bencherif, H.; Leme, N.P.; Peres, L.V. Report of a large depletion in the ozone layer over southern Brazil and Uruguay by using multi-instrumental data. Ann. Geophys. 2018, 36, 405–413. [Google Scholar] [CrossRef]
- Bittencourt, G.D.; Bresciani, C.; Pinheiro, D.K.; Bageston, J.V.; Schuch, N.J.; Bencherif, H.; Leme, N.P.; Peres, L.V. A major event of Antarctic ozone hole influence in southern Brazil in October 2016: An analysis of tropospheric and stratospheric dynamics. Ann. Geophys. 2018, 36, 415–424. [Google Scholar] [CrossRef]
- Peres, L.V.; Pinheiro, D.K.; Steffenel, L.A.; Mendes, D.; Bageston, J.V.; Bittencourt, G.D.; Schuch, A.P.; Anabor, V.; Leme, N.M.P.; Schuch, N.J.; et al. Long term monitoring and climatology of stratospheric fields when the occurrence of influence of the antarctic ozone hole over south of Brazil events. Rev. Bras. Meteorol. 2019, 34, 151–163. [Google Scholar] [CrossRef]
- Rasera, G.; Anabor, V.; Steffenel, L.A.; Pinheiro, D.K.; Puhales, F.S.; Rodrigues, L.G.; Peres, L.V. Analysis of significant stratospheric ozone reductions over southern Brazil: A proposal for a diagnostic index for southern South America. Meteorol. Appl. 2021, 28, e2034. Available online: https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.2034 (accessed on 25 February 2023). [CrossRef]
- Kerr, J.B.; McElroy, C.T.; Wardle, D.I.; Olafson, R.A.; Evans, W.F. The automated Brewer Spectrophotometer, Proceed. In Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, 3–7 September 1984; Zerefos, C.S., Ghazi, A., Eds.; D. Reidel: Norwell, MA, USA, 1985; pp. 396–401. [Google Scholar]
- Kerr, J.B. New methodology for deriving total ozone and other atmospheric variables from Brewer spectrometer direct Sun spectra. J. Geophys. Res. Atmos. 2002, 107, 4731. [Google Scholar] [CrossRef]
- Schuch, N.J.; Costa, J.M.; Kirchhoff, V.W.J.H.; Dutra, S.G.; Sobral, J.H.A.; Abdu, M.A.; Takahashi, H.; Adaime, S.F.; Oliveira, N.U.V.; Bortolotto, E.; et al. O Observatório Espacial do Sul: Centro Regional do Sul de Pesquisas Espaciais OES/CRSPE/INPE em São Martinho da Serra—RS. Rev. Bras. Geofísica 1997, 15. [Google Scholar] [CrossRef]
- McPeters, R.D.; Bhartia, P.K.; Krueger, A.J.; Herman, J.R.; Wellemeyer, C.G.; Seflor, G.; Jaross, C.F.; Torres, O.; Moy, L.; Abow, G.; et al. Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User Guide; Tech. Rep. TP-1998-206895; NASA: Washington, DC, USA, 1998.
