LPI Sequences Optimization Method against Summation Detector Based on FFT Filter Bank
Abstract
:1. Introduction
2. Problem Formulation
2.1. Receiver Signal Detection
2.2. LPI Radar Waveform Design
2.3. Optimization Problem
3. Optimization Development
3.1. Monotonic Minimizer for Probability of Intercept
Algorithm 1 MPI-Monotonic minimizer for probability of intercept |
|
3.1.1. Number-First
3.1.2. Length-First
3.2. Minimizer Constrained by Similarity Constraint and Spectral Constraint
3.2.1. Constrained by Similarity Constraint
3.2.2. Constrained by Spectral Constraint under Similarity Constraint
Algorithm 2 Spectral-MPI |
|
3.3. Computational Complexity of the Minimizer
3.4. Acceleration Scheme
Algorithm 3 Accelerate-MPI |
|
4. Numerical Results and Analysis
4.1. Convergence Performance
4.2. LPI Performance
4.3. Autocorrelation Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Hu, X.; Yang, J.; Meng, C.; Xu, Y.; Xie, Y. Analysis of Radar Survival Probability against Front Door Coupling Attack Based on Beam Pattern. In Proceedings of the 2023 3rd International Conference on Neural Networks, Information and Communication Engineering (NNICE), Guangzhou, China, 24–26 February 2023; pp. 122–126. [Google Scholar]
- Bang, J.H.; Park, H.D.; Lee, W.; Kim, D.; Kim, H.N. Accurate Estimation of LPI Radar Pulse Train Parameters via Change Point Detection. IEEE Access 2023, 11, 12796–12807. [Google Scholar] [CrossRef]
- Shi, C.; Wang, F.; Sellathurai, M.; Zhou, J.; Salous, S. Low Probability of Intercept-Based Optimal Power Allocation Scheme for an Integrated Multistatic Radar and Communication System. IEEE Syst. J. 2020, 14, 983–994. [Google Scholar] [CrossRef]
- Glenn, A. Low probability of intercept. IEEE Commun. Mag. 1983, 21, 26–33. [Google Scholar] [CrossRef]
- Pace, P.E.; Griffiths, H.D. Detecting and Classifying Low Probability of Intercept Radar – Second Edition. Aeronaut. J. 2011, 115, 389. [Google Scholar] [CrossRef]
- Grossi, E.; Taremizadeh, H.; Venturino, L. Radar Target Detection and Localization Aided by an Active Reconfigurable Intelligent Surface. IEEE Signal Process. Lett. 2023, 30, 903–907. [Google Scholar] [CrossRef]
- Li, X.; Cai, Z. Deep Learning and Time-Frequency Analysis Based Automatic Low Probability of Intercept Radar Waveform Recognition Method. In Proceedings of the 2023 IEEE 23rd International Conference on Communication Technology (ICCT), Wuxi, China, 20–22 October 2023; pp. 291–296. [Google Scholar]
- Jia, J.; Han, Z.; Liu, L. Review on Low Intercept Radar Signal Design Technology. In Proceedings of the 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 29–31 July 2022; pp. 434–437. [Google Scholar]
- Yang, H.; Chen, J. Design of Costas/PSK Continuous Wave LPI Radar Signal. Int. J. Electron. 2017, 104, 404–415. [Google Scholar] [CrossRef]
- Tao, W.; Kaili, J.; Jingyi, L.; Tingting, J.; Bin, T. Research on LPI radar signal detection and parameter estimation technology. J. Syst. Eng. Electron. 2021, 32, 566–572. [Google Scholar] [CrossRef]
- Xie, M.; Yi, W.; Kong, L.; Kirubarajan, T. Receive-Beam Resource Allocation for Multiple Target Tracking with Distributed MIMO Radars. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2421–2436. [Google Scholar] [CrossRef]
