Hyperspectral Image Denoising Based on Deep and Total Variation Priors
Abstract
:1. Introduction
- We first process the original HSI using a randomly binarized sparse observation matrix. This not only reduces the influence of noise on the HSI, but also mitigates the blurring effect experienced during HSI acquisition, providing a better initial input for subsequent denoising operations. Additionally, by introducing the randomness inherent in this process, the randomness in image processing is increased, enhancing the robustness and stability of the subsequent denoising algorithms.
- We innovatively introduce two priors, FFDNet and TV, into the hyperspectral remote sensing image denoising algorithm simultaneously. FFDNet provides high-quality initial denoising results by learning the complex relationship between noise and signaling. TV regularization further optimizes these results by reducing noise while preserving image details. By leveraging two complementary priors, this compensates for their individual limitations and combines their strengths, resulting in superior denoising performance for hyperspectral images.
- Extensive experiments are conducted, and the results demonstrate significant improvements in quantitative evaluation and visual effects when juxtaposed with prevailing denoising techniques.
2. Methodology
2.1. Related Work
2.1.1. Compressed Sensing Theory
2.1.2. DnCNN
- The first layer performs a convolution operation using a 3 × 3 kernel size with zero padding incorporated into the input. Following this, the output of this stratum undergoes an ReLU [37], a non-linear transformation, yielding the initial layer’s image configuration.
- For each subsequent layer, batch normalization (BN) [55] is utilized in conjunction with both the convolution operation and the ReLU nonlinear activation function. Batch normalization accelerates the convergence of training and enhances the model’s robustness. This combination ensures that the activations within the network remain stable, facilitating efficient learning.
- The final layer: The last layer exclusively utilizes a convolution procedure to procure the ultimate residual outcome for the image. This residual outcome embodies the noise element that the DnCNN has been trained to deduct from the initial input, consequently unveiling the noise-reduced HSI.
2.1.3. FFDNet
2.1.4. E3DTV
2.1.5. PnP Framework
2.1.6. GAP Algorithm
2.2. Proposed Method
Algorithm 1. Proposed approach. |
1. Input: the sparse representation of HSI and the sparse observation matrix . 2. Initialize: Set , , 3. When not converging, do 4. 5. Update via (12). 6. Acquire a set of denoising images: 7. Acquire a set of denoising images: 8. Solve problem (23). 9. Update via the denoiser (24). 10. End while |
2.3. Evaluation Metrics
2.3.1. Mean Peak Signal-to-Noise Ratio (MPSNR)
2.3.2. Mean Structural Similarity Index Measure (MSSIM)
2.3.3. Spectral Angle Mapper (SAM)
3. Experiments
3.1. Experimental Configuration
3.2. Visual Quality Comparison
3.3. Quantitative Comparison
4. Discussion
4.1. Comparison of and Norm
4.2. Stopping Criteria for Denoising
4.3. Run Time
4.4. Residual Image
4.5. Performance on Different Degrees of Noise
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-Resolution Mapping Based on Spatial–Spectral Correlation for Spectral Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2256–2268. [Google Scholar] [CrossRef]
- Ang, K.L.-M.; Seng, J.K.P. Big Data and Machine Learning with Hyperspectral Information in Agriculture. IEEE Access 2021, 9, 36699–36718. [Google Scholar] [CrossRef]