- Antón, M.; López, M.; Vilaplana, J.M.; Kroon, M.; McPeters, R.; Bañón, M.; Serrano, A. Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian Peninsula. J. Geophys. Res. Atmos. 2009, 114, D14307. [Google Scholar] [CrossRef]
- Waters, J.W.; Froidevaux, L.; Harwood, R.S.; Jarnot, R.F.; Pickett, H.M.; Read, W.G.; Siegel, P.H.; Cofield, R.E.; Filipiak, M.J.; Flower, D.A.; et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite. IEEE Trans. Geosci. Remote 2006, 44, 1075–1092. [Google Scholar] [CrossRef]
- Livesey, N.J.; Santee, M.L.; Manney, G.L. A Match-based approach to the estimation of polar stratospheric ozone loss using Aura Microwave Limb Sounder observations. Atmos. Chem. Phys. 2015, 15, 9945–9963. [Google Scholar] [CrossRef]
- Godin, S.; Marchand, M.; Hauchecorne, A. Influence of the Arctic polar vortex erosion on the lower stratospheric ozone amount at Haute-Provence Observatory (43.92°N, 5.71°E). J. Geophys. Res. Atmos. 2002, 107, 8272. [Google Scholar] [CrossRef]
- Bencherif, H.; Diab, R.D.; Portafaix, T.; Morel, B.; Keckhut, P.; Moorgawa, A. Temperature climatology and trend estimates in the UTLS region as observed over a southern subtropical site, Durban, South Africa. Atmos. Chem. Phys. 2006, 6, 5121–5128. [Google Scholar] [CrossRef]
- Holton, J.R.; Haynes, P.H.; Mcintyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-troposphere Exchange. Rev. Geophys. 1995, 3, 403–439. [Google Scholar] [CrossRef]
- Nakamura, N. Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci. 1996, 53, 1524–1537. [Google Scholar] [CrossRef]
- Thompson, A.M.; Witte, J.C.; McPeters, R.D.; Oltmans, S.J.; Schmidlin, F.J.; Logan, J.A.; Fujiwara, M.; Kirchhoff, V.W.J.H.; Posny, F.; Coetzee, G.J.R.; et al. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements. J. Geophys. Res. Atmos. 2003, 108, 8238. [Google Scholar] [CrossRef]
- Wilks, S.D. Statistical Methods in the Atmospheric Sciences, an Introduction; Academic Press: San Diego, CA, USA, 1995; p. 464. [Google Scholar]
- Hendrick, F.; Pommereau, J.-P.; Goutail, F.; Evans, R.D.; Ionov, D.; Pazmino, A.; Kyrö, E.; Held, G.; Eriksen, P.; Dorokhov, V.; et al. NDACC/SAOZUV-visible total ozone measurements: Improved retrieval and comparison with correlative ground-based and satellite observations. Atmos. Chem. Phys. 2011, 11, 5975–5995. [Google Scholar] [CrossRef]
- Nakamura, N. A new look at eddy diffusivity as a mixing diagnostic. J. Atmos. Sci. 2001, 58, 3685–3701. [Google Scholar] [CrossRef]
- Mariotti, A.; Moustaoui, M.; Legras, B.; Teitelbaum, H. Comparison between vertical ozone soundings and reconstructed potential vorticity maps by contour advection with surgery. J. Geophys. Res. Atmos. 1997, 102, 6131–6142. [Google Scholar] [CrossRef]
- Orsolini, Y.J.; Grant, W.B. Seasonal formation of nitrous oxide laminae in the mid and low latitude stratosphere. Geophys. Res. Lett. 2000, 27, 1119–1122. [Google Scholar] [CrossRef]
- Randel, W.J.; Gille, J.C.; Roche, A.E.; Kumer, J.B.; Mergenthaler, J.L.; Waters, J.W.; Fishbein, E.F.; Lahoz, W.A. Stratospheric transport from the tropics to middle latitudes by planetary-wave mixing. Nature 1993, 365, 533–537. [Google Scholar] [CrossRef]
- Toihir, A.M.; Sivakumar, V.; Bencherif, H.; Portafaix, T. Study on variability and trend of Total Column Ozone (TCO) obtained from combined satellite (TOMS and OMI) measurements over the southern subtropic. In Proceedings of the 30th Annual Conference of South African Society for Atmosphere Science, Potchefstroom, South Africa, 1–2 October 2014; pp. 109–112. [Google Scholar]
- Toihir, A.M.; Portafaix, T.; Sivakumar, V.; Bencherif, H.; Pazmiño, A.; Bègue, N. Variability ad trend in ozone over the southern tropics and subtropics. Ann. Geophys. 2018, 36, 381–404. [Google Scholar] [CrossRef]
