Dynamics of the Net Precipitation in China from 2001 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Methodology
2.2.1. Calculations of NP
2.2.2. Trend Analysis
2.2.3. Contribution Analysis
3. Results
3.1. Dynamics of NP in China from 2001 to 2020
3.1.1. Spatiotemporal Variation in Mean NP
3.1.2. Spatiotemporal Trend of NP
3.2. Potential Drivers of Spatiotemporal Variation in NP
3.2.1. Contribution of PRE and EI in Controlling NP Trend
3.2.2. Climate and Vegetation Potential Drivers in NP Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- David, J.S.; Valente, F.; Gash, J.H. Evaporation of Intercepted Rainfall. In Encyclopedia of Hydrological Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; ISBN 978-0-47-084894-4. [Google Scholar]
- Levia, D.F.; Keim, R.F.; Carlyle-Moses, D.E.; Frost, E.E. Throughfall and Stemflow in Wooded Ecosystems. In Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions; Levia, D.F., Carlyle-Moses, D., Tanaka, T., Eds.; Ecological Studies; Springer: Dordrecht, The Netherlands, 2011; pp. 425–443. ISBN 978-9-40-071363-5. [Google Scholar]
- McDowell, W.H.; Pérez-Rivera, K.X.; Shaw, M.E. Assessing the Ecological Significance of Throughfall in Forest Ecosystems. In Forest-Water Interactions; Levia, D.F., Carlyle-Moses, D.E., Iida, S., Michalzik, B., Nanko, K., Tischer, A., Eds.; Ecological Studies; Springer International Publishing: Cham, Switzerland, 2020; pp. 299–318. ISBN 978-3-03-026086-6. [Google Scholar]
- Magliano, P.N.; Whitworth-Hulse, J.I.; Baldi, G. Interception, Throughfall and Stemflow Partition in Drylands: Global Synthesis and Meta-Analysis. J. Hydrol. 2019, 568, 638–645. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Gordon, D.A.; Van Stan, J.T., II. A Global Synthesis of Throughfall and Stemflow Hydrometeorology. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, I., John, T., Gutmann, E., Friesen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 49–70. ISBN 978-3-03-029702-2. [Google Scholar]
- Van Stan, J.T.; Hildebrandt, A.; Friesen, J.; Metzger, J.C.; Yankine, S.A. Spatial Variability and Temporal Stability of Local Net Precipitation Patterns. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, I., John, T., Gutmann, E., Friesen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 89–104. ISBN 978-3-03-029702-2. [Google Scholar]
- Bruijnzeel, L.A.; Mulligan, M.; Scatena, F.N. Hydrometeorology of tropical montane cloud forests: Emerging patterns. Hydrol. Processes 2011, 25, 465–498. [Google Scholar] [CrossRef]
- Schwärzel, K.; Ebermann, S.; Schalling, N. Evidence of Double-Funneling Effect of Beech Trees by Visualization of Flow Pathways Using Dye Tracer. J. Hydrol. 2012, 470–471, 184–192. [Google Scholar] [CrossRef]
- Yue, K.; Frenne, P.; Fornara, D.; Meerbeek, K.; Li, W.; Peng, X.; Ni, X.; Peng, Y.; Wu, F.; Yang, Y.; et al. Global Patterns and Drivers of Rainfall Partitioning by Trees and Shrubs. Glob. Chang. Biol. 2021, 27, 3350–3357. [Google Scholar] [CrossRef] [PubMed]
- Fischer-Bedtke, C.; Metzger, J.C.; Demir, G.; Wutzler, T.; Hildebrandt, A. Throughfall Spatial Patterns Translate into Spatial Patterns of Soil Moisture Dynamics—Empirical Evidence. Hydrol. Earth Syst. Sci. 2023, 27, 2899–2918. [Google Scholar] [CrossRef]
- Parker, G.G. Throughfall and Stemflow in the Forest Nutrient Cycle. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 1983; Volume 13, pp. 57–133. ISBN 978-0-12-013913-2. [Google Scholar]
- Friesen, J. Flow Pathways of Throughfall and Stemflow Through the Subsurface. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, I., John, T., Gutmann, E., Friesen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 215–228. ISBN 978-3-03-029702-2. [Google Scholar]
- Adriaenssens, S.; Hansen, K.; Staelens, J.; Wuyts, K.; De Schrijver, A.; Baeten, L.; Boeckx, P.; Samson, R.; Verheyen, K. Throughfall Deposition and Canopy Exchange Processes along a Vertical Gradient within the Canopy of Beech (Fagus sylvatica L.) and Norway Spruce (Picea abies (L.) Karst). Sci. Total Environ. 2012, 420, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, C.; Yang, G.; Feng, H. Variations in Crop Variables within Wheat Canopies and Responses of Canopy Spectral Characteristics and Derived Vegetation Indices to Different Vertical Leaf Layers and Spikes. Remote Sens. Environ. 2015, 169, 358–374. [Google Scholar] [CrossRef]