- Kovalev, D.M.; Obukhova, N.A. Modern Trends in Hyperspectral Archival Document Image Processing: A Review. In Proceedings of the 2023 Seminar on Signal Processing, Saint Petersburg, Russia, 22–22 November 2023; pp. 48–52. [Google Scholar] [CrossRef]
- Salut, M.M.; Anderson, D.V. Tensor Robust CUR for Compression and Denoising of Hyperspectral Data. IEEE Access 2023, 11, 77492–77505. [Google Scholar] [CrossRef]
- Uss, M.L.; Vozel, B.; Lukin, V.V.; Chehdi, K. Local Signal-Dependent Noise Variance Estimation from Hyperspectral Textural Images. IEEE J. Sel. Top. Signal Process. 2011, 5, 469–486. [Google Scholar] [CrossRef]
- Sarkar, S.; Sahay, R.R. A Non-Local Superpatch-Based Algorithm Exploiting Low Rank Prior for Restoration of Hyperspectral Images. IEEE Trans. Image Process. 2021, 30, 6335–6348. [Google Scholar] [CrossRef]
- Vuong, A.T.; Tang, V.H.; Ngo, L.T. A Hyperspectral Image Denoising Approach via Low-Rank Matrix Recovery and Greedy Bilateral. In Proceedings of the 2021 RIVF International Conference on Computing and Communication Technologies (RIVF), Hanoi, Vietnam, 19–21 August 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Li, S.; Geng, X.; Zhu, L.; Ji, L.; Zhao, Y. Hyperspectral Image Denoising Based on Principal-Third-Order-Moment Analysis. Remote Sens. 2024, 16, 276. [Google Scholar] [CrossRef]
- Han, J.; Pan, C.; Ding, H.; Zhang, Z. Double-Factor Tensor Cascaded-Rank Decomposition for Hyperspectral Image Denoising. Remote Sens. 2024, 16, 109. [Google Scholar] [CrossRef]
- Lian, X.; Yin, Z.; Zhao, S.; Li, D.; Lv, S.; Pang, B.; Sun, D. A Neural Network for Hyperspectral Image Denoising by Combining Spatial–Spectral Information. Remote Sens. 2023, 15, 5174. [Google Scholar] [CrossRef]
- Gallo, I.; Boschetti, M.; Rehman, A.U.; Candiani, G. Self-Supervised Convolutional Neural Network Learning in a Hybrid Approach Framework to Estimate Chlorophyll and Nitrogen Content of Maize from Hyperspectral Images. Remote Sens. 2023, 15, 4765. [Google Scholar] [CrossRef]
- Li, M.; Fu, Y.; Zhang, Y. Spatial-spectral transformer for hyperspectral image denoising. Proc. AAAI Conf. Artif. Intell. 2023, 37, 1368–1376. [Google Scholar] [CrossRef]
- Yuan, Y.; Ma, H.; Liu, G. Partial-DNet: A Novel Blind Denoising Model With Noise Intensity Estimation for HSI. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5505913. [Google Scholar] [CrossRef]
- Bayati, F.; Trad, D. 3-D Data Interpolation and Denoising by an Adaptive Weighting Rank-Reduction Method Using Multichannel Singular Spectrum Analysis Algorithm. Sensors 2023, 23, 577. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Liao, W.; Lamoureux, M.P. Antileakage least-squares spectral analysis for seismic data regularization and random noise attenuation. Geophysics 2018, 83, V157–V170. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A. Non-local sparse models for image restoration. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2272–2279. [Google Scholar] [CrossRef]
- Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z.; Gu, S.; Zuo, W.; Zhang, L. Multispectral Images Denoising by Intrinsic Tensor Sparsity Regularization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1692–1700. [Google Scholar] [CrossRef]
- Chen, G.; Qian, S. Denoising and dimensionality reduction of hyperspectral imagery using wavelet packets, neighbour shrinking and principal component analysis. Int. J. Remote Sens. 2009, 30, 4889–4895. [Google Scholar] [CrossRef]
- Ye, M.; Qian, Y.; Zhou, J. Multitask Sparse Nonnegative Matrix Factorization for Joint Spectral–Spatial Hyperspectral Imagery Denoising. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2621–2639. [Google Scholar] [CrossRef]