- Toihir, A.M.; Bencherif, H.; Sivakumar, V.; El Amraoui, L.; Portafaix, T.; Mbatha, N. Comparison of total column ozone obtained by the IASI-MetOp satellite with ground-based and OMI satellite observations in the southern tropics and subtropics. Ann. Geophys. 2015, 33, 1135–1146. [Google Scholar] [CrossRef]
- Steffenel, L.A.; Anabor, V.; Pinheiro, D.K.; Guzman, L.; Bittencourt, G.D.; Bencherif, H. Forecasting upper atmospheric scalars advection using deep learning: An O3 experiment. Mach. Learn. 2021, 112, 765–788. [Google Scholar] [CrossRef]
- Guzmán, L.; Anabor, V.; Steffenel, L.A.; Pinheiro, D.K. Numerical and observational study of an event of decrease in the total ozone column of tropical origin in Southern Brazil. Ciência E Nat. 2020, 42, e5. [Google Scholar] [CrossRef]
- Bittencourt, G.D.; Pinheiro, D.K.; Bageston, J.V.; Bencherif, H.; Steffenel, L.A.; Vaz Peres, L. Investigation of the behavior of the atmospheric dynamics during occurrences of the ozone hole’s secondary effect in southern Brazil. Ann. Geophys. 2019, 37, 1049–1061. [Google Scholar] [CrossRef]
- Souza, A.M.; Peres, L.V.; Bittencourt, G.D.; Pinheiro, D.K.; Lopes, B.C.; Anabor, V.; Leme, N.M.; Martins, M.P.P.; DA Silva, R.; DOS Reis, G.C.; et al. Impacts of the Antartic ozone hole influence events over southern Brazil in October 2015. An. Da Acad. Bras. De Ciências 2023, 95 (Suppl. 3), e20210528. [Google Scholar] [CrossRef]
Month | O3 Climatology in DU (µ) | O3 SD in DU (σ) | Limit −1.5σ in DU (µ − 1.5σ) |
---|---|---|---|
August | 284.9 | 9.1 | 271.4 |
September | 296.6 | 9.9 | 281.7 |
October | 290.2 | 8.8 | 277.0 |
November | 286.6 | 13.0 | 267.0 |
Instrument/Model | Characteristics Variable | Propose |
---|---|---|
BS #167 | TCO (DU) | Identify TCO reduction days |
OMI | TCO (DU) | Identify TCO reduction days |
AURA/MLS | Ozone profiles (ppmv) | Identify the ozone reduction height |
DYBAL Code in MIMOSA Model PV Fields | PV fields (PVU) | Identify the air masses origin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peres, L.V.; Pinheiro, D.K.; Bencherif, H.; Begue, N.; Bageston, J.V.; Bittencourt, G.D.; Portafaix, T.; Schuch, A.P.; Anabor, V.; da Silva, R.; et al. Observations, Remote Sensing, and Model Simulation to Analyze Southern Brazil Antarctic Ozone Hole Influence. Remote Sens. 2024, 16, 2017. https://doi.org/10.3390/rs16112017
Peres LV, Pinheiro DK, Bencherif H, Begue N, Bageston JV, Bittencourt GD, Portafaix T, Schuch AP, Anabor V, da Silva R, et al. Observations, Remote Sensing, and Model Simulation to Analyze Southern Brazil Antarctic Ozone Hole Influence. Remote Sensing. 2024; 16(11):2017. https://doi.org/10.3390/rs16112017
Chicago/Turabian StylePeres, Lucas Vaz, Damaris Kirsh Pinheiro, Hassan Bencherif, Nelson Begue, José Valentin Bageston, Gabriela Dorneles Bittencourt, Thierry Portafaix, Andre Passaglia Schuch, Vagner Anabor, Rodrigo da Silva, and et al. 2024. "Observations, Remote Sensing, and Model Simulation to Analyze Southern Brazil Antarctic Ozone Hole Influence" Remote Sensing 16, no. 11: 2017. https://doi.org/10.3390/rs16112017
APA StylePeres, L. V., Pinheiro, D. K., Bencherif, H., Begue, N., Bageston, J. V., Bittencourt, G. D., Portafaix, T., Schuch, A. P., Anabor, V., da Silva, R., Neves, T. T. d. A. T., Silva, R. P. T., dos Reis, G. C. G., dos Reis, M. A. G., Martins, M. P. P., Toihir, M. A., Mbatha, N., Steffenel, L. A., & Mendes, D. (2024). Observations, Remote Sensing, and Model Simulation to Analyze Southern Brazil Antarctic Ozone Hole Influence. Remote Sensing, 16(11), 2017. https://doi.org/10.3390/rs16112017