Influence of Radiation Stress on Upper-Layer Ocean Temperature under Geostrophic Condition
Abstract
:1. Introduction
2. Methodology
2.1. Descriptions of the Modeling System
2.2. Radiation Stress Formula
3. Model Setup
3.1. Typhoon Introduction
3.2. Study Area and Data Set Used
3.3. Model Setup
4. Results and Discussion
4.1. Wave Simulation Result
4.2. Results of Sea Surface Flow Field
4.3. Upper Ocean Temperature Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, V.S.; Harikrishnan, S.; Mandal, S. Wave crest height distribution during the tropical cyclone period. Ocean Eng. 2020, 197, 106899. [Google Scholar] [CrossRef]
- Kumar, V.S.; Anusree, A. High waves measured during tropical cyclones in the coastal waters of India. Ocean Eng. 2023, 289, 116124. [Google Scholar] [CrossRef]
- Liu, G.L.; Yang, W.J.; Jiang, Y.P.; Yin, J.Y.; Tian, Y.H.; Wang, L.P.; Xu, Y. Design Wave Height Estimation under the Influence of Typhoon Frequency, Distance, and Intensity. J. Mar. Sci. Eng. 2023, 11, 18. [Google Scholar] [CrossRef]
- Shen, L.D.; Zou, Z.L.; Zhang, Z.D.; Pan, Y. Exact solution and approximate solution of irregular wave radiation stress for non-breaking wave. Acta Oceanol. Sin. 2021, 40, 58–67. [Google Scholar] [CrossRef]
- Gao, X.; Ma, X.Z.; Li, P.D.; Yuan, F.; Wu, Y.F.; Dong, G.H. Nonlinear analytical solution for radiation stress of higher-order Stokes waves on a flat bottom. Ocean Eng. 2023, 286, 13. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.; Stewart, R. Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech. 1960, 8, 565–583. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S.; Stewart, R. The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech. 1961, 10, 529–549. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S.; Stewart, R. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. J. Fluid Mech. 1962, 13, 481–504. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S.; Stewart, R. Radiation stresses in water waves; a physical discussion, with applications. Deep. Sea Res. Oceanogr. Abstr. 1964, 11, 529–562. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S. Longshore currents generated by obliquely incident sea waves: 1. J. Geophys. Res. 1970, 75, 6778–6789. [Google Scholar] [CrossRef]
- Noda, E.K. Wave-induced nearshore circulation. J. Geophys. Res. 1974, 79, 4097–4106. [Google Scholar] [CrossRef]
- Bowen, A.J. The generation of longshore currents on a plane beach. J. Mar. Res. 1969, 27, 1153. [Google Scholar]
- Thornton, E.B. Variation of longshore current across the surf zone. In Coastal Engineering 1970; American Society of Civil Engineers: Reston, VA, USA, 2015; pp. 291–308. [Google Scholar]
- Bettess, P. A generalization of the radiation stress tensor. Appl. Math. Model. 1982, 6, 146–150. [Google Scholar] [CrossRef]
- Dolata, L.; Rosenthal, W. Wave setup and wave-induced currents in coastal zones. J. Geophys. Res. Ocean. 1984, 89, 1973–1982. [Google Scholar] [CrossRef]
- Mellor, G. The three-dimensional current and surface wave equations. J. Phys. Oceanogr. 2003, 33, 1978–1989. [Google Scholar] [CrossRef]
- Zheng, J.H.; Yan, Y.X. Vertical variations of wave-induced radiation stress tensor. Acta Oceanol. Sin. 2001, 4, 597–605. [Google Scholar]
- Mellor, G.L. The depth-dependent current and wave interaction equations: A revision. J. Phys. Oceanogr. 2008, 38, 2587–2596. [Google Scholar] [CrossRef]
- Mellor, G. Waves, circulation and vertical dependence. Ocean Dyn. 2013, 63, 447–457. [Google Scholar] [CrossRef]
- Mellor, G. A combined derivation of the integrated and vertically resolved, coupled wave–current equations. J. Phys. Oceanogr. 2015, 45, 1453–1463. [Google Scholar] [CrossRef]
- Ardhuin, F.; Jenkins, A.D.; Belibassakis, K.A. Comments on “The three-dimensional current and surface wave equations”. J. Phys. Oceanogr. 2008, 38, 1340–1350. [Google Scholar] [CrossRef]
- Ardhuin, F.; Rascle, N.; Belibassakis, K.A. Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Model. 2008, 20, 35–60. [Google Scholar] [CrossRef]