- Xing, Z.; Zhou, M.; Castrodad, A.; Sapiro, G.; Carin, L. Dictionary Learning for Noisy and Incomplete Hyperspectral Images. SIAM J. Imaging Sci. 2012, 5, 33–56. [Google Scholar] [CrossRef]
- Cai, W.; Jiang, J.; Ouyang, S. Hyperspectral Image Denoising Using Adaptive Weight Graph Total Variation Regularization and Low-Rank Matrix Recovery. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5509805. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 2015, 54, 178–188. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Shen, H.; Zhang, L. Hyperspectral Image Denoising Using Local Low-Rank Matrix Recovery and Global Spatial-Spectral Total Variation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 713–729. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.-Z.; Zhao, X.-L.; Deng, L.-J. Hyperspectral image restoration using framelet-regularized low-rank nonnegative matrix factorization. Appl. Math. Model. 2018, 63, 128–147. [Google Scholar] [CrossRef]
- Zeng, H.; Xie, X.; Ning, J. Hyperspectral Image Restoration via Global Total Variation Regularized Local Nonconvex Low-Rank Matrix Approximation. In Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September 2020–2 October 2020; pp. 2312–2315. [Google Scholar] [CrossRef]
- Fan, H.; Li, J.; Yuan, Q.; Liu, X.; Ng, M. Hyperspectral image denoising with bilinear low rank matrix factorization. Signal Process. 2019, 163, 132–152. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Huang, J.; Mei, X.; Ma, J. Hyperspectral image denoising using the robust low-rank tensor recovery. J. Opt. Soc. Am. A 2015, 32, 1604–1612. [Google Scholar] [CrossRef]
- Gao, L.; Yao, D.; Li, Q.; Zhuang, L.; Zhang, B.; Bioucas-Dias, J.M. A new low-rank representation based hyperspectral image denoising method for mineral mapping. Remote Sens. 2017, 9, 1145. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, J.; Zhao, Q.; Leung, Y.; Zhao, X.-L.; Meng, D. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 1227–1243. [Google Scholar] [CrossRef]
- Kong, X.; Zhao, Y.; Xue, J.; Chan, J.C.-W.; Ren, Z.; Huang, H.; Zang, J. Hyperspectral image denoising based on nonlocal low-rank and TV regularization. Remote Sens. 2020, 12, 1956. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, S.; Zheng, J. Moreau-Enhanced Total Variation and Subspace Factorization for Hyperspectral Denoising. Remote Sens. 2020, 12, 212. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.-Z.; He, W.; Zhao, X.-L.; Zhang, H.; Zeng, J. Hyperspectral image denoising using factor group sparsity-regularized nonconvex low-rank approximation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5515916. [Google Scholar] [CrossRef]
- Zhuang, L.; Bioucas-Dias, J.M. Fast Hyperspectral Image Denoising and Inpainting Based on Low-Rank and Sparse Representations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 730–742. [Google Scholar] [CrossRef]
- He, W.; Yao, Q.; Li, C.; Yokoya, N.; Zhao, Q. Non-Local Meets Global: An Integrated Paradigm for Hyperspectral Denoising. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 6861–6870. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Sun, H.; Liu, M.; Zheng, K.; Yang, D.; Li, J.; Gao, L. Hyperspectral image denoising via low-rank representation and CNN denoiser. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 716–728. [Google Scholar] [CrossRef]
- Dian, R.; Li, S.; Kang, X. Regularizing hyperspectral and multispectral image fusion by CNN denoiser. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1124–1135. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Ulfarsson, M.O.; Sveinsson, J.R. Hyperspectral image denoising using SURE-based unsupervised convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3369–3382. [Google Scholar] [CrossRef]