- Zabret, K.; Šraj, M. Spatial Variability of Throughfall under Single Birch and Pine Tree Canopies. Acta Hydrotech. 2018, 31, 1–20. [Google Scholar] [CrossRef]
- Miralles, D.G.; Gash, J.H.; Holmes, T.R.H.; de Jeu, R.A.M.; Dolman, A.J. Global Canopy Interception from Satellite Observations. J. Geophys. Res. Atmos. 2010, 115, 16122. [Google Scholar] [CrossRef]
- Porada, P.; Van Stan, J.T.; Kleidon, A. Significant Contribution of Non-Vascular Vegetation to Global Rainfall Interception. Nat. Geosci. 2018, 11, 563–567. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, C.; Chen, N.; Levia, D.F. Rainfall Partitioning by Vegetation in China: A Quantitative Synthesis. J. Hydrol. 2023, 617, 128946. [Google Scholar] [CrossRef]
- Carlyle-Moses, D.E. Throughfall, Stemflow, and Canopy Interception Loss Fluxes in a Semi-Arid Sierra Madre Oriental Matorral Community. J. Arid. Environ. 2004, 58, 181–202. [Google Scholar] [CrossRef]
- Ponette-González, A.G.; Van Stan, J.T., II; Magyar, D. Things Seen and Unseen in Throughfall and Stemflow. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, I., John, T., Gutmann, E., Friesen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 71–88. ISBN 978-3-03-029702-2. [Google Scholar]
- Antoneli, V.; de Jesus, F.C.; Bednarz, J.A.; Thomaz, E.L. Stemflow and Throughfall in Agricultural Crops: A Synthesis. Rev. Ambient. Água 2021, 16, e2528. [Google Scholar] [CrossRef]
- Inkiläinen, E.N.M.; McHale, M.R.; Blank, G.B.; James, A.L.; Nikinmaa, E. The Role of the Residential Urban Forest in Regulating Throughfall: A Case Study in Raleigh, North Carolina, USA. Landsc. Urban Plan. 2013, 119, 91–103. [Google Scholar] [CrossRef]
- Zabret, K.; Šraj, M. Rainfall Interception by Urban Trees and Their Impact on Potential Surface Runoff. CLEAN–Soil Air Water 2019, 47, 1800327. [Google Scholar] [CrossRef]
- Kundu, S.; Khare, D.; Mondal, A. Past, Present and Future Land Use Changes and Their Impact on Water Balance. J. Environ. Manag. 2017, 197, 582–596. [Google Scholar] [CrossRef] [PubMed]
- Gerrits, A.M.J.; Pfister, L.; Savenije, H.H.G. Spatial and Temporal Variability of Canopy and Forest Floor Interception in a Beech Forest. Hydrol. Process. 2010, 24, 3011–3025. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Attarod, P.; Van Stan, J.T.; Pypker, T.G.; Dunkerley, D. Efficiency of the Reformulated Gash’s Interception Model in Semiarid Afforestations. Agric. For. Meteorol. 2015, 201, 76–85. [Google Scholar] [CrossRef]
- Muzylo, A.; Llorens, P.; Valente, F.; Keizer, J.J.; Domingo, F.; Gash, J.H.C. A Review of Rainfall Interception Modelling. J. Hydrol. 2009, 370, 191–206. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Dekker, S.C.; Bouten, W. Identification of Rainfall Interception Model Parameters from Measurements of Throughfall and Forest Canopy Storage. Water Resour. Res. 2003, 39, 1251. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Van Stan, J.T.; Pypker, T.G.; Tamjidi, J.; Friesen, J.; Farahnaklangroudi, M. Importance of Transitional Leaf States in Canopy Rainfall Partitioning Dynamics. Eur. J. For. Res. 2018, 137, 121–130. [Google Scholar] [CrossRef]
- Tang, Q.; Yin, Y.; Zhang, X.; Zhu, T.; Zhao, J.; Yang, W. Geography of China. In Atlas of Environmental Risks Facing China under Climate Change; Tang, Q., Ge, Q., Eds.; IHDP/Future Earth-Integrated Risk Governance Project Series; Springer: Singapore, 2018; pp. 1–20. ISBN 978-9-81-104199-0. [Google Scholar]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India Lead in Greening of the World through Land-Use Management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Knutti, R.; Lehner, F.; Deser, C.; Sanderson, B.M. Precipitation Variability Increases in a Warmer Climate. Sci. Rep. 2017, 7, 17966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Furtado, K.; Wu, P. Increasing Precipitation Variability on Daily-to-Multiyear Time Scales in a Warmer World. Available online: https://www.science.org/doi/10.1126/sciadv.abf8021 (accessed on 4 November 2023).