- Shi, Y.; An, K.; Li, Y. Index Modulation Based Frequency Hopping: Anti-Jamming Design and Analysis. IEEE Trans. Veh. Technol. 2021, 70, 6930–6942. [Google Scholar] [CrossRef]
- Nowak, M.J.; Zhang, Z.; LoMonte, L.; Wicks, M.; Wu, Z. Mixed-Modulated Linear Frequency Modulated Radar-Communications. IET Radar Sonar Navig. 2017, 11, 313–320. [Google Scholar] [CrossRef]
- Alexander, D.B.; Narayanan, R.M.; Himed, B. Analysis of Sparse Co-Prime Sensing Array Performance Using Wideband Noise Signals. In Proceedings of the 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–1 November 2017; pp. 1147–1151. [Google Scholar]
- Qiongdan, H.; Yong, L.; Yaoping, Z.; Yinjuan, F. Design and Characteristic Analysis of Multicarrier Chaotic Phase Coded Radar Pulse Train Signal. Int. J. Antennas Propag. 2014, 2014, 724294. [Google Scholar]
- Chen, K.; Zhang, J.; Chen, S.; Zhang, S.; Zhao, H. Recognition and Estimation for Frequency-Modulated Continuous-Wave Radars in Unknown and Complex Spectrum Environments. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 6098–6111. [Google Scholar] [CrossRef]
- Chen, K.; Wang, L.; Zhang, J.; Chen, S.; Zhang, S. Semantic Learning for Analysis of Overlapping LPI Radar Signals. IEEE Trans. Instrum. Meas. 2023, 72, 8501615. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, T.; Yu, X.; Shi, Q.; Cui, G.; Kong, L. LPI waveform design for radar system against cyclostationary analysis intercept processing. Signal Process. 2022, 201, 108681. [Google Scholar] [CrossRef]
- Schrick, G.; Wiley, R.G. Interception of LPI radar signals. In Proceedings of the IEEE International Conference on Radar, Arlington, VA, USA, 7–10 May 1990; pp. 108–111. [Google Scholar] [CrossRef]
- Luo, M.; Zhong, T.; Li, M.; Li, X.; Li, Z.; Wu, J.; Yang, J. Low Probability of Intercept Waveform Optimization Method for Sar Imaging. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3963–3966. [Google Scholar] [CrossRef]
- Liu, S.; Cao, Y.; Yeo, T.S.; Wang, F.; Han, J. Range Sidelobe Suppression for Randomized Stepped-Frequency Chirp Radar. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3874–3885. [Google Scholar] [CrossRef]
- Liu, S.; Cao, Y.; Yeo, T.S.; Wu, W.; Liu, Y. Adaptive Clutter Suppression in Randomized Stepped-Frequency Radar. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 1317–1333. [Google Scholar] [CrossRef]
- Hao, X.; Feng, Z.; Yang, S.; Wang, M.; Jiao, L. Automatic Modulation Classification via Meta-Learning. IEEE Internet Things J. 2023, 10, 12276–12292. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.Q.; Guan, H.; Zhang, S. LPI Property of FDA Transmitted Signal. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3905–3915. [Google Scholar] [CrossRef]
- Gong, P.; Zhang, Z.; Wu, Y.; Wang, W.Q. Joint Design of Transmit Waveform and Receive Beamforming for LPI FDA-MIMO Radar. IEEE Signal Process. Lett. 2022, 29, 1938–1942. [Google Scholar] [CrossRef]
- Jin, Y.; Duan, P.; Ji, H. Parameter Estimation of LFM Signals Based on Scaled Ambiguity Function. Circuits Syst. Signal Process. 2016, 35, 4445–4462. [Google Scholar] [CrossRef]
- Hamschin, B.M.; Ferguson, J.D.; Grabbe, M.T. Interception of Multiple Low-Power Linear Frequency Modulated Continuous Wave Signals. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 789–804. [Google Scholar] [CrossRef]