- Lin, B.; Tao, X.; Lu, J. Hyperspectral image denoising via matrix factorization and deep prior regularization. IEEE Trans. Image Process. 2019, 29, 565–578. [Google Scholar] [CrossRef]
- Guan, J.; Lai, R.; Li, H.; Yang, Y.; Gu, L. DnRCNN: Deep Recurrent Convolutional Neural Network for HSI Destriping. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 3255–3268. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.; Yang, G.; Zhang, L. LR-Net: Low-rank spatial-spectral network for hyperspectral image denoising. IEEE Trans. Image Process. 2021, 30, 8743–8758. [Google Scholar] [CrossRef]
- Zhuang, L.; Ng, M.K.; Gao, L.; Wang, Z. Eigen-CNN: Eigenimages Plus Eigennoise Level Maps Guided Network for Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5512018. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 2018, 27, 4608–4622. [Google Scholar] [CrossRef]
- Dong, W.; Wang, H.; Wu, F.; Shi, G.M.; Li, X. Deep spatial–spectral representation learning for hyperspectral image denoising. IEEE Trans. Comput. Imaging 2019, 5, 635–648. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Yuan, Q.; Song, M.; Yu, H.; Xiao, Y. Hyperspectral Image Denoising: From Model-Driven, Data-Driven, to Model-Data-Driven. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–21. [Google Scholar] [CrossRef]
- Rasti, B.; Koirala, B.; Scheunders, P.; Ghamisi, P. How hyperspectral image unmixing and denoising can boost each other. Remote Sens. 2020, 12, 1728. [Google Scholar] [CrossRef]
- Khan, M.J.; Khan, H.S.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern trends in hyperspectral image analysis: A review. IEEE Access 2018, 6, 14118–14129. [Google Scholar] [CrossRef]
- Zhang, T.; Fu, Y.; Zhang, J. Guided hyperspectral image denoising with realistic data. Int. J. Comput. Vis. 2022, 130, 2885–2901. [Google Scholar] [CrossRef]
- Sidorov, O.; Hardeberg, J.Y. Deep Hyperspectral Prior: Single-Image Denoising, Inpainting, Super-Resolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop, (ICCVW), Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar] [CrossRef]
- Qiu, H.; Wang, Y.; Meng, D. Effective Snapshot Compressive-spectral Imaging via Deep Denoising and Total Variation Priors. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 9123–9132. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, Y.; Suo, J.; Dai, Q. Plug-and-play algorithms for large-scale snapshot compressive imaging. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 1444–1454. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, X.; Suo, J.; Brady, D.J.; Dai, Q. Rank minimization for snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2990–3006. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015; pp. 448–456. Available online: https://proceedings.mlr.press/v37/ioffe15.html (accessed on 4 June 2024).
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Fang, H.; Luo, C. Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping. IEEE Trans. Image Process. 2015, 24, 1852–1866. [Google Scholar] [CrossRef]
- Peng, J.; Xie, Q.; Zhao, Q.; Wang, Y.; Yee, L.; Meng, D. Enhanced 3DTV regularization and its applications on HSI denoising and compressed sensing. IEEE Trans. Image Process. 2020, 29, 7889–7903. [Google Scholar] [CrossRef]
- Chan, R.H.; Li, R. A 3-Stage Spectral-Spatial Method for Hyperspectral Image Classification. Remote Sens. 2022, 14, 3998. [Google Scholar] [CrossRef]