- Li, Y.; Chen, P.; Niu, Y.; Liang, Y.; Wei, T. Dynamics and Attributions of Ecosystem Water Yields in China from 2001 to 2020. Ecol. Indic. 2022, 143, 109373. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global Land Use Changes Are Four Times Greater than Previously Estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Zhu, X.; He, Z.; Du, J.; Chen, L.; Lin, P.; Tian, Q. Spatial Heterogeneity of Throughfall and Its Contributions to the Variability in Near-Surface Soil Water-Content in Semiarid Mountains of China. For. Ecol. Manag. 2021, 488, 119008. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, J.; Zhang, F.; Yan, S.; Xiang, Y. Rainfall Partitioning into Throughfall, Stemflow and Interception Loss by Maize Canopy on the Semi-Arid Loess Plateau of China. Agric. Water Manag. 2018, 195, 25–36. [Google Scholar] [CrossRef]
- Zhang, Q.; Lv, X.; Yu, X.; Ni, Y.; Ma, L.; Liu, Z. Species and Spatial Differences in Vegetation Rainfall Interception Capacity: A Synthesis and Meta-Analysis in China. CATENA 2022, 213, 106223. [Google Scholar] [CrossRef]
- Bai, P. Comparison of Remote Sensing Evapotranspiration Models: Consistency, Merits, and Pitfalls. J. Hydrol. 2023, 617, 128856. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A Simple Surface Conductance Model to Estimate Regional Evaporation Using MODIS Leaf Area Index and the Penman-Monteith Equation. Water Resour. Res. 2008, 44, 10419. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled Estimation of 500 m and 8-Day Resolution Global Evapotranspiration and Gross Primary Production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.S.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y.; et al. Multi-Decadal Trends in Global Terrestrial Evapotranspiration and Its Components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef]
- Tobon, C.; Bouten, W.; Sevink, J. Gross Rainfall and Its Partitioning into Throughfall, Stemflow and Evaporation of Intercepted Water in Four Forest Ecosystems in Western Amazonia. J. Hydrol. 2000, 237, 40–57. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the Contributions of Human Activities and Climate Change to Vegetation Net Primary Productivity Dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, J.; Wang, J.; Zhang, S.; Bai, Y.; Shi, S.; Cao, D. Spatiotemporal Variations of Water Productivity for Cropland and Driving Factors over China during 2001–2015. Agric. Water Manag. 2022, 262, 107328. [Google Scholar] [CrossRef]
- Walker, E.D.; Hart, J.E.; Koutrakis, P.; Cavallari, J.M.; VoPham, T.; Luna, M.; Laden, F. Spatial and Temporal Determinants of A-Weighted and Frequency Specific Sound Levels—An Elastic Net Approach. Environ. Res. 2017, 159, 491–499. [Google Scholar] [CrossRef]
- Zhang, Z.; Lai, Z.; Xu, Y.; Shao, L.; Wu, J.; Xie, G.-S. Discriminative Elastic-Net Regularized Linear Regression. IEEE Trans. Image Process. 2017, 26, 1466–1481. [Google Scholar] [CrossRef]
- He, S.; Zhang, Y.; Ma, N.; Tian, J.; Kong, D.; Liu, C. A Daily and 500 m Coupled Evapotranspiration and Gross Primary Production Product across China during 2000–2020. Earth Syst. Sci. Data 2022, 14, 5463–5488. [Google Scholar] [CrossRef]
- Levia, D.F.; Frost, E.E. Variability of Throughfall Volume and Solute Inputs in Wooded Ecosystems. Prog. Phys. Geogr. Earth Environ. 2006, 30, 605–632. [Google Scholar] [CrossRef]