- Alphonse, S.; Williamson, G.A. On Estimating Nonlinear Frequency Modulated Radar Signals in Low SNR Environments. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 1793–1802. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Zhang, Y.; Wang, F.; Zhou, J. Spatial Information-Theoretic Optimal LPI Radar Waveform Design. Entropy 2022, 24, 1515. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, F.; Zhou, J. Information-Theoretic Optimal Radar Waveform Selection with Multi-Sensor Cooperation for LPI Purpose. IEEE Access 2022, 10, 113649–113661. [Google Scholar] [CrossRef]
- Williams, E.C.; Bridges, C.P.; Bowyer, M.D.J. Nowhere to hide? Passive, non-cooperative maritime surveillance from a nanosat. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Ellis, P.; Rheeden, D.V.; Dowla, F. Use of Doppler and Doppler Rate for RF Geolocation Using a Single LEO Satellite. IEEE Access 2020, 8, 12907–12920. [Google Scholar] [CrossRef]
- Kim, I.; Park, K.H.; Song, M.K.; Song, H.Y.; Lee, J.Y. Design of LPI signals using optimal families of perfect polyphase sequences. In Proceedings of the 2016 International Symposium on Information Theory and Its Applications (ISITA), Monterey, CA, USA, 30 October–2 November 2016; pp. 261–264. [Google Scholar]
- Warnke, L.; Correll, B.; Swanson, C.N. The Density of Costas Arrays Decays Exponentially. IEEE Trans. Inf. Theory 2023, 69, 575–581. [Google Scholar] [CrossRef]
- Gong, P.; Xu, K.; Wu, Y.; Zhang, J.; So, H.C. Optimization of LPI-FDA-MIMO Radar and MIMO Communication for Spectrum Coexistence. IEEE Wirel. Commun. Lett. 2023, 12, 1076–1080. [Google Scholar] [CrossRef]
- Su, Y.; Cheng, T.; He, Z. LPI-Constrained Collaborative Transmit Beampattern Optimization and Resource Allocation for Maneuvering Targets Tracking in Colocated MIMO Radar Network. Signal Process. 2023, 207, 108935. [Google Scholar] [CrossRef]
- Antonik, P.; Wicks, M.C.; Griffiths, H.D.; Baker, C.J. Frequency diverse array radars. In Proceedings of the 2006 IEEE Conference on Radar, Verona, NY, USA, 24–27 April 2006; p. 3. [Google Scholar] [CrossRef]
- Pandit, S.; Singh, G. Spectrum Sensing in Cognitive Radio Networks: Potential Challenges and Future Perspective. In Spectrum Sharing in Cognitive Radio Networks: Medium Access Control Protocol Based Approach; Springer International Publishing: Cham, Switzerland, 2017; pp. 35–75. [Google Scholar] [CrossRef]
- Aubry, A.; Carotenuto, V.; De Maio, A.; Govoni, M.A.; Farina, A. Experimental Analysis of Block-Sparsity-Based Spectrum Sensing Techniques for Cognitive Radar. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 355–370. [Google Scholar] [CrossRef]
- Kuzdeba, S.; Radlbeck, A.; Anderson, M. Performance Metrics for Cognitive Electronic Warfare - Electronic Support Measures. In Proceedings of the MILCOM 2018—2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Mariani, A.; Giorgetti, A.; Chiani, M. Energy Detector Design for Cognitive Radio Applications. In Proceedings of the 2010 International Waveform Diversity and Design Conference, Niagara Falls, ON, Canada, 8–13 August 2010; pp. 53–57. [Google Scholar]
- Saarnisaari, H.; Vartiainen, J. Signal detection with spectrum windows. Heliyon 2022, 8, e10054. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Y.; Li, B.; Yang, C.; Hu, S. The Reconfigurable Pipelined Variable-Point FFT Processor Design. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–4. [Google Scholar]