- Cui, K.; Camalan, S.; Li, R.; Pauca, V.P.; Alqahtani, S.; Plemmons, R.; Silman, M.; Dethier, E.N.; Lutz, D.; Chan, R. Semi-Supervised Change Detection of Small Water Bodies Using RGB and Multispectral Images in Peruvian Rainforests. In Proceedings of the 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Rome, Italy, 13–16 September 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Liao, X.; Li, H.; Carin, L. Generalized alternating projection for weighted-2,1 minimization with applications to model-based compressive sensing. SIAM J. Imaging Sci. 2014, 7, 797–823. [Google Scholar] [CrossRef]
- Tao, S.; Dong, W.; Tang, Z.; Wang, Q. Fast non-blind deconvolution method for blurred image corrupted by poisson noise. In Proceedings of the 2017 International Conference on Progress in Informatics and Computing (PIC), Nanjing, China, 15–17 December 2017; pp. 184–189. [Google Scholar] [CrossRef]
- Sara, U.; Akter, M.; Uddin, M.S. Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef]
- Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar] [CrossRef]
- Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4729–4743. [Google Scholar] [CrossRef]
- Xie, Y.; Qu, Y.; Tao, D.; Wu, W.; Yuan, Q.; Zhang, W. Hyperspectral image restoration via iteratively regularized weighted schatten p-norm minimization. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4642–4659. [Google Scholar] [CrossRef]
- Kwak, N. Principal component analysis based on L1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1672–1680. [Google Scholar] [CrossRef]
Noisy | LRMR | WSNM | LRTDTV | FGSLR | FFDNet | E3DTV | Ours | |
---|---|---|---|---|---|---|---|---|
MPSNR | 17.2142 | 25.7200 | 26.2446 | 26.2574 | 26.2786 | 24.7698 | 26.0635 | 25.2010 |
MSSIM | 0.2061 | 0.6503 | 0.6884 | 0.6820 | 0.6827 | 0.5846 | 0.6685 | 0.6986 |
SAM | 0.6289 | 0.2543 | 0.2371 | 0.2380 | 0.2356 | 0.2828 | 0.2401 | 0.2341 |
Noisy | LRMR | WSNM | LRTDTV | FGSLR | FFDNet | E3DTV | Ours | |
---|---|---|---|---|---|---|---|---|
MPSNR | 12.7006 | 22.9192 | 23.8758 | 24.4816 | 23.3588 | 23.6282 | 23.6166 | 23.1644 |
MSSIM | 0.1614 | 0.5829 | 0.7642 | 0.6590 | 0.6361 | 0.6137 | 0.6649 | 0.7950 |
SAM | 0.7171 | 0.2527 | 0.2257 | 0.2141 | 0.2127 | 0.2189 | 0.2054 | 0.2034 |
Noisy | LRMR | WSNM | LRTDTV | FGSLR | FFDNet | E3DTV | Ours | |
---|---|---|---|---|---|---|---|---|
MPSNR | 15.9062 | 22.1283 | 22.0652 | 22.7005 | 22.3429 | 22.3168 | 22.5068 | 21.6217 |
MSSIM | 0.1887 | 0.4605 | 0.5415 | 0.4906 | 0.4734 | 0.4433 | 0.4651 | 0.5417 |
SAM | 0.6420 | 0.3422 | 0.3324 | 0.3200 | 0.3151 | 0.3282 | 0.3140 | 0.3131 |
Noisy | LRMR | WSNM | LRTDTV | FGSLR | FFDNet | E3DTV | Ours | |
---|---|---|---|---|---|---|---|---|
MPSNR | 10.0009 | 26.3611 | 28.5849 | 31.1776 | 32.8068 | 70.3252 | 32.4068 | 66.1001 |
MSSIM | 0.0256 | 0.4474 | 0.5754 | 0.6746 | 0.7584 | 0.9875 | 0.8554 | 0.7517 |
SAM | 0.7908 | 0.1615 | 0.7907 | 0.0942 | 0.1316 | 0.6769 | 0.0791 | 0.1737 |
LRMR | WSNM | LRTDTV | FGSLR | FFDNet | E3DTV | Ours | |
---|---|---|---|---|---|---|---|
Time(s) | 143.66 | 3591.13 | 1644.89 | 1574.36 | 102.82 | 40.48 | 997.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Sun, T.; Chen, Y.; Ge, L.; Wang, X.; Wang, L. Hyperspectral Image Denoising Based on Deep and Total Variation Priors. Remote Sens. 2024, 16, 2071. https://doi.org/10.3390/rs16122071
Wang P, Sun T, Chen Y, Ge L, Wang X, Wang L. Hyperspectral Image Denoising Based on Deep and Total Variation Priors. Remote Sensing. 2024; 16(12):2071. https://doi.org/10.3390/rs16122071
Chicago/Turabian StyleWang, Peng, Tianman Sun, Yiming Chen, Lihua Ge, Xiaoyi Wang, and Liguo Wang. 2024. "Hyperspectral Image Denoising Based on Deep and Total Variation Priors" Remote Sensing 16, no. 12: 2071. https://doi.org/10.3390/rs16122071
APA StyleWang, P., Sun, T., Chen, Y., Ge, L., Wang, X., & Wang, L. (2024). Hyperspectral Image Denoising Based on Deep and Total Variation Priors. Remote Sensing, 16(12), 2071. https://doi.org/10.3390/rs16122071