- Lian, X.; Zhao, W.; Gentine, P. Recent Global Decline in Rainfall Interception Loss Due to Altered Rainfall Regimes. Nat. Commun. 2022, 13, 7642. [Google Scholar] [CrossRef]
- He, W.; Jing, Y.; Jiang, Z.-Y.; Liao, C.-M.; Yu, Y.; Peng, J.-H.; Zhang, Y.-D.; Hou, G.-L.; Zhang, S.-Y. Spatiotemporal Variations in Vegetation Canopy Interception in China Based on a Revised Gash Model. Forests 2022, 13, 1404. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Li, C. Model Simulation of Vegetation Canopy Precipitation Interception in Grassland Ecosystems on the Northeast Margin of the Qinghai-Tibet Plateau. Ecol. Model. 2024, 488, 110576. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Meng, X.; Xu, T.; Song, Y. Long-Term Spatio-Temporal Precipitation Variations in China with Precipitation Surface Interpolated by ANUSPLIN. Sci. Rep. 2020, 10, 81. [Google Scholar] [CrossRef]
- Harka, A.E.; Jilo, N.B.; Behulu, F. Spatial-Temporal Rainfall Trend and Variability Assessment in the Upper Wabe Shebelle River Basin, Ethiopia: Application of Innovative Trend Analysis Method. J. Hydrol. Reg. Stud. 2021, 37, 100915. [Google Scholar] [CrossRef]
- Magliano, P.N.; Whitworth-Hulse, J.I.; Cid, F.D.; Leporati, J.L.; Van Stan, J.T.; Jobbágy, E.G. Global Rainfall Partitioning by Dryland Vegetation: Developing General Empirical Models. J. Hydrol. 2022, 607, 127540. [Google Scholar] [CrossRef]
- Yan, L.; Chen, J.; He, L.; Ji, Y.; Tang, Q.; Fan, Y.; Tan, D. Dynamics of the Evaporation of Intercepted Precipitation during the Last Two Decades over China. Remote Sens. 2022, 14, 2474. [Google Scholar] [CrossRef]
- Tan, L.; Cai, Y.; An, Z.; Cheng, H.; Shen, C.C.; Gao, Y.; Edwards, R.L. Decreasing Monsoon Precipitation in Southwest China during the Last 240 Years Associated with the Warming of Tropical Ocean. Clim. Dyn. 2017, 48, 1769–1778. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, X.; Yang, S.; Ao, Y. Spatiotemporal Variations in Evapotranspiration and Their Driving Factors in Southwest China between 2003 and 2020. Remote Sens. 2023, 15, 4418. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Pan, Y.; Hu, R.; Chen, N. Global Quantitative Synthesis of Effects of Biotic and Abiotic Factors on Stemflow Production in Woody Ecosystems. Glob. Ecol. Biogeogr. 2021, 30, 1713–1723. [Google Scholar] [CrossRef]
- Morillas, L.; Leuning, R.; Villagarcía, L.; García, M.; Serrano-Ortiz, P.; Domingo, F. Improving Evapotranspiration Estimates in Mediterranean Drylands: The Role of Soil Evaporation. Water Resour. Res. 2013, 49, 6572–6586. [Google Scholar] [CrossRef]
- Zhang, S.; Tao, F.; Zhang, Z. Spatial and Temporal Changes in Vapor Pressure Deficit and Their Impacts on Crop Yields in China during 1980–2008. J. Meteorol. Res. 2017, 31, 800–808. [Google Scholar] [CrossRef]
- Zhong, Z.; He, B.; Wang, Y.-P.; Chen, H.W.; Chen, D.; Fu, Y.H.; Chen, Y.; Guo, L.; Deng, Y.; Huang, L.; et al. Disentangling the Effects of Vapor Pressure Deficit on Northern Terrestrial Vegetation Productivity. Sci. Adv. 2023, 9, eadf3166. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.T.; Woodrow, I.E.; Berry, J.A. A Model Predicting Stomatal Conductance and Its Contribution to the Control of Photosynthesis under Different Environmental Conditions. In Progress in Photosynthesis Research: Volume 4, Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, 10–15 August 1986; Biggins, J., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 221–224. ISBN 978-9-40-170519-6. [Google Scholar]