- Ardhuin, F.; Suzuki, N.; McWilliams, J.C.; Aiki, H. Comments on “A combined derivation of the integrated and vertically resolved, coupled wave–current equations”. J. Phys. Oceanogr. 2017, 47, 2377–2385. [Google Scholar] [CrossRef]
- McWilliams, J.C.; Restrepo, J.M.; Lane, E.M. An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 2004, 511, 135–178. [Google Scholar] [CrossRef]
- Newberger, P.; Allen, J.S. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 1. Formulation. J. Geophys. Res. Ocean. 2007, 112, C08018. [Google Scholar] [CrossRef]
- Michaud, H.; Marsaleix, P.; Leredde, Y.; Estournel, C.; Bourrin, F.; Lyard, F.; Mayet, C.; Ardhuin, F. Three-dimensional modelling of wave-induced current from the surf zone to the inner shelf. Ocean Sci. 2012, 8, 657–681. [Google Scholar] [CrossRef]
- Craik, A.D.; Leibovich, S. A rational model for Langmuir circulations. J. Fluid Mech. 1976, 73, 401–426. [Google Scholar] [CrossRef]
- Hasselmann, K. Wave-driven inertial oscillations. Geophys. Astrophys. Fluid Dyn. 1970, 1, 463–502. [Google Scholar] [CrossRef]
- Xu, Z.; Bowen, A. Wave-and wind-driven flow in water of finite depth. J. Phys. Oceanogr. 1994, 24, 1850–1866. [Google Scholar] [CrossRef]
- Sun, F.; Qian, C.C.; Wang, W.; Gao, S. Estimation of ocean wave shear force and its convection driving effect. Sci. China 2003, 33, 791–798. [Google Scholar]
- Gao, S.; Sun, F. Analysis of wave-induced lateral body force. J. Oceanol. Limnol. 2005, 36, 367–375. [Google Scholar]
- Sun, F.; Wei, Y.L.; Wu, K.J. Wave-induced radiation stress under geostrophic condition. Acta Oceanol. Sin. 2006, 28, 1–4. [Google Scholar]
- Chen, C.; Liu, H.; Beardsley, R.C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Niu, Q.; Xia, M.; Rutherford, E.S.; Mason, D.M.; Anderson, E.J.; Schwab, D.J. Investigation of interbasin exchange and interannual variability in L ake E rie using an unstructured-grid hydrodynamic model. J. Geophys. Res. Ocean. 2015, 120, 2212–2232. [Google Scholar] [CrossRef]
- Jiang, L.; Xia, M. Dynamics of the Chesapeake Bay outflow plume: Realistic plume simulation and its seasonal and interannual variability. J. Geophys. Res. Ocean. 2016, 121, 1424–1445. [Google Scholar] [CrossRef]
- Kang, X.; Xia, M.; Pitula, J.S.; Chigbu, P. Dynamics of water and salt exchange at Maryland Coastal Bays. Estuar. Coast. Shelf Sci. 2017, 189, 1–16. [Google Scholar] [CrossRef]
- Chen, J.; Weisberg, R.H.; Liu, Y.; Zheng, L.; Zhu, J. On the momentum balance of Tampa Bay. J. Geophys. Res. Ocean. 2019, 124, 4492–4510. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H.; Zheng, L. Impacts of hurricane Irma on the circulation and transport in Florida Bay and the Charlotte Harbor estuary. Estuaries Coasts 2020, 43, 1194–1216. [Google Scholar] [CrossRef]
- Galperin, B.; Kantha, L.; Hassid, S.; Rosati, A. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 1988, 45, 55–62. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Qi, J.; Chen, C.; Beardsley, R.C.; Perrie, W.; Cowles, G.W.; Lai, Z. An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): Implementation, validations and applications. Ocean Model. 2009, 28, 153–166. [Google Scholar] [CrossRef]
- Niu, Q.; Xia, M. Wave climatology of Lake Erie based on an unstructured-grid wave model. Ocean Dyn. 2016, 66, 1271–1284. [Google Scholar] [CrossRef]
- Mao, M.; Xia, M. Dynamics of wave–current–surge interactions in Lake Michigan: A model comparison. Ocean Model. 2017, 110, 1–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Beardsley, R.C.; Perrie, W.; Gao, G.; Zhang, Y.; Qi, J.; Lin, H. Applications of an unstructured grid surface wave model (FVCOM-SWAVE) to the Arctic Ocean: The interaction between ocean waves and sea ice. Ocean Model. 2020, 145, 101532. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef]
- Svendsen, I.A. Mass flux and undertow in a surf zone. Coast. Eng. 1984, 8, 347–365. [Google Scholar] [CrossRef]
- Wu, L.; Chen, C.; Guo, P.; Shi, M.; Qi, J.; Ge, J. A FVCOM-based unstructured grid wave, current, sediment transport model, I. Model description and validation. J. Ocean Univ. China 2011, 10, 1–8. [Google Scholar] [CrossRef]