- Soltanalian, M.; Tang, B.; Li, J.; Stoica, P. Joint Design of the Receive Filter and Transmit Sequence for Active Sensing. IEEE Signal Process. Lett. 2013, 20, 423–426. [Google Scholar] [CrossRef]
- Wang, S.; Inkol, R.; Rajan, S.; Patenaude, F. On the Performance Gain of the FFT Filter-Bank-Based Summation and Majority CFAR Detectors. IEEE Trans. Instrum. Meas. 2009, 58, 1778–1788. [Google Scholar] [CrossRef]
- Tang, B.; Li, J.; Liang, J. Alternating direction method of multipliers for radar waveform design in spectrally crowded environments. Signal Process. 2018, 142, 398–402. [Google Scholar] [CrossRef]
- Aubry, A.; DeMaio, A.; Farina, A.; Wicks, M. Knowledge-Aided (Potentially Cognitive) Transmit Signal and Receive Filter Design in Signal-Dependent Clutter. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 93–117. [Google Scholar] [CrossRef]
- Soltanalian, M.; Stoica, P. Designing Unimodular Codes Via Quadratic Optimization. IEEE Trans. Signal Process. 2014, 62, 1221–1234. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, C.; Deng, Z.; Liu, Y.F. New Semidefinite Relaxations for a Class of Complex Quadratic Programming Problems. J. Glob. Optim. 2023, 87, 255–275. [Google Scholar] [CrossRef]
- Mitra, S.K.; Kuo, Y. Digital Signal Processing—A Computer Based Approach; McGraw-Hill Higher Education: New York, NY, USA, 2006. [Google Scholar]
- Cheng, Z.; He, Z.; Liao, B.; Fang, M. MIMO Radar Waveform Design with PAPR and Similarity Constraints. IEEE Trans. Signal Process. 2018, 66, 968–981. [Google Scholar] [CrossRef]
- Varadhan, R.; Roland, C. Simple and globally convergent methods for accelerating the convergence of any em algorithm. Scand. J. Stat. 2008, 35, 335–353. [Google Scholar] [CrossRef]
- Stoica, P.; He, H.; Li, J. New Algorithms for Designing Unimodular Sequences with Good Correlation Properties. IEEE Trans. Signal Process. 2009, 57, 1415–1425. [Google Scholar] [CrossRef]
- Zhang, N.; Golomb, S.W. Polyphase sequence with low autocorrelations. IEEE Trans. Inf. Theory 1993, 39, 1085–1089. [Google Scholar] [CrossRef]
- Martino, A.D. Introduction to Modern EW Systems; Artech House: Norwood, MA, USA, 2018. [Google Scholar]
- Golay, M. A class of finite binary sequences with alternate auto-correlation values equal to zero. IEEE Trans. Inf. Theory 1972, 18, 449–450. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Guo, F.; Xiong, K.; Liu, Z.; Hu, W. LPI Sequences Optimization Method against Summation Detector Based on FFT Filter Bank. Remote Sens. 2024, 16, 2021. https://doi.org/10.3390/rs16112021
Liu Q, Guo F, Xiong K, Liu Z, Hu W. LPI Sequences Optimization Method against Summation Detector Based on FFT Filter Bank. Remote Sensing. 2024; 16(11):2021. https://doi.org/10.3390/rs16112021
Chicago/Turabian StyleLiu, Qiang, Fucheng Guo, Kunlai Xiong, Zhangmeng Liu, and Weidong Hu. 2024. "LPI Sequences Optimization Method against Summation Detector Based on FFT Filter Bank" Remote Sensing 16, no. 11: 2021. https://doi.org/10.3390/rs16112021
APA StyleLiu, Q., Guo, F., Xiong, K., Liu, Z., & Hu, W. (2024). LPI Sequences Optimization Method against Summation Detector Based on FFT Filter Bank. Remote Sensing, 16(11), 2021. https://doi.org/10.3390/rs16112021