- Fang, J.; Piao, S.; Zhou, L.; He, J.; Wei, F.; Myneni, R.B.; Tucker, C.J.; Tan, K. Precipitation Patterns Alter Growth of Temperate Vegetation. Geophys. Res. Lett. 2005, 32, 21411. [Google Scholar] [CrossRef]
- Cui, Y.; Jia, L.; Fan, W. Estimation of Actual Evapotranspiration and Its Components in an Irrigated Area by Integrating the Shuttleworth-Wallace and Surface Temperature-Vegetation Index Schemes Using the Particle Swarm Optimization Algorithm. Agric. For. Meteorol. 2021, 307, 108488. [Google Scholar] [CrossRef]
- Ge, S.; Jiang, C.; Wang, J.; Liu, S. Analyzing Temperature and Precipitation Extremes in China Using Multiple Gridded Datasets: A Comparative Evaluation. Weather Clim. Extrem. 2023, 42, 100614. [Google Scholar] [CrossRef]
- Blume, T.; Schneider, L.; Güntner, A. Comparative Analysis of Throughfall Observations in Six Different Forest Stands: Influence of Seasons, Rainfall- and Stand Characteristics. Hydrol. Process. 2022, 36, e14461. [Google Scholar] [CrossRef]
- Fleischbein, K.; Wilcke, W.; Goller, R.; Boy, J.; Valarezo, C.; Zech, W.; Knoblich, K. Rainfall Interception in a Lower Montane Forest in Ecuador: Effects of Canopy Properties. Hydrol. Process. 2005, 19, 1355–1371. [Google Scholar] [CrossRef]
- Mutanga, O.; Masenyama, A.; Sibanda, M. Spectral Saturation in the Remote Sensing of High-Density Vegetation Traits: A Systematic Review of Progress, Challenges, and Prospects. ISPRS J. Photogramm. Remote Sens. 2023, 198, 297–309. [Google Scholar] [CrossRef]
- Zhang, Y.; Leuning, R.; Hutley, L.B.; Beringer, J.; McHugh, I.; Walker, J.P. Using Long-Term Water Balances to Parameterize Surface Conductances and Calculate Evaporation at 0.05° Spatial Resolution. Water Resour. Res. 2010, 46, 05512. [Google Scholar] [CrossRef]
- Fang, H.; Li, S.; Zhang, Y.; Wei, S.; Wang, Y. New Insights of Global Vegetation Structural Properties through an Analysis of Canopy Clumping Index, Fractional Vegetation Cover, and Leaf Area Index. Sci. Remote Sens. 2021, 4, 100027. [Google Scholar] [CrossRef]
- Tu, L.; Xiong, W.; Wang, Y.; Yu, P.; Liu, Z.; Han, X.; Yu, Y.; Shi, Z.; Guo, H.; Li, Z.; et al. Integrated Effects of Rainfall Regime and Canopy Structure on Interception Loss: A Comparative Modelling Analysis for an Artificial Larch Forest. Ecohydrology 2021, 14, e2283. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Ji, Y.; Yan, L.; Luo, Y.; Chen, J. Dynamics of the Net Precipitation in China from 2001 to 2020. Remote Sens. 2024, 16, 2094. https://doi.org/10.3390/rs16122094
Pan J, Ji Y, Yan L, Luo Y, Chen J. Dynamics of the Net Precipitation in China from 2001 to 2020. Remote Sensing. 2024; 16(12):2094. https://doi.org/10.3390/rs16122094
Chicago/Turabian StylePan, Jing, Yongyue Ji, Lingyun Yan, Yixia Luo, and Jilong Chen. 2024. "Dynamics of the Net Precipitation in China from 2001 to 2020" Remote Sensing 16, no. 12: 2094. https://doi.org/10.3390/rs16122094
APA StylePan, J., Ji, Y., Yan, L., Luo, Y., & Chen, J. (2024). Dynamics of the Net Precipitation in China from 2001 to 2020. Remote Sensing, 16(12), 2094. https://doi.org/10.3390/rs16122094