- Moghimi, S.; Klingbeil, K.; Gräwe, U.; Burchard, H. A direct comparison of a depth-dependent radiation stress formulation and a vortex force formulation within a three-dimensional coastal ocean model. Ocean Model. 2013, 70, 132–144. [Google Scholar] [CrossRef]
- Wu, Z.H.; Zhang, Y.; Zhang, L.F.; Zheng, H.P. Interaction of Cloud Dynamics and Microphysics During the Rapid Intensification of Super-Typhoon Nanmadol (2022) Based on Multi-Satellite Observations. Geophys. Res. Lett. 2023, 50, 9. [Google Scholar] [CrossRef]
- Sun, Y.; Perrie, W.; Toulany, B. Simulation of wave-current interactions under hurricane conditions using an unstructured grid model: Impacts on ocean waves. J. Geo-Phys. Res. Ocean. 2018, 123, 3739–3760. [Google Scholar] [CrossRef]
- Zhang, J.S.; Lin, Y.L.; Chavas, D.R.; Mei, W. Tropical Cyclone Cold Wake Size and Its Applications to Power Dissipation and Ocean Heat Uptake Estimates. Geophys. Res. Lett. 2019, 46, 10177–10185. [Google Scholar] [CrossRef]
- Da, N.D.; Foltz, G.R.; Balaguru, K. Observed Global Increases in Tropical Cyclone-Induced Ocean Cooling and Primary Production. Geophys. Res. Lett. 2021, 48, 8. [Google Scholar] [CrossRef]
- Sun, Z.; Shao, W.; Yu, W.; Li, J. A study of wave-induced effects on sea surface temperature simulations during typhoon events. J. Mar. Sci. Eng. 2021, 9, 622. [Google Scholar] [CrossRef]
- Chen, C.; Beardsley, R.; Hu, S.; Xu, Q.; Lin, H. Using MM5 to hindcast the ocean surface forcing fields over the Gulf of Maine and Georges Bank region. J. Atmos. Ocean. Technol. 2005, 22, 131–145. [Google Scholar] [CrossRef]
- Holte, J.; Talley, L.D.; Gilson, J.; Roemmich, D. An Argo mixed layer climatology and database. Geophys. Res. Lett. 2017, 44, 5618–5626. [Google Scholar] [CrossRef]
Scheme | Track | PE | COR | MAE (m) | RMSE (m) |
---|---|---|---|---|---|
Conventional RS | a | 0.99 | 0.89 | 0.22 | 0.50 |
b | 0.22 | 0.93 | 0.04 | 0.59 | |
c | 0.35 | 0.90 | 0.39 | 0.57 | |
d | 0.32 | 0.96 | 0.31 | 0.49 | |
Average | 0.46 | 0.92 | 0.30 | 0.54 | |
RS under geostrophy | a | 1.14 | 0.86 | 0.23 | 0.51 |
b | 0.41 | 0.94 | 0.01 | 0.60 | |
c | 0.24 | 0.92 | 0.35 | 0.55 | |
d | 0.32 | 0.99 | 0.30 | 0.45 | |
Average | 0.53 | 0.93 | 0.22 | 0.52 |
Case | Date | COR | MAE (°C) | RMSE (°C) |
---|---|---|---|---|
Conventional RS | 15 September | 0.98 | 0.18 | 0.34 |
16 September | 0.98 | 0.27 | 0.43 | |
17 September | 0.95 | 0.30 | 0.44 | |
18 September | 0.94 | 0.36 | 0.53 | |
Average | 0.96 | 0.28 | 0.43 | |
RS under geostrophy | 15 September | 0.99 | 0.15 | 0.33 |
16 September | 0.98 | 0.25 | 0.42 | |
17 September | 0.96 | 0.26 | 0.43 | |
18 September | 0.96 | 0.30 | 0.51 | |
Average | 0.97 | 0.24 | 0.42 |
Float Position | A1 | A2 | B1 | B2 | B3 | B4 | Average (m) | |
---|---|---|---|---|---|---|---|---|
Mixed layer depth (m) | ARGOs | 45.4 | 45.5 | 40.1 | 43.2 | 32.5 | 38.1 | 40.80 |
Conventional RS | 38.4 | 34.3 | 36.9 | 38.6 | 26.5 | 34.2 | 34.82 | |
RS under geostrophy | 40.6 | 35.5 | 39.1 | 40.9 | 29.2 | 37.9 | 36.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Shi, J.; Chen, J.; Wang, Q.; Lv, J.; Zhao, Z. Influence of Radiation Stress on Upper-Layer Ocean Temperature under Geostrophic Condition. Remote Sens. 2024, 16, 2288. https://doi.org/10.3390/rs16132288
Cao X, Shi J, Chen J, Wang Q, Lv J, Zhao Z. Influence of Radiation Stress on Upper-Layer Ocean Temperature under Geostrophic Condition. Remote Sensing. 2024; 16(13):2288. https://doi.org/10.3390/rs16132288
Chicago/Turabian StyleCao, Xuhui, Jian Shi, Jie Chen, Qianhui Wang, Jialei Lv, and Zeqi Zhao. 2024. "Influence of Radiation Stress on Upper-Layer Ocean Temperature under Geostrophic Condition" Remote Sensing 16, no. 13: 2288. https://doi.org/10.3390/rs16132288
APA StyleCao, X., Shi, J., Chen, J., Wang, Q., Lv, J., & Zhao, Z. (2024). Influence of Radiation Stress on Upper-Layer Ocean Temperature under Geostrophic Condition. Remote Sensing, 16(13), 2288. https://doi.org/10.3390/rs16132288